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Time Constants (Section 4.14.1) 

In a linear static circuit with no capacitance, i.e., an R-L circuit, the 

transient currents decay with time according to  
Tteiti /

0)( −=      (1) 

where i0 is the initial current and T is the time constant.  

For an R-L circuit, we may show that  

)//(1
)( RLte

R
ti −=

    (2) 

where we see that T=L/R. How do we think of T?  

 

Let t=T and then we get that  

0

1

0

/

0 368.0)( ieieiti TT === −−
   (3) 

Thus we see that the time constant is: 

1. The time in which the current decreases to 36.8% of its initial 

value; 

2. The time in which the current decrease equals 63.2% of its initial 

value; 

3. The time in which the current would decrease to zero if it 

continued to decrease at its initial rate of decrease.  

Figure 1 illustrates these three ways of thinking about T. 
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Fig. 1 
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So the time constant is a good measure of the speed of the dynamics. 

Low T ➔ fast dynamics. 
 

For a salient pole machine, we have a time constant for each rotor 

circuit given as the ratio of some inductance to the circuit resistance. 

 

We can obtain the time constants under one of two conditions: 

1. Stator is open-circuited. 

2. Stator is short-circuited. 
 

The procedure used in VMAF for developing these equations is as 

follows (see pp 133-134). I will apply it to obtain the open circuit 

d-axis subtransient time constant. 

1. Flux linkage voltage equations: Write voltage equation for the 

appropriate circuit using flux derivatives using (4.36) below: 
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 (4.36) 

We assume a step change is applied to the field winding (with the 

stator winding open or short-circuited, it is the only way we can 

provide an external forcing function). We want to characterize 

the time constant of the D-winding. Therefore, we pull out of 

(4.36) the vF and vD equations: 

FFFF irv +=   (4.181a) 

DDDD irv +== 0   (4.181b) 

2. Replace fluxes with currents: Use eq. (4.20) (see “macheqts”) 

to replace fluxes with currents. 
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(4.20) 

For example, we see that 

DRFFdFF iMiLiM ++=
2

3
   (*) 

DDFRdDD iLiMiM ++=
2

3
   (**) 

3. Apply conditions: Apply appropriate open circuit or short circuit 

conditions to simplify the equation. For example, if we are getting 

the open circuit time constants, then the stator windings are open 

circuited, and id=0. This causes id=iq=0 and (*) and (**) become 

DRFFF iMiL +=   (4.182a) 

DDFRD iLiM +=   (4.182b) 

Notice that from (4.182b), for a step change applied to the field 

voltage, CFLT indicates that λD(0+)=0, which implies that 

DDFR iLiM +=0 ➔ D

R

D
F i

M

L
i

−
=   (4.183) 

4. Manipulate: Differentiate (4.182a) and (4.182b), respectively, 

F F F R Dλ = L i +M i  

D R F D Dλ =M i +L i  

and then substitute into (4.181a) and (4.181b), respectively. This 

results in 

DRFFFFF iMiLirv  ++=    (4.184a) 

DDFRDD iLiMir  ++=0    (4.184b) 

Divide (4.184a) by LF and (4.184b) by MR to get 
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Subtract (4.184c) from (4.184d) to get 
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Now replace iF with (4.183) to get 
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Now divide through by the coefficient of the derivative term: 
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Multiply top and bottom of the first term on the left-hand-side by 

MR, and do the same to the right-hand-side, to get 

( ) ( )FRD

FFR
DD

FRD

F

DF
D

LML

LvM
ii

LML

L

Lr
r

/

/

/ 22 −

−
=+

−









+


 

5. Approximate and apply LaPlace: Use the following 

information (in per-unit): 

• Damper circuits are very fast, because rD and rQ are large. 

• Field circuits are very slow, because rF and rG are small. 

Reference to Example 4.1 (p. 107) indicates, in per-unit: 

rD=0.0131, rQ=0.054 

rF=0.000742, rG=0.00584 
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VMAF (pg. 134) make the statement that “usually in pu rD>>rF 

while LD and LF are of similar magnitude.” This means 

rD>>rFLD/LF; it is also true that rQ>>rG while LQ and LG are of 

similar magnitude.  Data for the pu inductances from Example 

4.2 in VMAF (p. 112) are as follows: 

LF=1.65 

LD=1.605 

LG=1.76 

LQ=1.526 

 

and so the above becomes 
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Rearranging, we obtain 
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Now define 
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Then (4.186a) becomes 

21 KiKi DD =+     (4.186b) 

Using LaPlace transforms, we get 
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Taking partial fraction expansion, we have: 

2 2 1 2 1 2

1 1 1 1

/ / 1 1
( )

( )
D

K K K K K K
I s

s s K s s K K s s K

 
= = − = − 

+ + + 
 

The inverse LaPlace transform is then  

PFE: 
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A=sID(s)|s=0 

B=(s+K1)ID(s)|s=-K1 
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This shows that if we were to apply a step change in the field 

voltage (vF=VFu(t)) per bottom of p. 133), the current in the D-

damper winding would rise in accordance with a time constant of 

K1, similar to the function y=(1-e-1t)u(t) as indicated below. 

 
Replacing K1 and K2, we obtain  
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Recall 

)//(1
)( RLte

R
ti −=

    (2) 

where T=L/R, and so we see that 1/K1 is the time constant. We define 

this time constant as the open circuit direct-axis subtransient time 

constant, i.e. 

D
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==  

It’s name comes from the fact that  

• it is computed when the stator windings are open circuit,  



7 

 

• it characterizes the behavior of the D-winding and is therefore 

a subtransient response. 

 

Comments:  

a. I have added a HW problem where you need to perform this 

same development except for the quadrature axis time 

constant. 

b. On p. 134, VMAF writes the following: “When the damper 

winding is not available or after the decay of the 

subtransient current, we can show that the field current is 

affected only by the parameters of the field circuit, i.e.,  

F F F F Fr i + L i =V u(t)    (4.188) 

The time constant of this transient is the d axis transient 

open circuit time constant τ’d0, given by 

 F
d0

F

L
τ =

r
   (4.189) 

Likewise, for round rotor machines (for which we need to 

model the G-winding), we can obtain the q-axis transient 

open circuit time constant τ’q0, given by 

 G
q0

G

L
τ =

r
   (similar to 4.189) 

c. The time constants given using the Greek letter τ are in per-

unit time, that is, they are related to time constants given 

using “t” (in seconds) according to 

τ=tωB➔ τ=t×377. 

d. Most texts indicate time constants in seconds. These values 

must be normalized before using them in relations (4.189) 

or (similar to 4.189), e.g., see below example 4.2, p. 112. 
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Data in pu is as follows: 

 
And Example 4.7 indicates x’q=0.38 pu which is for the same machine. 

Recall our development for L’q in the last set of notes 

(SubtransientTransientLT) which resulted in 

G
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−=     (4.180)  

Solving (4.180) for LG results in 


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Recall from the “perunitization” notes, p. 30 that the mutual, LAQ, is the 

difference between the self and the leakage, i.e., 

Lqu-lqu=LQu-lQu=LGu-lGu=LAQ 

Substitution of this last expression for LAQ in the LG expression results in 
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Now we may utilize the above Example 4.2 data to obtain:  

 
This value is given in the pu values computed via Example 4.1, which shows 

Example 4.2 is for the same machine. VMAF does not provide t’q0 or τ’q0 

anywhere for the machine in these examples, and so I chose a value of 0.8sec 

that is typical of round-rotor machines based on my experience and review of 

various sources including, for example, Table 4.7 in VMAF, data in Kundur’s 

book, and data in some WECC data sets I have. Then, the pu value of this 

would be 

τ’q0=0.8*377=301.6. 
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So then, rG=LG/τ’q0=1.76/301.6=0.00583554pu, 

which again agrees with pu values computed for Example 4.1. 

This value makes intuitive sense because it is an order of magnitude 

larger than rF (and so it is faster than the field cct), but an order of magnitude 

lower than the damper values rD and rQ (and so it is slower than the damper 

winding circuits). This value, as computed here, was used in Ex. 4.2 (p. 112). 

Application of similar procedures results in the expressions that 

Kundur calls the “classical expressions” given as follows (the 

VMAF equation number appears in the box to the right).  

 

Without G-winding (salient pole machine): 

OC/DA/T/TC:     (D-axis field) 

OC/DA/ST/TC:  (D-axis damper) 

OC/QA/ST/TC:    (Q-axis damper) 

 

With G-Winding  (round rotor machine): 
 

OC/DA/T/TC:     (D-axis field) 

OC/DA/ST/TC:  (D-axis damper) 

OC/QA/ST/TC: 

2

0

/


−
 =

Q AQ G

q

Q

L L L

r
  (Q-axis damper) 

OC/QA/T/TC: 0
G

q

G

L

r
  =     (Q-axis field) 

In the last equation, LG may be obtained as follows : 
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(4.192a) 

(4.192a) 

(4.189) 

(4.193) 

(4.189) 

(4.187) 
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In the above 

OC : Open-circuit 

DA : direct-axis 

QA : quadrature axis 

T : transient 

ST : subtransient 

TC : time constant 
 

The short circuit time constants are as follows: 

 

Without G-winding (salient pole machine):: 

SC/DA/T/TC:    (D-axis field) 

SC/DA/ST/TC:   (D-axis damper) 

SC/QA/ST/TC:   (Q-axis damper) 

 

 

With G-Winding (round-rotor machine):: 

 

SC/DA/T/TC:    (D-axis field) 

SC/DA/ST/TC:   (D-axis damper) 

SC/QA/ST/TC:   (Q-axis damper) 

SC/QA/ST/TC:   (Q-axis damper) 
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(4.191) 

(4.190) 

(4.192b) 

(4.192b) 

(4.192b) 

(4.190) 

(4.191) 
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It is useful at this point to take note of the following from p. 132 

of VMAF, where it says, 

 

“Before we examine the q axis inductances, some clarification 

of the circuits that may exist in the q axis is needed. For a salient 

pole machine with amortisseur windings, a q axis damper circuit 

exists, but there is no other actual or effective q axis rotor 

winding. For such a machine the stator flux linkage after the 

initial subtransient dies out is determined by essentially the same 

circuit as that of the steady-state q axis flux linkage. Thus, for a 

salient pole machine, it is customary to consider the q axis 

transient inductance to be the same as the q axis synchronous 

inductance. 

 The situation for a round-rotor machine is different. Here the 

solid iron rotor provides multiple paths for circulating eddy 

currents, which act as equivalent windings during both transient 

and subtransient periods. Such a machine will have effective q 

axis rotor circuits that will determine the q axis transient and 

subtransient inductances. Thus, for such a machine, it is 

important to recognize that a q axis transient inductance (much 

smaller in magnitude than Lq) exists.  

 

 

 ============================================= 

Another time constant used to characterize synchronous 

machines is the stator time constant, given by 

 

Note that the text uses Lq in the above equation instead of L’q 

(since Lq = L’q when the G-winding is not represented). 

 

Table 4.3, pg. 135 in VMAF, provides a comparison of typical 

numerical  range for time constants. Kundur also provides such a 

table, Table 4.2, pg. 150. Note transient T >> subtransient T. 

r
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Another way to get the time constants is to use the equivalent 

circuits. 

 

Then derive the inductances in terms of the LaPlace variable “s” 

according to  

 

 

I will not go through the development here, but you can find it on 

pp. 140-143 of Kundur’s text.  

 

The denominator of the above expressions is the characteristic 

equation for the circuit. The roots of this equation are the inverse 

of the time constants.  

 

This approach makes no approximations, and therefore Kundur 

refers to the resulting expressions for the parameters as the 

“accurate expressions.” 

 

The relationship between our nomenclature and that used by 

Kundur is as follows: 

Kundur➔VMAF 

Lad➔ LAD 

Lfd➔ lF 

RFD➔ rF 

R1d➔ rD 

L1d➔lD 

Ll➔ ld 

You can review some of the data in appendix C of your text to see 

if it conforms to our conclusions about “fast” vs. “slow” circuits. 
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And you can check Kundur, page 153, for some comparative data 

for both salient pole and round-rotor machines, which I have copied 

out below. 

 

 
Similar data is in Chapter 4 of Anderson & Fouad, p. 135: Note 

Table 4.3 comes from Kimbark, see next page of these notes. 
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And From Kimbark, p. 40 (note time constant data at bottom of 

table is used in A&F’s table, given on previous page). 
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