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Abstract - To make the Symposium
accessible to non-specialists,
made of the basic terminology and mathematics that
underlie them. Featured topics includes s-domain
treatment of elementary dynamic systems, fundamental
aspects of eigenanalysis, participation factors, and
singular values.
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I. INTRODUCTION

This symposium presents contemporary mathematical
methods and tools that are becoming essential to the
planning, analysis, and control of modern power
systems. The increasing complexity of these systems
has mandated much closer inspection of such issues as
intrinsic stability, dynamic interactions, and model
validity. Use of even well-established tools for
this requires at least a basic familiarity with the

underlying mathematics, however. The necessary
concepts are fairly straightforward, and are
fundamental material from differential equations

and/or automatic control. Even so, there is a good
deal of this material, and it is well-laced with
special terms and notation. It is hoped that this
Introduction will help the non-specialist to overcome

this.

II. SOME FUNDAMENTAL NOMENCLATURE

The_syé%e@s considered here are commonly represented
in the form .
\

X =Ax+Bu, | g (14)

y = Cx + Du 7 (1B)

“._ where % denotes ‘differentiation with respect to time.

\Vaxigglgs/u/and y are respectively the input and the
output of the system; x, the internal state of the
system, is usually taken to be a vector of n elements
(n being the order of the system differential
equation). System matrices A,B,C,D are fixed under
present assumptions, so the system itself is termed

"LTI" (linear time-invariant). Were one or more of
these matrices time-varying, the system would be
HLTV'I .

Systems are also classified according to the number
of (scalar) inputs and outputs. Thus, if both u and
y contain just one element, the system is ''SISO"
(single-input, single-output). If u and/or y contain
multiple elements then the system is MIMO, MISO, or
SIMO.

III. DYNAMICS OF LOW-ORDER SYSTEMS

The papers presented in this symposium build, with
various strategies and objectives, upon the same
central aspect of dynamic systems analysis. This is

the ability to predict the future time-domain
behavior of an LTI system through relatively simple
calculations in the '"complex frequency' domain [1-3].
An elementary example of this is provided by a system
obeying the first-order differential equation

x = ox + u(t) (24)
and with the output
y = Cx . (2B)

All quantities are scalar in this very reduced case.
Suppose that the system starts at rest, with initial

condition x(tg)=xg=0 at time tp=0. Then equation
(2A) Laplace transforms as
sX(s) = oX(s) + U(s) (34)
and
CU(s)
Y(s) = 2 G(s)U(s) (3B)
s -0
where
c
G(s) = (3¢0)
s -0
is the transfer function for the system. (The
qualified equality "2£" 1is wused to indicate the
introduction of newly defined terms.) Response to
particular inputs wu(t) can now be determined by
calculating the  associated U(s) and inverting
G(s)U(s) to time domain. For example, a unit impulse

produces U(s)=1 and

y(t) = C exp(ot) . )

For u(t) a step of height U, U(s)=U/s and

Ccu
Y(S) = (54)
s(s-0)
cl/o -CU/c Ko K
= + 22—+ — (5B)
s s—0 s s—0
y(t) = Kg + Kjexp(ot) (5¢)
= (CU/o)[1 - exp(ot)] (5D)
Equation (5B) provides a partial-fraction expansion

for Y(s). Each K; weights a term of form 1/(s-Ai),
and is said to be the residue associated with Xj.
The A; are generally referred to (not quite
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interchangeably [3]) as either

the eigenvalues of
y(t) or the poles of Y(s).

It should be noted that

~—~some of the Xj are associated with wu(t), not the
dynamic system itself.
System eigenvalues are good indicators of system
characteristics, regardless of the input. Clearly,

if o in (2) is positive, the system is intrinsically
unstable and a very unusual input would be needed to

prevent x(t) from growing without bound. (Automatic
control systems are designed to produce such
inputs.) As a somewhat more general case, consider a

second-order system having as its transfer function

Kp+jKy Kp-jKg
G(s) = + (6A)
s—-0-jw s—0+jw
ZKRS - Z(KRO‘+KIm)
= (6B)
s2 —20s + (02+w2)
N(s)
2 (6C)
D(s)
where X1,2 = o+jw are the system eigenvalues, and
Ki,2 = Kg+jK; are the associated residues. Complex

A; or Kj necessarily occur in conjugate pairs, since
the coefficients of both N(s) and D(s) are real
numbers. The eigenvalues are roots for the
denominator polynomial D(s) (which is also termed the
characteristic polynomial for the system). That is,
they are those special values of s that satisfy the
characteristic equation
D(s) =0 . (7)
Suspending some fine distinctions, they are also the
poles of G(s). The roots of the numerator
polynomial, N(s), are termed the zeros of G(s).

The characteristic polynomial for a second-order
system is often written as
D(s) = s2 = 20s + (02+w2) (84)
=s2 + 20wys + m% (8B)
The system response for an impulse input is then of
form
x(t) = Ky exp(wit) + Ko exp(wyt) (94)
= 2 |K| exp(ot) cos(w-©) (9B)
= 2 |K| exp(-Cwpt)cos(wg-6) (9¢)
0 = tan~l(Ky/Kg) (9D)
Accessory quantities introduced in (10B) are
wg = W (damped natural frequency) (104)
Wy = 02+02 (undamped natural frequency) (10B)
{ = -o/wy (damping ratio) (10C)
Normalized curves for system response in terms of

these parameters are provided in basic texts dealing
with control systems or system dynamics [1,2].

IV. BASICS OF MODAL ANALYSIS

Extrapolating from the previous section, we conclude
that an LTI system that is brought to an initial

state x(t0)=xo at time tp=0 and then is allowed to

Awtging down" without further inputs will obey

Lx(s) = [sI-A]"lx (114)

g,

in which I is the (n x n) identity matrix (having 1l's

on the main diagonal, but 0's everywhere else). The
solution in time domain will be of form
n Y
x(t) =1 Ryxgexp(Zjt) = < RiXe &~ (11B)
i ’ = |

=1 o=

where Rj is a residue matrix [3]. It is wusual to

associate each eigenvalue A; with a '"mode" of the
system (or of the system matrix A). For this reason
the X; are sometimes called (complex) modal
frequencies.

For some purposes it is sufficient to determine the
X\; and thus establish the intrinsic characteristics

of the dynamic modes alomne. Often, however, one
wishes to construct a system model as a simply
connected structure of lst-order and 2nd-order
dynamic blocks, such as those analyzed in the
previous section. Both objectives can be attained as
follows.
First seek a transformation x = Tx; so that the
system differential equation (1A) becomes
%g = Axp + Bgu, (124)
with
A\ 0
A2
A = diag (A1) = s (12B)
0 An
(If this is wunsuccessful then A becomes more
complicated [3].) Now
% = Ty = ATxy + Bu (13¢)
so, in the modal coordinates defined by matrix T,
% = (T-1AT)xy + (T71B)u (13D)
= Axp + Bpu. (13E)
In order to find the eigenvalues themselves, first
let Tj be column j of T; then
AT = TA » ATj = XjTj > (A—XjI)Tj = 0. (14)

Since T: is not identically the zero vector but is
orthogonal to all row vectors of (A-X\;I), it must be
that (A—XjI) is of less than full rank n. Thus

det (A-\jI) = |a-25I] = D(Xj) =0 (1s5)
where D(+) here is the characteristic polynomial. It
is equations (1l4) and (15) that must be solved,
directly or otherwise, for the eigenvalues X\ and the
(right) eigenvectors Tj.

At this point one can readily devise an additional
transformation that converts A into a block-diagonal
A-matrix, with each block being either 1lst or 2nd
order. Corresponding changes will, of course, be
needed in B,C,D. The resulting block-modal
"realization" of the system equations is particularly
useful for theoretical development, numerical
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"l‘ ’ %(s) =
= P[sI-A]l-1p—1xg

simulation, control system design, and model
identification.
The reader should be aware that the terminology

concerning system modes is not consistent throughout
the literature. Some authors associate a mode with
each \;, for a total of n modes. Other authors count
each block in the realization described above as a
single mode, but qualify it as either real or
complex, or according to its order. Power system
engineers, having to deal most with complex "swing
modes'", tend to favor the latter terminology.

V. EIGENVECTORS AND PARTICIPATION FACTORS

There is important information to be extracted from
the transformation matrix T and from its inverse,
T-1. Some accessory notation here is customary, and
useful. Let

T=1[p...pgl =8 Tl = =qT (16)
9 |
Then
AP; = XiPi, q¥A = Xiq¥ (17)
where pji, q; are, respectively, right and left

eigenvectors of A. The details of equation (11B),
describing system ringdown from xg, can be now found
as follows:

[s1-Al-lxy = PP~l[sI-A]-1PP~1xg

(18)
n pi(a¥xg) o (afxg)ps
) §=l s=Ai ) %:l s—Ai '
n
x(t) = §=L [(qTxq) exp(Ajt)lp; (19)

Rixg exp(iit)
=1

I
Heo1 P2

(note that q?xo is a scalar quantity).

Equation (19) fosters the following observations:

a) Vector qg determines the influence of xg
upon mode i.
b) Vector p; determines the distribution of
mode i among the components of x(t) (the
""mode shape').
Eigenvectors are particularly valuable for
determining the phase aspects of mode shape. Scaling
uncertainties greatly reduce their usefulness for
assessing magnitude relations, however. The
underlying transformation between x and Xy requires
QT = p~1, by which
afos =1 if i-j,
(20)
=0 otherwise.

This still leaves pj indeterminant with regard to
length and directional sense. Arbitrary scaling
rules can resolve this, but they leave a more

important problem: effects due to relative scaling
of the state variables themselves. An alternative is
to inspect

Pri = Pkidki (21)
where ppi and qgj are the kth elements of pj and qj.
The ‘'"participation factors" Pyj; are dimensionless
measures of state xp in mode i. From (19), Py; is
also element kk of Rj, and thus represents the
residue that is produced for mode i by a unit impulse
in element i of xg.

VI. SINGULAR VALUES

The theory and numerical algorithms for dynamic
systems analysis make extensive wuse of 'singular
value analysis." Parallel to eigenanalysis, this is

based upon a matrix diagonalization in the general
form

F = ULV. (22)

The singular-value includes the

following features:

decomposition of F

a) I is a diagonal matrix whose entries are the
singular values o; of F, usually ordered by
descending magnitude.

b) Matrix F need not be square.
c) Matrices u, v are orthogonal, and are

constructed from the eigenvectors of FFT, FIF
respectively.

Singular value oj for a matrix F is the nonnegative

square root of the eigenvalue Xi[FTF] for FTF. For a
square matrix A, we have a special interest in the
particular singular values
olal = Apax[ATA] ,
(23)
ofa] =+ kmin[ATA] ¢
These have the following useful properties:
alA]l ¢ [nqlal] < o (Al (24)
lax|| = ola] (254)
ll=ll=1
min [lAx| = o[A] (25B)
ll<ll=1
where ||x| is the Euclidian norm (x} + + X%)l/z
of x. The inequalities in (24) can be wused to

establish magnitude bounds upon system eigenvalues,
which can be related to wuncertainties in system
parameters through (25). This is a very important
issue in the engineering of major control systems.

More generally, the singular values of a matrix
provide a sharp indicator of its effective rank, and
are a useful guide to the design or execution of high
performance numerical algorithms. They are rapidly
becoming a common tool in the mathematical treatment
of dynamic systems.




VII. CONCLUDING REMARKS

This Introduction has provided a rather brief tour of
vocabulary and mathematics that is fundamental to the
treatment of contemporary power systems. For timely
details on their application, ramifications, and
extensions we shall turn to the Symposium authors.
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