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ABSTRACT

Techniques are described for improving the speed of large
transient stability studies without sacrificing accuracy. A fast iterative
method for solving the algebraic network equations, including the
effect of generator saliency, is explained. A new technique for solving
the differential equations with the implicit trapezoidal rule of
integration is introduced. These two techniques can be combined into
one simultaneous solution, thereby eliminating the problem of
interface error between the differential and algebraic equation
solutions of the traditional approach.

INTRODUCTION

Transient stability studies now require considerable computer
time, especially for solving large systems. This has motivated a search
for faster solution techniques. Two possibilities for improving the
speed of transient stability studies are: (a) Reduction of the total
system to a smaller one, which could be solved faster, and
(b) improvements in the numerical solution techniques.

Reduction techniques produce equivalents which are normally
only approximations. Therefore, in spite of recent progress in finding
equivalents, the user must have a “feeling” for the problem when
equivalents are used. It should also be noted that solutions based on
sparsity techniques become faster through reduction only to a certain
point because of fill-in caused by the reduction process*. Judicious
use of equivalents can make stability solutions faster; however, this
paper is concerned with the second possibility, improved numerical
solution techniques.

Improvements in numerical solution techniques can speed up the
solution without placing any burden of judgment on the user. This
paper describes experiments carried out at Bonneville Power Adminis-
tration (BPA) over the last few years with the objective of obtaining
faster solutions for the steady-state equations as well as for the
differential equations which arise in stability studies. Speeding up the
solution of the steady-state equations has been accomplished by
applying sparsity techniques and solution methods which require
fewer iterations. Speeding up the solution of the differential
equations has been achieved with the implicit trapezoidal rule of
integration, which has already been used successfully for the solution
of switching transients at BPA“. This method is numerically stable
and accurate enough. It should be noted that explicit techniques,
including the Runge-Kutta methods, require higher accuracy primarily
to insure numerical stability. As a consequence, such techniques also
require longer solution times. It is expected that implementation of
these ideas into BPA’s production program will make the solution
about five times faster, )

Brackets are used to indicate vector and matrix quantities.
Parentheses usually indicate a functional relationship or the value for
time t. A super dot is used to indicate derivatives with respect to time.

STRUCTURE OF TRANSIENT
STABILITY EQUATIONS

The initial conditions for a stability study are determined by a
steady-state power flow solution. Thereafter, two sets of equations
must be solved simultaneously as a function of time, namely a system

of steady-state equations (which describe the steady-state. behavior of
the network including steady-state models of loads and the algebraic
equations of synchronous machines),

810Xy - X Y10 oY) ™ 0
§3)]

or [g([x1IyD]=0

and a system of differential equations (which describe the dynamic
behavior of the machines and their control circuits),

)}1 = fl(xl, ‘e .xn,}']_, . -Ym’ t)

.........................

or [¥] =[{([x],[¥y],©)] (2)

The structure of Eq. (1) will change at certain moments in time due
to fault initialization, fault clearing, line switching, ete. Such changes,
which require re-solutions without advancing the time, produce
discontinuities in the value of the vector [x]. No discontinuities can
appear in [y].

CLASSIFICATION OF SOLUTION METHODS

On a digital computer, the values of [x] and [y] are computed at
discrete points in time, thereby producing a sequence of snapshot
pictures at intervals At. The sampling rate 1/ At determines the upper
limit of the frequencies which will be adequately represented in [x]
and [y]. As a comsequence of the discretization, interpolation
assumptions must normally be made on [x] to define the state
between discrete points. In most cases linear interpolation is
adequate.

The methods for solving Eqs. (1) and (2) simultaneously fall
roughly into three categories: (a) Alternating solution of Egs. (1)
and (2), (b) elimination of [x], and (c) algebraization of Eq. (2) by
implicit integration. The distinction ‘is not always clear. As an
example, the numerical solution of differential equations is in itself
based on an algebraization process.

(2) Alternating Solution Method

Y This technique is probably used in most existing stability

programs, The algorithm is roughly as follows:
1. [Establish initial conditions by solving Eq. (1) at t = 0.

2. Predict how [x] behaves over the next time interval by using
zero, first or second order extrapolation.

3. Solve Eq. (2) for [y(t)] by any numerical technique, using the
polynomial obtained in step 2 as an interpolation formula.

4. Solve Eq. (1) for [x(t)] by any of the well-known power flow
solution techniques,
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5. Use the computed value [x(t)] to correct the prediction over the
interval from t-Atto t.

6. Solve Eq. (2) for [¥(t)] by any numerical technique, using the
polynomial obtained in step 5 as an interpolation formula.

7. Check differences of two successive solutions for [y(t)]. If the
differences are negligible proceed to step 8. Otherwise go to
step 4.

8. Advance by one time step and loop back to step 2.

Several variations are possible. In the version described above, the
steady-state equations (1) must be solved once, most of the time,
since the differences in step 7 are normally sufficiently small on the
first pass, The prediction and correction process of the alternating
solution method should not be confused with predictor-corrector
methods for solving differential equations; if such methods are used,
steps 3 and 6 would also involve another kind of prediction-correction
process in itself,

It is essential to include the check of step 7 to avoid so-called
“interface” errors. If this is not done, a careful assessment should be
made about the acceptability of the accumulated errors. With the
interface loop closed, the quelity of the prediction (step 2) will
determine how often the loop must be executed and, in effect, how
long the study will take, but it will not degrade the accuracy of the
solution because of corrections initiated in step 7. This is not true for
open-loop solutions, where the quality of the prediction will have a
decisive influence on the accuracy.

(b) Elimination of [x]

This approach is used for small disturbance stability studies3, For
small variations [Ax], [Ay] around an operating point, Eq. (1) can

e - (3]s

2g] 2
with the Jacobian matrices| 3¢ +| dy | being evaluated at the given
solution point. Eq. (2) can also be linearized around the operating

point, [Aay] ={A)[Ay] + [B)[Ax]

Both linear equations combined become

G SRE

[B] | [A)jiay]] [ay)

and after elimination of [x] by triangularization,

[Ax]) 0
0 =
(AL reduced | | 1av] [Ay]
or .
[Ay]1=[Alreduced  [4Y] 3

The eigenvalues of [ Alyeduced &ive the damping (real part) and
natural frequencies (imaginary part) of all possible modes of
oscillations without having to make any assumption about the specific
(small) disturbance. The system will be stable as long as the real parts
of all eigenvalues are negative (first method of Lyapunov).

(¢) Algebraization by Implicit Integration

The step-by-step solution of Eq. (2) is best expressed in integral

form, t
[y(t)} = [y(t-at)] + £ [f(y]Ix]1,9] dr
t-At

Implicit integration techniques use interpolation functions for the
expressions under the integral, Interpolation means that the functions
must pass through the yet unknown points at time t, which must
therefore be expressed as variables. In general, the solution may
require iterations. If the differential equations are linear, however,
then a direct solution becomes possible,

Let the differential equations (2) be linear of the form
[¥1=[Al{y] +[B]{x] (4a)

Most differential equations are linear in stability studies. There are
some nonlinearities, however, but their inclusion poses no serious
problem, as shown later for the excitation system. Eq. (4a) can be
rewritten as a step-by-step integration,
[¥(9)] = [y(-00)] + [A] | [yldr+[B] } [x]dr (4b)
t-At t-At
The simplest implicit integration scheme is the trapezoidal rule of
integration.* It is based on the assumption that [x] and [y] vary
linearly over the interval from t-At to-t. Then Eq. (4b) becomes

&) = [xtea)] + 5 141 156801 + 1v0) |
+ 11 [Txea)] + ()]

which is simply a system of linear algebraic equations
¢ ¢
[01-Fia1] so1- L Bisor - oeany G0

The vector on the right-hand side is known from the values already
computed at the preceding time step:

(e(ean)] = F 81001 + [101+ a1 tya)  Gb)

[U] denotes the unit or identity matrix. Eq. (5a) can now be solved
directly with Eq. (1) as one complete system of steady-state
equations,

NUMERICAL STABILITY OF TH

TRAPEZOIDAL RULE OF INTEGRATION

The trapezoidal rule of integration is numerically stable. To
illustrate the problem of numerical stability, it will be assumed that a
fast oscillation in a control circuit produces “ripples” of very small
magnitudes which do not have any influence on the overall behavior
of the circuit. Such a mode of oscillation could be described by

¥ +y =0, with y(0) = 0, %(0) = 104 (6a)
The exact solution for this ripple is y = 10"4sin(t); its amplitude of
104 will be considered as very small by definition. Eq. (6a) must be
rewritten as a system of first-order differential equations in order to
apply any of the numerical solution techniques:

&3

¥ 0 1 vy y1=vy
1 = ' with 1 ]
Yo=Yy

(6b)
Vo 0]
The exact step-by-step soluiion i

yi(t) - JAlA y1(t-At)
yo(t) yo(t-At)

with the transition matrix e[AJAt, Application of the trapezoidal
rule to Eq. (6b) gives

a2
y1(t) 1 ['1 - At [yqft-at)
= 2 2 (7
yolt) 1 +'—44t [ At 1- —A%— yo(t-At)

* There are also higher-order generalizations of the trapezoidal rule,

whereby [A] =L3 ;]
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It can be shown that y%(t) + y%(t) = y%(t-At) + yg(t-At)

in Eq. (7) for any choice of At. Therefore, if the process is started
with the correct initial condition y2(0) + y,’g)) =10, the solution
for y will always lie between -10% and +10°%, even for step-widths
which are much larger than one cycle of the oscillation. In other
words, the trapezoidal rule “cuts across” oscillations which are very
fast but of negligible amplitude, without any danger of numerical
instability.

Explicit integration techniques, which include Runge-Kutta meth-
ods, are inherently unstable. They require a step-width tailored to the
highest frequency or smallest time constant (rule of thumb:
Ats Tmin) even though this mode may produce only negligible
rippies, with the overall behavior determined by large time constants,
as in so-called “stiff-systems.”

Applying the conventional fourth-order Runge-Kutta method to
Eq. (6b) is identical to a fourth-order Taylor series expansion of the
transition matrix in case of linear systems,

att
24

)
8

| ya(t-at)
Plotting the curves with a reasonably small At, e.g., 6 samples/
cycle, reveals that the Runge-Kutta method of Eq. (8) is more

accurate at first than the trapezoidal rule, but tends to lose the
amplitude later on (Fig. 1).

-4
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Fig. 1. Numerical solution of § + y =0
(a) Exact, (b) Runge-Kutta,
(c) trapezoidal rule
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Adding the 5 terms gives

2 4 3
At At At
yl(t)“l-—2-+2—;— At2-'T4 .
) -At+"'""‘At 1_&__+_._A2E1

Y2(t 6 2

This is not serious since the ripple is assumed to be unimportant &
the first place. If the step-width is increased, however, to At> %
cycles (At >0.4502 cycles), then the amplitude will eventually grow
to infinity. This is illustrated in table I for At =1 cycle.
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MiNe=|O

m—— Q.00Is
0000 0.005s
0.0ts
—-— 0.02s

- o -

4 Fig. 2. Test example for trapezoidal rule.
(a) Control circuit. (b) Solution for step-function input u=02.

The plots of Fig. (2b) were obtained with the trapezoidal rule, using
different step-widths, The results are acceptable with a step-width as
large as 0.01s, which is 500 times larger than the approximate
step-width 5 Tinin required for the Runge-Kutta method.

Block diagrams with small time constants are often described by
equations of the form

dvy ©)
T at KY]_ bl Y2:

as in Fig. (2a). If T is very small, then the block is basically a
multiplier,

yg=Ky;  ifT=0 (10)

If explicit integration techniques are used in such cases, then it
becomes necessary to set small time constants equal to zero to avoid
numerical instability. This is bothersome to the user because the
problem manifests itself quite often only after the algorithm has
failed to give a solution. On the other hand, the programmer hesitates
to build the decision into the program because it is difficult to draw
the line between small and not so small time constants for ail possible
situations. This problem does not arise with the trapezoidal rule since

Table I. Numerical solution of Eq. (6a) with At = 1 cycle

t incycles 1 2 4 5 6
exact 0 0 0 0 0
- - -4
trapezoidal 0.58 104 -0.94 104 0.96 104 -0.63 104 0.06 10 0.53 10
rule
Runge-Kutta -0.004 0.32 18 -590 6800 2,600,000
VERY SMALL TIME CONSTANTS the limit case T+O turns out to be identical to the algebraic equation
IN THE TRAPEZOIDAL RULE (10). Applying the trapezoidal rule to Eq. (9) gives

The fact that the trapezoidal rule of integration is stable even if
the step-width is much larger than the smallest time constant is of
practical importance for stability studies. Fig. (2a) shows a hypotheti-
cal control circuit with a smallest time constant of 0.0001 s, and a
step function input, which is regarded as the most severe test.

N

1+ 2 7200) - Kyy(®) =<1~ Ehyalt-00) + Ky ot
and for T<At

ya(t)- Kyy(t) = ~{ra(t-08) - Kyy (t0)) (11)
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which is indeed identical to Eq. (10) as long as the process starts from
the correct initial conditions ¥9(0) - Ky4(0) = 0. Even a slight error
in the initial conditions,

¥9 (0) ~Ky(0)=e

will not cause serious problems. Since Eq. (11) just flips the sign of
the expression ¥9 - Ky from step to step, the error ¢ would only
produce ripples £ ¢ superimposed on the true solution for yo. These
ripples will disappear entirely when yo passes through another
trapezoidal integration.

FAST SOLUTION OF THE
STEADY-STATE EQUATIONS

The steady-state equations in stability studies differ very little
from those used in conventional power flow studies, except that the
real and reactive power of loads become voltage dependent and more
steady-state equations are added for the synchronous generators. On
the other hand, some features in power flow studies, such as
automatic tap setting of transformers, are not required in stability
studies.

Generator Model

A generator model with three armature windings, one field
winding and one hypothetical g-coil (which represents deeper flowing
eddy currents in steam generators), is adequate to represent transient
effects (subtransient effects ignored). The additional steady-state
equations for this model are *):

Iq 1 R, X d Eq - Vq

=T-',__7 < E, v (12)
Iq Rh-+Xqu X.q R, 4~ Vd

with the quantities in the q, d-reference frame related to the phasor
quantities I, V, E’ of the network solution by

Iy +ilg =T 88 withT = Treal * Timag analogous for V.E'  (13)
The angle § measures the rotor position of the generator relative to
the synchronously rotating reference frame, which is implied in
phasor solutions of the network. The parameters &, E_, E; are part
of the vector {y], whose value is determined from the solution of the
differential equations, whereas Iq, I Vo V;i are part of the vector
[x]. In the alternating solution method,g » By» Eg are treated asknown
quantities during the solution of the steady-state equations.

, Ea. (12) is easy to handle if saliency is ignored, that is, if
Xg = Xd’ . In this case, the 2 equations can be written as one equation
wi%h phasor quantities,

— 1 _ )

[ S ' _ L. X

1 R, + %] (E'-V) for Xq Y] (14)

which 1’s simply a known voltage ' behind transient_impedance

R, +jXg. In effect, each internal node with the voltage E’ is a slack
node.

The inclusion of Eq. (12) in the network solution becomes mote
complicated if saliency is considered, that is, if X # Xa When Eq.
(12) is transformed to the reference frame of the network solution,

Lreal

E;eal 'Vreal
=[M(t)) ) )

(15)
imag” Vimag

Iimag

*) The newly recommended position for the quadrature axis lagging
80° behind the direct axis is adopted.

) 1 cosd-sind}i R, X& cosd sin'd]
with [M(t)] =R2+X:ix’ sind cos X;l R jisiné cosé
a q

then two complications in Eq. (15) as compared to Eq.( 14) become -
apparent: ;

1. It is no longer possible to combine the two equations (15)
into one phasor equation, and

2. the matrix [M(t)] is now a function of time, with & entering
into it,

If subtransient effects are to be included, then the model must
have two more windings “kd” and “kq” in the direct and quadrature
axis to represent damper bars or hypothetical coils for surface eddy
currents. This adds 2 more differential equations, but the algebraic
equations can againbe reduced to the form of Eq. (12) except that
the primed quantities are now replaced by double primed quantities,

R, X4][Eqy Y4

E; Vg

L
2 ne | o
Iy RI+XX|X) R,

(18)

All arguments for the model with transient effects are, therefore, also
applicable to the model including subtransient effects.

The complete system of steady-state equatioms is solved by
adopting well-known techniques for fast power flow solutions to the
stability problem. The improvement in the solution of systems of
linear equations by optimally ordered tr'g%gular factorization with
the sparsity of the matrix exploited - has eliminated the
Gauss-Seidel iterative method (using the admittance matrix) as a
serious contender, leaving only two competitive techniques: (a) the
iterative method using the triangularized admittance matrix and (b)
Newton-Raphson method.

(a) Iterations with the 'I‘:iéngulaxized Admittance Matrix

First, the inclusion of Eq. (12) or {16) must be resolved. The
simplest way would be to use the terminal current Leal * inmag asa
given node current and adjust it iteratively as improved answers are
obtained for Vo, + jvimag' Experiments have shown, however, that
this simple technique fails to converge quite frequently. Convergence
can bhe improved considerably by creating a fictitious slack node
behind an impedance; the value of the slack node voltage will then
depend more or less on V.1 +jVip,.o and must, therefore, be
adjusted iteratively. Using R, + jXé as the impedance to the fictitious
slack node improves the situation, but in some cases convergence is
still difficult.

It was found that the convergence becomes very fast if the admittance
to the fictitious slack node is set to ‘

T Raig(%g+ %)

fictitious = 9 o
R o Xqu

Two or three iterations are normally sufficient to adjust tne fictitious
slack node voltage, or-if an equivalent current source is used in
parallel with the shunt admittance Yiictiti us instead of a voltage
source, as in BPA’s stability program (IE'ig. g)--to adjust the fictitious
current source.
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Fig. 3. Equivalent circuit for generator.

The value of the current source is determined from

1 o, s
R ia X9 X & 1 (17a)

Ltictitious ™ Rg . X:jxa salient

with the first part being known and the second part being adjusted
iteratively:

- x .x’l .
Tqaliont = 45 =4 (B - V%) /25 (17b)
2 R2+XgXg

(all quantities are phasors in the network solution reference frame;
“¥" denotes conjugate complex). As an initial guess for the terminal
voltages, the values obtained at the preceding time step are used,
except that their angle is advanced by the same amount by which the
internal angle & has changed from t-At to t. Omitting this rotation
would double the number of required iteration steps.

Techniques for avoiding the iterations due to saliency altogether
are hardly worthwhile, because these 2 or 3 iterations do not add to
the number of iterations which are normally required for non-
impedance load models anyhow. Also, gains in one place would
probably be offset somewhere else (example: If two real equations
with two real variables were used on terminal nodes of generators,
then Eq. (15) could be used without any need for iterations.
However, the admittance matrix would then have to be partly
triangularized in each time step because of the time-dependence of

M]).
The nodes can now be subdivided into two sets,

subset 1 of all “external” nodes (terminals of generators, loads, pas-
sive nodes) and, , ,

subset 2 of all “internal” nodes (true slack nodes if Xq =X4»
fictitious slack nodes otherwise).

The nodal admittance matrix is partitioned accordingly,
[ (%111 ¥yl
ki
fY¥911 1[Y¥g3l

With [Vzl known (slack bus voltages), [Vll has to be found by
solving the system of linear equations,

[?11] [Vl] = [T]_] - [—\;12][—\72] (18)

All other quantities can then be computed from [Vy] and [Vg]. Eq.
(18) is solved by triangular factorization, using optimal ordering and
sparsity techniques., The matrix [Yy7] must only be triangularized
initially and whenever network changes (short-circuit, line switchings)
take place. Otherwise, it remains constant for all iteration steps as
well as over the time steps. With [Yyq] already triangularized, Eq.
(18) is solved by a “repeat” solution, in which the triangularization
process is extended to the right-hand side only. Repeat solutions are

* Loads which cannot be modeled as constant impedance.

about five times faster than triangularization of the matrix. Typical
solution times on a CDC 6400 for a 1190-node case are:

Triangular factorization
of the matrix 86s
repeat solution 16s

The term - [‘—112] [Vo]lin Eq.(18)is idergtical v’rrith the generator
currents from Eq. (17a), with I 0. = 0 if Xq = X . The vector [71]
represents the current injections on the external nodes, including load
nodes. Loads are converted to equivalent impedances which give the
correct power at the nominal voltages of the initial power flow
solution; their values enter into the diagonal elements of [Yq1]. Iall
loads are represented as impedances then Eq. (18) would be
non-iterative with [1;] =0, except for iterations due to saliency. If -
loads are not modeled as constant impedances, then [I; ] is adjusted
iteratively to account for the difference between quadratic voltage
dependence of the impedance and the specified voltage dependence.
Converting the loads to impedances at nominal voltage reduces the
number of iterations by one haif as compared to representing the

- loads entirely in [_11]. The average number of iterations depends very

much on the load representations; 5 to 7 iterations are typical figures.
Unrealistic load representations may increase the number of iterations
appreciably. The user should have good reason, therefore, to represent
loads which differ appreciably from constant impedance.

(b) Newton-Raphson Method

The Newton-Raphson method applied to Eq. (18) has already
been explained in detail elsewhered ; therefore, the equations will
not be repeated here. The most promising approach with the
Newton-Raphson method is the version which uses the current
equation form and rectangular coordinates for the variablesg, with the
following modification: Re-use the old Jacobian matrix from the
preceding time step for the first iteration step (this requires saving the
lower as well as the upper triangular matrix, though) and compute a
new Jacobian matrix for the next iteration step, These two steps (one
repeat solution plus one complete solution) usually solve the
steady-state equations with sufficient accuracy. The version using the
current equation and rectangular coordinates has the advantage of
being non-iterative for nodes with constant impedance loads”.
Saliency does not pose any problem because 2N real equations and
variables are used in the Newton-Raphson method anyhow, instead of
N complex equations and variables, and because the matrix must be
triangularized anew in each time step. In this case, Eq. (15) is easy to
handle because it is linear in the unknown variables V., and Vimag'

(¢) Comparison of the Two Methods

The iterative solution using the triangularized admittance matrix
and the Newton-Raphson method are closely competitive. At this
time, the former method appears to be faster and preferable for the
following reasons:

1. The Newton-Raphson method requires one re-triangu-
larization in each time step, whereas the admittance matrix
must only be re-triangularized when network changes take
place. Tests indicate that the solution with the triangularized
admittance matrix is faster if it converges in less than 5 to 10
iterations,

2. The Newton-Raphson method requires more storage, up to
three times as much when the lower triangular matrix is
saved.

In the second argument it was assumed that the matrix [Yy1] is
symmetric; the lower triangular matrix is not needed then, The
comparison becomes less advantageous for the triangularized admit-
tance matrix if the network contains phase shifting transformers. In

1647




such cases, those columns of the lower triangular matrix which are
affected by the phase-shifting transformers must also be stored.

It is entirely possible that the problem formulation will change in
future stability studies in. such a way that the Newton-Raphson
method will become preferable. One situation which is difficult to
handle with the triangularized admittance matrix, but is very easy
with the Newton-Raphson method, is the node type where real power
and voltage magnitude are specified. Another situation which might
be easier with the Newton-Raphson method is frequency-dependence
of machines, of loads, and line impedances.

SIMULTANEOQUS SOLUTION OF STEADY-STATE
AND DIFFERENTIAL EQUATIONS

The feasibility of speeding up stability studies by using the
trapezoidal rule of implicit integration has been demonstrated at BPA
with a number of test cases. These experiments will be explained in
order of increasing complexity.

Swing Equation
The only differential equations in “classical” stability studies are
the swing equations for each generator:
d
(@) T8 =Py -Pg
and dé

— =) =~ W

(19)
dt § @0)
withd = moment of inertia,

wd = angular momentum,
w = speed ( wg = synchronous speed) on electrical side,

8 = rotor position relative to synchronously rotating refer-
ence frame,

Py = shaft power input,

Py = electrical power output, corrected for electrical losses.
For simplicity, damping terms will be neglected in Eq. (19), but their
inclusion poses no serious problem. It is also customary to set wJ ¥
wgl, which is permissible as long as the speed deviates very little from
the synchronous speed. In other cases, w4 should be changed as the
speed changes.

Since classical stability studies have been performed for many
years, long before digital computers became available, it is
worthwile to look at the techniques which were used for hand
calculations. The most frequently used procedure has been a predictor
formulatV:

at)2

8(t) = 25(t-At) - 5(t-2At) + 5((-@%3 (Pm-Pe,(t-At)) (21)

Eq. (21) can be derived by making two assumptions:

1. Integrate Eq. (19) from midpoint t-éAt to midpoint t-%At,
assuming that% varies linearly in this inferval, which gives

1 - § At - _
wi(t FA)=w(t- 2At) +————_—w(t:At)J (Pm Pop (t At))
2. Integrate Eq. (20) from t- at to t, assuming that w varies linearly
in this interval with its average value being w(t- % At).

Eq. (21) is sufficiently accurate for normal step-widths of 1 to 5
cycles. There is no reason, therefore, why it should not be used in
computer programs, especially if a corrector formula is added as a
safeguard,

* The corrector formula is easily obtained by applying the
trapezoidal rule to Eq. (19) and (20), which gives

2
5(t) = - 4%).” Poi(t) + e (t-At) (222)

with &(t- At) being known from values at the preceding time step,

i 2
oft-At) = 8(t-At) + At (‘w(t-At) : ws) . 4%-( 2Pm-Pe1(t-At))(2gb)
In Eq. (22) it is assumed that Py, is constant, but the equation can
easily be changed if Py, changes as a function of time or if the torque
Ty, is constant.

Eq. (22a) must be used. after discontinuities where Eq. (21) is no
longer valid and should be used at other times to avoid interface
errors. It is merged into the solution of the steady-state equations as
follows: '

1. Predict § with Eq. (21) (at times of discontinuities assume that
§ will not change over the next interval),

2. At the end of each steady-state iteration step (or in the
back-substitution) compute P and insert it into Eq. (22a) to get
a corrected angle. Correct the angle only if the change is
noticeable, to avoid unnecessary computations of sind. and
cos 4.

3. Update a after the steady-state solution has been completed.

A more direct approach could be used with the Newton-Raphson
method, where Eq. (22a) could be added as an additional equation
and & as an additional variable. The size of the Jacobian matrix
would not increase if 5 is eliminated as soon as the elimination hits
the rows of the terminal node, that is, if the technique is used which
was described for phase shifting angles in reference 9.

Except at times of discontinuities, the corrections are normally quite
small, and in such cases, Eq. {22a) serves only as a check, If iterations
are required anyhow because of saliency or non-impedance loads,
then the corrector formula Eq. (22) will not add to the total number
of iterations.

Differential Equations of the Generator

For a generator model with transient effects only, there are two
differential equations,

dE) 1
WM ., —— ! - - g -
-d—!t ! Téo ( Eq (Xq X Iy EFD) (23a)
dE}
d (23b)

—_— 1 ( ’ ’

=-=L (By+x,-x)1 )
dt Tqo d Q" %q’q
(Epp = voltage applied to terminals of field winding). Application of
the trap ezoidal rule transforms Eq. (23) into

Bq (t) = 24(Xq - X Iy (t) + Fy (24a)

B (8) = -ag(Xg - Xg) I (t) + Fy

with F, and Fg4 being known from values at the preceding time step
at t-Atand from Epp(t) (which is also known if the exciter is
represented as a simple voltage source),

Fq = E(; (t-At) + a4 (EFD(t~At) + EFD(t)- 2E(’l (t-At)
+(Xg-Xg) Ig (t-At))

(24b)

(25a)
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Fg = Eq(t-at)- ag (ZEé(t-At) + (Xq-x;) Iy (t-At)) (25b)

Ot

with = —-——éE—-—— B e
T Aoy, MM A+ 2Ty,

Eq. (24) inserted into Eq. (12) gives the complete description of all
algebraic and differential equations, reduced to an equivalent of two
algebraic equations: ’

Iqﬁ= 1 Ra X&mod Fq °Vq -
1g] R%+ Ximod¥qmod |Kimod Ra Fq -Vq

(26)

with the modified reactances
Ximod = X4 * 2d (Xq - Xg)

Xgmod = ¥q * % (Xq - Xg)

For normal time constants and step-widths in the order of a few
cycles, the modified transient reactances differ only by a few percent
from the original transient reactances. The only approximation which
had to be made is linear interpolation between t-At and t for the
quantities E(’I’ Ej, 1y, 1g Epp. It is significant that Eq.(26) has the
same structure as Eq. (12). As a consequence, Eq. (26) can simply
replace Eq. (12) with no need to change the solution algorithm which
was already developed for Eq. (12). The differential equations (23)
will be solved implicitly without requiring any extra work, except
that Fgand Fq have to be updated from step to step. At times of
discontinuities with no advance in time, Eq. (12) must be used in
place of Eq. (26) for the second “post-change” solution, or, if it is
desirable to keep the impedances unchanged, Eq. (26) may be used
iteratively with the following values for Fq and Fy: ‘

Fqut’l—ad(xd'X(i)Id

Fq=Eq+aq (Xq-X(;) Iy
with Ej,, Ey determined from the “pre-change” solution and lq, Ig
being o%tained iteratively within the “post-change” solution.

The same ideas should be applicable to generator models which
include subtransient effects. In this case, large step-widths (greater
than 1-2 cycles) may not be able to represent the fast decay of the
currents in the kd- and kq-windings after discontinuities very
accurately, but the subsequent oscillations and the over-all damping
effect should be fairly accurate. Tests are planned to verify this
conjecture.

Excitation System

Inclusion of the excitation system was tried with a 9-bus test
example. It contained three generators with their swing equations.
Two of them were “classical” generator representations, described by
Eq. (14), and one was a fully represented generator, described by Eq.
(12) and (23), with an exciter model of type 1 as defined in Ref. 11.
The smallest time constant in the exciter model was T = 0.06 s.

First, the differential equations of the four exciter blocks are
transformed into algebraic equations with the trapezoidal rule. These
can then be reduced to one linear algebraic equation of the form,

EFD(t) = EO -b VT (t) 27

and one inequality Epow <Epp () <EHIGH (28)

The saturation is taken into ‘accountj by linearizing the feedback

SgEpp around the solution point at the preceding time step at t-At,
which gives an equation of the form

SEEFD = kyEpp - ka (29)

with kq and ko being known. A simpler way would be to use a
piecewise linear saturation curve; in this case, ky and kg would not
have to be reevaluated in each time step but only when a new region
of the piecewise linear curve is entered. For the 9-bus test example, a
linearized curve with only 2 slopes, one for the unsaturated and one
for the saturated region, gave results which were close enough for
practical purposes to those obtained with the detailed saturation
curve.

The parameter b in Eq. (27) is recomputed whenever ky and ko
change, or whenever the regulator output reaches its limit,

Ka/
b= AR (30)

apag * KFKA/(TF* %t’)

2T 2T 2T,
with aR=zEB+1,aA-EA+1,aE=-—A—tE-+KE+k1

The value E, is computed from a linear combination of the values of
five state variables (including Eppy and Vip) at the preceding time step
t-At.

The limits Epow and Egjgy are dynamic limits and not the
steady-state limits of the exciter. They can easily be computed in each
time step by assuming that the regulator output Vg goes from its
state at t-At to its upper or lower limit at time ¢,

ErigH = (b * VR MAX)E

Erow = (bg* VR MIN)/2E

o
with  bg=Epp(tAt(— - Kg - ky) + VR(-At) + 2k

Once the regulator output reaches its limit, the parameter Kp is
temporarily set to zero in computing b from Eq. (30), and Vp is set
to its limit. Thereafter, the derivative of the regulator output is used
to check when to back off the limits again, in which case Ky is
restored to its original value.

The inclusion of the excitation system in the solution of the
steady-state equations is now very simple:

1. Update the state variables of the exciter at time t-At; compute
Eo b, Eyice Er ow and an estimate for Epp(t) with Eq. (27)
by assuming that Vrp will not change from t-At to t.

2. At the end of each steady-state iteration, compute EFD(t)'from
Eq. (27), observing the constraints of Eq. (28), and correct Fq as
defined in Eq. (25a) accordingly.

The iterative adjustments of Epp(t) and F., will not add to the 2.3°
iterations required for saliency or to additional iterations caused by
non-impedance loads.

It cannot be emphasized strongly enough that the few extra
statements in the steady-state solution (two expressions for
finding Epp and correcting F, and two IF-statements for checking
the limits of Epp) will implicitly bring about the solution of the
differential equations without adding more iterations than are
requited for saliency and non-impedance loads, and without pro-
ducing interface errors. The updating formulas are also simple enough
to be very fast (35 FORTRAN statements in the test program).
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Fig. 4 shows the field voltage Epyy using the described technique with
step-widths of 1 and 5 cycles (fault applied at t=0, fault cleared and
line removed at t=5 cycles), The larger step-width produces acceptable
results without any danger of numerical instability.

Epplpu) — At =] cycle

-4 - ===At=5cycles

Fig. 4. Epp as function of time.

A more direct approach would be possible with the Newton-Raphson
method where an additional equation (27) and an additional variable
Epp could be added directly in the same fashion as indicated for the
swing equation.

CONCLUSION

In describing the authors’ experience in solving transient stability
problems, this paper covers two methods in particular which
drastically reduce solution times without sacrificing accuracy: (1)
Efficient solution of the steadystate network equations using
optimally ordered triangular factorization, and special techniques to
teduce the number of iterations due to generator saliency and
non-impedance loads and (2) Solution of the differential equations
with the trapezoidal rule of integration, which is very fast and
numerically stable. It also eliminates the interface problem.
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