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Load Equations (Section 4.13) and  

Flux Linkage State Space Model (Section 4.12) 

 

Throughout all of chapter 4, our focus is on the machine itself, 

therefore we will only perform a very simple treatment of the 

network in order to see a complete model. We do that here, but 

realize that we will return to this issue in Chapter 7. 

 

So let’s look at a single machine connected to an infinite bus, as 

illustrated in Fig. 1 below. We neglect line charging in this work. 

 
 

Fig. 1 

 

From KVL, we have 
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Now use Park’s transformation to obtain (in either volts or in pu): 
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We would like to express vd and vq as a function of state variables - 

the 0dq currents for the current model (or, we will see, the 0dq flux 

linkages for the flux linkage model). Let’s consider each term.  

TERM1:  

abcdq vPv ,0,  =  

So what is abcv , ? 

A good assumption for purposes of stability assessment is that they 

are a set of balanced voltages having, in volts or pu, an rms value 

of V∞, so that the peak value (in volts or pu) is √2 V∞, i.e.,  
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Hit the above with Park’s transformation matrix to obtain: 
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VvPv abcdq  

where, as we have previously seen, in radians, we have 

( )0 Re

0

t

dt   = + −        (4.150) 

Differentiating, we get Re( ) ( )  = −t t , which, in pu is 1 = − . 

 

And so we see that the balanced AC voltages transform to a set of 

DC voltages, as we have observed before. 

 

Note that in the “perunitization” notes, on p. 5, 

we expressed a balanced abc set of voltages in 

terms of sin functions. Here, we express the 

abc voltages in terms of cos functions. As a 

result, our Park’s transformation will be 

slightly different. 

VMAF states, p. 125, “Using the identities 

in Appendix A and using θ=ωRe +δ+π/2, we 

can show that…” 
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TERM2: This one is easy as it is already written in terms of the 

0dq currents. 

 

TERM3: abce

TERM3

L Pi . We must be a little careful here.  

It is tempting to use 

abcdq iPi  =0 . But is this true?  

Let’s back up and recall that 

abcdq iPi =0  

Taking the derivative of the left-hand-side, we obtain: 

abcabcdq iPiPi  +=0       (2) 

And this proves that 0dq abci Pi . 

 

But we know that dqabc iPi 0

1−
= , and using this in (2) results in 
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Isolating the first term on the right results in 
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−
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Recalling that term3 is abce iPL  , we multiple the above by Le to 

obtain term3: 

( )dqdqeabce iPPiLiPL 0

1

0

−
−=   

You may recall now that in Section 4.4 (notes on “macheqts,” p. 
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So term3 becomes 
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Substitution of our terms 1, 2, and 3 back into eq. (1) results in 
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 (4.149) 

Now we need to incorporate this into our state-space model. 

 

We have (or will have) three different state-space models. 

A. Current state-space model; 

B. Flux-linkage-state-space model with λAD and λAQ -  it is useful 

for modeling saturation; 

C. Flux-linkage-state-space model with λAD and λAQ eliminated 

(and so without the ability to modeling saturation) 

 

I have hand-written notes where I went through the details of this 

for models (A) and (C), although I did not include the G-winding. 

Here I do it with the G-winding. 
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A. Current state-space model (See section 4.13.2) 

Recall that the current state-space model is 
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where the submatrices are given by 
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Incorporating our load equations, eq. (4.149), repeated here: 
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into our state-space current model, (4.103), results in 
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where the matrices with the hats above them, i.e., ˆ ˆ ˆ, ,L R N , are 

exactly as the unhat-ed versions above, except that  

 

• Wherever you see r, replace it with eRr +  

• Wherever you see Ld, replace it with ed LL +  

• Wherever you see Lq, replace it with eq LL +  

 

Note that: 

• K=√3 V∞ (not the same K as used in the saturation notes),  

• γ=δ-α 

• the speed deviation equation contains un-hatted parameters for 

Ld and Lq. 

 

Your text remarks again on p. 126 (similar to the sentence at the end 

of Section 4.10 and noted on p. 12 of TorqueEquation notes): 

“The system described by (4.154) is now in the form of … 

( , , )t=x f x u , where        T

d F D q G Qi i i i i i   =  x .” 
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“The function f is a nonlinear function of the state variables and t, 

and u contains the system driving functions, which are vF and Tm. 

The loading effect of the transmission line is incorporated in the 

matrices ˆ ˆ ˆ, ,L R N . The infinite bus voltage V∞ appears in the terms 

Ksinγ and Kcosγ. Note also that these latter terms are not driving 

functions, but rather nonlinear functions of the state variable δ.” 

 

 

 

 

C. Flux-linkage-state-space model with λAD, λAQ eliminated (so 

without ability to modeling saturation) (See section 4.13.3 of text). 

 

Recall the state-space model of eq. (4.138) 
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(4.138) 

With G-winding: 

Well, these latter terms are nonlinear functions of 

the state variable δ, but they are also functions of 

V∞. For our model, V∞ is a driving function (i.e., an 

independent input). 

We will skip this part 

for now, which comes 

from 4.13.3, because 

we need to first go 

over section 4.12. 
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We see we need to incorporate the load equations, (4.149), through 

the vd, vq terms.These equations are repeated here for convenience: 
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Expressing vd and vq from (4.149), we have that 
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But we need these in terms of flux linkages. Here, we go back to 

eqts (4.134) which give the currents as a function of flux linkages 

but with λAD and λAQ eliminated (we only need the id equation from 

(4.134)) 

1 MD d MD F MD D
d

d d d F d D

L L L
i

   
= − − − 

 

          (4.134) 

We also need the iq equation which is derived as follows. Starting 

from (4.123), we have 

( )( )1 /q q q AQi  = −         (4.123) 

And then substitute λAQ from (4.121) 

( ) ( ) ( )/ / /AQ MQ q q MQ G G MQ Q QL L L   = + +      (4.121) 

to obtain: 
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( ) ( ) ( ) ( )( )1 / / / /

1

q q q MQ q q MQ G G MQ Q Q

q MQ MQ MQ

G Q

q q G q Q q

i L L L

L L L

   


 

= − − −

      
= − − −      
      
      

 

And so in summary we have: 

1 MD d MD F MD D
d

d d d F d D

L L L
i

       
= − − −     

     
 

1
MQ q MQ MQ QG

q

q q G q Q q

L L L
i

     
= − − −       

    

 

We also need current derivatives, obtained by differentiating the last two equations: 

1 MD d MD F MD D
d

d d d F d D

L L L
i

       
= − − −     

     
 

1
MQ q MQ MQ QG

q

q q G q Q q

L L L
i

     
= − − −       

    

 

 

Now substitute the last two equations into our expressions for vd and vq to obtain, for the 

vd equation: 

3 sin( ) 1

1 1

MD d MD F MD D
d e

d d d F d D

MQ q MQ MQ QMD d MD F MD D G
e e

d d d F d D q q G q Q q

L L L
v V R

L L LL L L
L L

  
 

    




      
= − − + − − −       

      

            
+ − − − + − − −                            





 

and for the vq equation: 

    
3 cos( ) 1

1 1

MQ q MQ MQ QG
q e

q q G q Q q

MQ q MQ MQ QG MD d MD F MD D
e e

q q G q Q q d d d F d D

L L L
v V R

L L L L L L
L L

 
 

    




     
= − + − − −              

            
+ − − − − − − −                          


  



 

Now manipulate the above two equations: 

3 sin( ) 1

1 1

e MD e MD e MD
d d F D

d d d F d D

MQ e MQ e MQe e MD e MD e MD
q G Q d F D

q q q G q Q d d d F d D

R L R L R L
v V

L L L L LL L L L L L L

    

 
     



 
= − − + − − − 

 

   
+ − − − + − − −    

  

  (4.155) 

 

3 cos( ) 1 1

1

MQ e MQ e MQe e MD
q q G Q d

q q q G q Q d d

MQ e MQ e MQe MD e MD e
F D q G Q

d F d D q q q G q Q

L R L R LR L L
v V

L L L L LL L L L L


     

 
    



   
= − + − − − − −    

  

 
+ + + − − − 

 
 

  (4.156) 

Now recall the flux linkage state equations for λd from (4.135) and 

λq from (4.136), repeated here for convenience: 
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1 MD d MD F MD D
d q d

d d d F d D

L L L
r r r

  
  

 
= − − + + − − 

 
  (4.135) 

1
MQ q MQ MQ QG

q d q

q q q G q Q

L L L
r r r

 
  

 
= − − + + + − 

 
 

  (4.136) 

Substituting (4.155) into (4.135) for vd, we obtain: 

1

3 sin( ) 1 1

1

MD MD MD
d d F D q

d d d F d D

MQe MD e MD e MD e
d F D q

d d d F d D q q

e MQ e MQ e MD e MD e MD
G Q d F

q G q Q d d d F

r L r L r L

LR L R L R L L
V

L L L L L L L L L L

    


     

 
   



 
= − − + + − 

 

   
− − − + − − − + −     
    

 
− − + − − − 

 
D

d D






 

Now gather terms in state variable derivative on the left and in 

each state variable on the right, to get 

( ) ( )

1 1

1

1 1 3 sin( )

e MD e MD e MD
d F D

d d d F d D

e MD e MDe MD
d F D

d d d F d D

MQ e MQ e MQe
q G Q

q q q G q Q

L L L L L L

r R L r R Lr R L

L L L L LL
V

  

  

 
     

  
+ − − −   

  

+ +    +
= − − + +    

    

  
− + − + + + −  

  
  

   

Finally use ˆ
eR r R= + to obtain (4.157) 

1 1

ˆ ˆ ˆ
1

1 1 3 sin( )

e MD e MD e MD
d F D

d d d F d D

MD MD MD
d F D

d d d F d D

MQ e MQ e MQe
q G Q

q q q G q Q

L L L L L L

R L RL RL

L L L L LL
V

  

  

 
     

  
+ − − −   

  

    
= − − + +    

    

  
− + − + + + −  

  
  

 (4.157) 

 

Likewise, for the q-axis equation, substituting (4.156) into (4.136) 

for vq, we obtain: 



11 

 

1

3 cos( ) 1 1

1

MQ q MQ MQ QG
q d

q q q G q Q

MQ e MQ e MQe e MD
q G Q d

q q q G q Q d d

MQ e MQ ee MD e MD e
F D q G

d F d D q q q G

L L L
r r r

L R L R LR L L
V

L L L L LL L L L L

 
 


     

 
   



 
= − − + + + 

 
 

    
− − + − − − − −     
   

 
+ + + − − − 

 
 

MQ

Q

q Q






 

Now gather terms in state variable derivatives on the left and in 

state variables on the right, to get  

( ) ( ) ( )

1 1

1

1 1 3 cos( )

MQ e MQ e MQe

q G Q

q q q G q Q

MQ e MQ e MQe

q G Q

q q q G q Q

e e MD e MDMD

d F D

d d d F d D

L L L L LL

L r R L r R Lr R

L L L L LL
V

  

  

 
     

  
+ − − −    

  

  + ++
= − − + +  

 

  
+ + − − − − −   

  

 

Finally use ˆ
eR r R= + to obtain (4.158) 

1 1

ˆ ˆˆ
1

1 1 3 cos( )

MQ e MQ e MQe
q G Q

q q q G q Q

MQ MQ MQ

q G Q

q q q G q Q

e MD e MD e MD
d F D

d d d F d D

L L L L LL

L RL RLR

L L L L L L
V

  

  

 
     

  
+ − − −  

  
  

 
= − − + + 

 
 

  
+ + − − − − −   

  

  (4.158) 

 

Note in these two equations (4.157) and (4.158) that there are several 

derivative terms and so we cannot “cleanly” use these equations to 

simply replace the derivatives on λd and λq in the flux-linkage state-

space model (we were able to do so with the current state-space 

model).  

 

Rather, we have to create a pre-multiplier matrix T such that  

DxCxT +=  

where 
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d

F

D

q

G

Q

x

















 
 
 
 
 
 =
 
 
 
 
 
  

 

And T, C, and D are given by  

 

1 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

e e MD e MDMD

d d d F d D

MQ e MQ e MQe

q q q G q Q

L L L L LL

L L L L LL

  
+ − − −  

  
 
 
 
 

  = + − − −   
  

 
 
 
 
 
  

T
 (4.160) 

ˆ ˆ ˆ
1 1 1 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 1

MQ e MQ e MQMD MD MD e

d d d F d D q q q G q Q

F MD F MD F MD

F d F F F D

D MD D MD D MD

D d D F D D

e MD

d d

L L L L LR L RL RL L

r L r L r L

r L r L r L

L L

 




   
− − − + −     

     

 
− − 

 

 
− − 

 

  
+ −  

=    
C

2 2

ˆ ˆˆ
1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

3 3 3 3 3

MQ MQ MQe MD e MD

d F d D q q q G q Q

MQ MQ MQG G G

G q G G G Q

Q MQ Q MQ Q MQ

Q q Q G Q Q

MQ MQMD MD MD
q q q d

j d j d F j d D j d

L RL RLL L L L R

L L Lr r r

r L r L r L

L LL L L

 

   
   

 
− − − − 

   

 
− − 

 

 
− − 

 
 

− − − 0
3

0 0 0 0 0 1 0

MQ

d d

j G q j q Q j

L D
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 
 
 

(4.161) 
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( )

( )

3 sin

0

3 cos

0

/

1

F

m j

V

V

T

 



 







 −
 
 
 
 

=  − −
 
 
 
 

−  

D         (4.162) 

 

Then we can pre-multiple both sides by T-1 to obtain 

DTxCTx
11 −−

+=         (4.163) 

Equation (4.163) describes the complete system of interest to us at 

this point, i.e., the system of Fig. 1 at the beginning of these notes. 

To use it, we need the initial states x(0) which are found by solving   

0=+= DxCxT  , via 
1

x C D
−

= − where vector D provides system 

loading information.  

Then, if we perturb the system by setting, for example, V∞=0 for a 

few cycles, then the response can be obtained by solving eq. (4.163) 

using numerical integration. 


