Load Equations (Section 4.13) and
Flux Linkage State Space Model (Section 4.12)

Throughout all of chapter 4, our focus is on the machine itself,
therefore we will only perform a very simple treatment of the
network in order to see a complete model. We do that here, but
realize that we will return to this issue in Chapter 7.

So let’s look at a single machine connected to an infinite bus, as
illustrated in Fig. 1 below. We neglect line charging in this work.
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From KVL, we have
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- Lj J o Lj J
D \_/abc — \_/¥,abc + ReL_Jiabc + Leui_.abc (4144)
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Now use Park’s transformation to obtain (in either volts or in pu):

\_IOdq = E\_/a - PV + Re Euiabc + Le Eui_.abc

YLoo,abc
By By
> Vodqg = Veo,009 T Relogq + Le Pi . (1)
H’—J %ﬁ_J D ——
TERM1  TERM2  TERM3

We would like to express vgand vq as a function of state variables -
the 0dq currents for the current model (or, we will see, the 0dq flux
linkages for the flux linkage model). Let’s consider each term.
TERMI.:

= Pv

_oo ,0dg — —Xoo,abc

So what is Ve, anc ?

A good assumption for purposes of stability assessment is that they
are a set of balanced voltages having, in volts or pu, an rms value
of V.., so that the peak value (in volts or pu) is V2 V.,, i.e.,

V., . i \/E\/OO COS(&)Ret + 0() Note that in the “perunitization” notes, on p._S,
: f we expressed a balanced abc set of voltages in
Vv =V =2V cosS(w.t+a—-120 terms of sin functions. Here, we express the
~o.abe b * ( Re ) abc voltages in terms of cos functions. As a
vV, c \/EVOO COS(a)Ret + o+ 120) result, our Park’s transformation will be
' - - sliahtly different.

Hit the above with Park’s transformation matrix to obtain:

0 VMAFPF states, p. 125, “Using the identities
Vooodg = PVaoabe = \/§Voo —sin(o — a) in Appendix A and using 0=core +3+1/2, we
can show that...”
cos(0 — )
where, as we have previously seen, in radians, we have
t
6 =0, +J-(C()—C()Re)dt (4.150)
0

Differentiating, we get 5(t) = o(t) — . , which, in puis o =w-1.

And so we see that the balanced AC voltages transform to a set of
DC voltages, as we have observed before.



TERM2: This one is easy as it is already written in terms of the
Odq currents.

TERMS3: LeEi—abc . We must be a little careful here.
TERM3

It is tempting to use
loaq = Playc . But is this true?
Let’s back up and recall that

iOdq — Eiabc
Taking the derivative of the left-hand-side, we obtain:
iOdq = Eiabc + Eiabc (2)

And this proves that lodq # Plasc.

But we know that lap. = E_liodq , and using this in (2) results in
s s S~ —1-
!Odq - E!abc + EE !Odq
Isolating the first term on the right results in
Pi . = i_.Odq - EE_limq

2 _Zabc

Recalling that term3 is L. Pi,,., we multiple the above by Le to
obtain term3:

0 . S 1.
LeEI_abc = Le (I_Odq _EE !Odq)

Y ou may recall now that in Section 4.4 (notes on “macheqts,” p.
31) that we found

0 0 O
PP'=|0 0 -w
0 o 0

So term3 becomes



0 0 O

L. Pi,. =L, iOdq -0 0 a):|i0dq
0 w O

Or

ii] [0 0 0

L.Pi, =L

e—-abc ~— “e Id
[ 0 w Iy

Substitution of our terms 1, 2, and 3 back into eq. (1) results in

0 0
Vogg = VAV,,| =SiN(8 = ) |+ Relogq + Lelogg — Le@ — I (4.149)
cos(d —a) l

Now we need to incorporate this into our state-space model.

We have (or will have) three different state-space models.

A. Current state-space model;

B. Flux-linkage-state-space model with Aap and Aaq - it is useful
for modeling saturation;

C. Flux-linkage-state-space model with Aap and Aag eliminated
(and so without the ability to modeling saturation)

| have hand-written notes where | went through the details of this
for models (A) and (C), although I did not include the G-winding.
Here | do it with the G-winding.

o Ti, i
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A. Current state-space model (See section 4.13.2)
Recall that the current state-space model is

iy | : i |
i | i
i -L*(R + N) 0 lig| |-L'v
i | | an (4.103)
i | i
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where the submatrices are given by
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Incorporating our load equations, eg. (4.149), repeated here:

0 0
\_/0dq = \/gvoo _Sin(é‘_a) + ReiOdq + Le!Odq o Lea) o Iq (4 149)
cos(o — ) i
into our state-space current model, (4.103), results in
i, i - | ) [—Ksiny ]
i LR+ 0N oo i ] | L 0] (4.1549)
i, i -L*: 0 Kcosy
o | i | 0
P A VRN VI s 1o L
: = = =i 0 00 1 7,
S | 3r; 3r; 3r; 3r; 3r; 37, L7 6] - ‘ A 1
o 0 0 0 0 0 i1 0

where the matrices with the hats above them, i.e., L,R,N, are
exactly as the unhat-ed versions above, except that

e \Wherever you see r, replace it with r +R,
e \Wherever you see Lg, replace it with L + L,

 Wherever you see Lg, replace it with L, + L,

Note that:
e K=V3 V., (not the same K as used in the saturation notes),
® y=0-0
e the speed deviation equation contains un-hatted parameters for
Lq and Lg.

Your text remarks again on p. 126 (similar to the sentence at the end
of Section 4.10 and noted on p. 12 of TorqueEquation notes):
“The system described by (4.154) is now in the form of ...

x=T(Xu,t), where x" =[i, i, iy i, ig i @ 5].”



“The function f is a nonlinear function of the state variables and t,
and u contains the system driving functions, which are ve and Tp.
The loading effect of the transmission line is incorporated in the

matrices L,R,N . The infinite bus voltage V., appears in the terms

Ksiny and Kcosy. Note also that these latter terms are not driving
functions, but rather nonlinear functions of the state variable 5.”

Well, these latter terms are nonlinear functions of
the state variable d, but they are also functions of
V... For our model, V. is a driving function (i.e., an

independent input).

C. Flux-linkage-state-space model with Aap, Aag eliminated (so

without ability to modeling saturation) (See section 4.13.3 of text).

Recall the state-space model of eq. (4.138)

Without G-winding:

Aq A Ao A
(- bw) rle I L L
£y £y ly Le Ly Ly
e LMD _i[l_ LMD I’L LMD 0
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With G-winding:

2o w
0 0
0 0
0 0
I LMQ 0
,

We will skip this part
for now, which comes
from 4.13.3, because
we need to first go
over section 4.12.
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We see we need to incorporate the load equations, (4.149), through
the vq, Vq terms.These equations are repeated here for convenience:

0 0
Vogg = VAV, | =Si(8 @) |+ Rilosg + Loosa =L ~la | 4 149
cos(d — ) |

Expressing vq and vq from (4.149), we have that

Vy = —V3V, sin(d — @) + Rii, + Li, + oL,

V, = V3V, cos( —a) + Rii, + L.i, — oL,

But we need these in terms of flux linkages. Here, we go back to
eqgts (4.134) which give the currents as a function of flux linkages
but with Aap and Aag eliminated (we only need the ig equation from
(4.134))

- (1_my_a_mﬂ_;_m@ (4.134)

We also need the iq equation which is derived as follows. Starting
from (4.123), we have

iy =(1/0,)(4, — Aug) (4.123)
And then substitute Aag from (4.121)
ao = (Lo 1 £4) 24 + (Lo / 6 ) As + (Lo / (g) A4 (4.121)

to obtain:



i, = (1/%)(1q ~(Lug 1 04) 4 = (Lo / 1) A6 = (Lug /fQ)/lQ)
_ [ﬁ} LEJ_(m]% _( b |,
l, l, (gl (ol
And so in summary we have:
= 1L_jﬂ_[t_jﬂ_[t_ %

T VR U VS N S VN
, {LEJQ{EJ’LG_(@]&
.=
0o )ty g by Ly )2,
We also need current derivatives, obtained by differentiating the last two equations:
L - Klt_]ﬂ_[t_]ﬂ_[t_y_
T VR N VI O VN
; {LEJQ{EJ%_{EJ’LQ
a” ) )
U T N N N TS
Now substitute the last two equations into our expressions for vg and vq to obtain, for the
V4 equation:

o = B sin(E - a)+ R[@;J;«[L(]j[;m
1ot )4 (Lo e (Lo ||, oy ([1o e A _[Lwe |4 [ Lue Ao
- T VP N VS W Vi L Co )0 Ut )t \ Ly )L,
and for the vq equation:

_ _ b A (Lwlk [Lw |k
v, =3V, cos(s a)+Re[[l CJﬂ (fejf [CQJKJ

q q q q

o [lL_]i_[L_j@U_Jﬁ wg((lt_jﬁ_[t_y_[t_}ij
()t Ute Je, Lty e, Gy )ty Uty )t Ly )t

Now manipulate the above two equations:

, R L R.L,

=—J3V 5— Delq_ZMp g MD/I Rl
T o (4.155)
+% 1_m /1q wLeLMQﬂG wLeLMQﬁQJri 1_@ Z'd_ LELMD F LLMD]’

(, (, (yle lolo 0 ( 4le (ylo

R LMQ MQ C()Le L
V. =~/3V cos(d —a) + —=|1- ——=|1-MD 2
‘ - C08(0 ~a) ﬁq[ ij“ lyle 71 e u ‘, 0, )" (4_156)

a)L LMD& LeLMDl L m i - I-el-MQ}LG B LeLMQﬂ'Q
040e 0,0y Cq Cg ) Lt 0,0

Now recall the flux linkage state equations for Aq from (4.135) and
Aq from (4.136), repeated here for convenience:
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Go=-r[1-be b bede Lot 0, (g135)
o T

. L A L L ﬁ,
j :_r(l_ﬂ]_urﬂﬂ_urﬂ_mz —u,  (4.136)

0y Ly lg L, L

Substituting (4.155) into (4.135) for vg, we obtain:

zd=—€i[ b ]/1 LTIy 1

“d fd 1‘7d f Cd €D
L
— —\/§\/wsin(§—a)+&[l—ﬁ}1d RLMD}L RLMD/1 ol b |y
ly L Cyle 0,05 fq (,
LeLvo L .
_wﬁeﬁ fo wLe MQ%JF [ ;Djﬂd_b?ﬂ” IELfMD’l}
q d d d™F d*D

Now gather terms in state variable derivative on the left and in
each state variable on the right, to get

{14_ 5(1_%JJ/% _ I?LKMD . I;eL[MD ﬂ,
d “d d'F

r+R,)L r+R,)L
R b |y [ RIbe ) (4R )L
0, ‘, (ol (ylo

L LL LL
_a,[“ 'g_e[l_ﬂj}lq oo, 2 MQ ﬂQ +~3V_sin(s - a)
q

1 Cle

a

Finally use R=r+R to obtain (4.157)
(1+ %(1— Lo D/id Lebuo A — Lo A

d éd KdﬂF [d[D
—— B I‘MD ﬂ“d + RLMD /1': RI‘MD /1 (4157)
l, (, 0,0, 0y lo
L LL L.L
N L i ) ,1q+a) MO 2o + . MQ}LQ+\/§\/wsin((5—a)
A 00 .l

Likewise, for the g-axis equation, substituting (4.156) into (4.136)
for vg, we obtain:
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. L A L L
/”tq:—r(l—ﬂ]—‘wr wo % | MQ&+(Md
[ VR

q
L R.L R.L

= \/§\/wcos(5—a)+& j—_L Ay —— MO e —— MQAQ_a’Le 1— Lo 2,

Kq t EqKG KQKQ o ly

q

Lo ) LbLyo : Ll
+a’Le|-MD/1F+a’LeLMD AD+£ 1_MQ p Mo j e MQZ'Q
4L, 0,0, A lls 0Ly
Now gather terms in state variable derivatives on the left and in
state variables on the right, to get

L(, Lell; Lbw; Ll ;

q q

R L R )L R)L
:_¥(1_%j%+(r+{ eC) M /1@+(r+[/ e()

q q q-G q-Q

L(, L L LL
+w[1+—e(1—ﬂD/1d - “’Le o g Lm0 AV, cos(5 - a)
A (0, 0,0,

Finally use R = r +R_ to obtain (4.158)
L{. Lw)l)l: Lbw.: Ll

q q

. ; ; (4.158)
= -E(l-ﬂjz R 5y Rwe

T )T s T

+a)[1+ 5[1—@}}4, _obbw @bl ) By cos(s-a)
Cd d CdCF CdCD

Note in these two equations (4.157) and (4.158) that there are several
derivative terms and so we cannot “cleanly” use these equations to
simply replace the derivatives on Ag and Aq in the flux-linkage state-
space model (we were able to do so with the current state-space

model).

Rather, we have to create a pre-multiplier matrix T such that
ITx=Cx+D
where
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And T, C, and D are given by

1+_e[1_ Lo _ L Lvo _ Le Lo 0
o, e, lole  Lolo |
0 1 0 f 0
0 0 1 i 0
f e LMQ
T= 0 0 0 1+=2|1-
ﬁq Cq
0 0 0 0
0 0 0 0
0 0 0 0
I 0 0 0 0
—B(l— LMD] RALMD RALMD —ol1+ Le 1_@
Uy Ly Cyle [N o lq
e Lo e 1_@ e Lvo 0
Cely Ce le lelp
b Lvo o L 1- Lo 0
fod [DCF éD CD i
a)|:l+Le[l LMD J:| w"eLMD wLeLMD : R{ll‘MQ]
C= 4 ly 4l Cyly l, L,
0 0 0 LGE
lg £,
0 0 0 folue
S . .
_ LMD LMD 2 LMD R LMQ
3¢, 027" eyl 3r,l4lp 3,27
Tilg Titale Titato 3 Tita
L 0 0 0 0
(4.161)
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-/ 2R 0 0
Lle Lolg |
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0 1 00
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0 0 0 1]
oL Ly ol Ly 0 oﬁ
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| BV, sin(s-a) |

U

0

D=| 3V, cos(5-a) (4.162)
0

T,/
-1

Then we can pre-multiple both sides by T-* to obtain
x=T"'Cx+T"'D (4.163)
Equation (4.163) describes the complete system of interest to us at

this point, i.e., the system of Fig. 1 at the beginning of these notes.
To use it, we need the initial states x(0) which are found by solving

Tx=Cx+D=0, via Xx=-C " Dwhere vector D provides system
loading information.

Then, if we perturb the system by setting, for example, V=0 for a
few cycles, then the response can be obtained by solving eq. (4.163)
using numerical integration.
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