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State Estimation 2 

 

1.0 Introduction 

In these notes, we explore two very practical 

and related issues in regards to state estimation: 

- use of pseudo-measurements  

- network observability 

 

2.0 Exact Pseudo-measurments  

It is important to keep in mind that the objective 

of state estimation is to obtain a computer model 

that accurately represents the current conditions 

in the power system. So if we can think of ways 

to improve the model using something other 

than actual measurements, we should feel free to 

do that. 

 

Psuedo-measurements are not measurements but 

are used in the state-estimation algorithm as if 

they were. If we can know with certainty that a 

particular pseudo-measurement is accurate, we 

should use it as it will increase the accuracy of 

our state estimate. 
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The most common “exact” pseudo-measurement 

is the bus injection at a substation that has no 

generation and serves no load. Figure 1 below 

illustrates. 

 

Bus p 

 
Fig. 1 

In Fig. 1, bus p has no generation or load. We 

therefore know the real and reactive power 

injection of this bus with precision; it is 0. And 

so we can add two more measurements to the 

measurements that we actually have: 

iii xhz  )(      (1) 

111 )(   iii xhz      (2) 
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where: 

0,  injpi Pz      (3) 

0,1  injpi Qz      (4) 

  0)sin()cos()(
1

,  


n

k

kppkkppkkpinjpi BGVVPxh   (5) 

  0)cos()sin()(
1

,1  


 kppkkppk

n

k

kpinjpi BGVVQxh   (6) 

We recognize the summations of eqs. (5) and 

(6) as the power flow equations for real and 

reactive power injection, respectively.  

 

The terms ηi and ηi+1 are zero-mean Gaussian 

distributed errors for the pseudo-measurements. 

We can account for the fact that these pseudo-

measurements are exact by letting σi and σi+1 be 

very small (and therefore the corresponding 

weights, 1/σi, and 1/σi+1, to be very large) The 

weighted least-square estimation algorithm is 

then carried out as usual.  

 

 

 

 

 

“Measurements” 
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3. Observability 

Recall our very first example at the beginning of 

the first set of state estimation notes. It is below. 

 

In the circuit given of Fig. 2, current injections 

I1, I2, and voltage E are unknown. Let 

R1=R2=R3=1.0 Ω. The measurements are: 

 meter A1: i1,2=1.0 Ampere 

 meter A2: i3,1=-3.2 Ampere 

 meter A3: i2,3=0.8 Ampere 

 meter V: e=1.1 volt 

The problem is to determine the state of the 

circuit, which in this case is nodal voltages v1, 

v2, and the voltage e across the voltage source.  

 

I1 I2 
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A2 
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- + 

R1 

R2 R3 

Node 1 Node 2 

Node 3 

 
Fig. 2 
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To determine the state of the circuit (v1, v2, and 

e), we wrote each one of the measurements in 

terms of the states. We then expressed these 

four equations in matrix form: 
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Let’s denote terms in eq. (7) as A, x, and b, so: 

bxA         (8) 

We solved eq. (8) using: 
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First, the gain matrix is given as 
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The inverse of the gain matrix is then found 

from Matlab as 
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The pseudo-inverse is then 
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Then we obtained the least squares estimate of 

the 3 states from the 4 measurements as 
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Question: What would happen to this problem if 

we lost a measurement? Let’s say that we lost 

A1, the measurement on the current flowing 

from bus 1 to bus 2. Let’s see what happens. 

 

To solve it, we just remove the first equation 

(corresponding to, in eq. (7), the first row of the 

A-matrix and the top element in b-vector). 
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Actually, here the matrix is 3×3 and therefore 

we can solve exactly as: 
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But let’s go ahead and use eq. (9) to see what 

happens.  

 

First, the gain matrix is given as 
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The inverse of the gain matrix is then  
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The pseudo-inverse is then 
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The least squares estimate of the 3 states from 

the 3 measurements is then 
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Compared to the solution of eq. (13), our 

estimate can be assumed to be less accurate 

(since it is based on fewer measurements), but at 

least we still did obtain a solution. 

 

Question: What if we lost two measurements? 

Let’s say that we lost A1, the measurement on 

the current flowing from bus 1 to bus 2, and A2, 

the measurement on the current flowing from 

bus 1 to bus 3. Let’s see what happens. 

 

To solve it, we just remove the first two 

equations (corresponding to, in eq. (7), the first 

row of the A-matrix and the top element in b-

vector). 
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The matrix is once again non-square, so we 

must use our least-squares procedure. 

 

First, the gain matrix is given as 
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The inverse of the gain matrix is, however, 

singular – it’s determinant is zero (or 

equivalently, it has a zero eigenvalue). As a 

result, it can not be inverted. In this case, our 

process must stop since we need G
-1

 to evaluate 

x, as indicated in eq. (9), repeated below for 

convenience. 

  bAbAGbAAAx
ITTT


 11

    (9) 

What is the problem here? 

 

The basic problem is that we do not have 

enough measurements. In this case, the system 

is said to be unobservable. This means that 

despite the availability of some measurements, 

it is not possible to provide an estimate of the 

states with those available measurements. 
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Example: 

Consider the system in Fig. 3. This is the same 

system considered in our previous set of state 

estimation notes and in your homework 

assignment. There are real power measurements 

taken at P12, P13, and P32. But we assume that the 

measurements P13 and P32 fail so that we only 

have the measurement P12=0.62 pu. As in 

previous examples, assume all voltages are 1.0 

per unit, all measurement devices have σ=0.01, 

and that the bus 3 angle is reference. The state 

vector is x=[θ1  θ2]
T
 as before.  

 

P12 

P13 

P32 

Bus 1 Bus 2 

Bus 3 

 
Fig. 3 
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a) Determine the vector of measurement 

expressions h(x), the derivative 

expressions 
x

xh
H






)(
, and the weighting 

matrix R. 

b) Develop )()(
1

xHRxHA T 
 ,   )()(

1
xhzRxHb T 

  

and comment on our ability to solve 

AΔx=b for Δx. 

 

Solution:  

(a) 
 21̀21122121122112

2
1121 sin5)sin()cos()(   bVVgVVgVPxh

 

Since x
T
=[θ1 θ2]

T
, the derivative expressions are 
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2
=0.0001,   0001.02  R . 
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Now get b.  
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Therefore the equation we need to solve is 
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or  
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The above equation solves according to 
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
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
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
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require the matrix determinant, which is: 
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The matrix is singular and we cannot solve the 

equation. 

 

In general, we say that the power system is 

observable if )()(
1

xHRxHA T 
  is non-singular.  

 

Linear algebra text books [1, pg. 46], [2] define 

matrix rank:  

 The maximum number of linearly independent 

rows in an m×n matrix A is the row rank of A, 

and the maximum number of linearly 

independent columns in an m×n  matrix A is 

the column rank of A. 

 If A is m×n, then: row rank≤m & col rank≤n.  

 For any matrix A: row rank=col rank≡rank. 

 

Observability analysis from H: Assume for a 

power system state estimation problem that m>n 

(more measurements than states). The power 

system is observable if matrix )()(
1

xHRxHA T 
  is 

nonsingular, and this occurs if H has rank n, 

where n is the number of columns of H.  
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Most state estimators will perform an 

observability analysis. If the network is 

unobservable, it may be the case that some 

pockets or islands of the network are still 

observable. Thus we also need to be able to 

identify observable parts of the system from 

unobservable parts of the system. Doing so will 

will enable us to determine from which part of 

the network we need to obtain additional 

measurements.  

 

The topic of observability analysis is well-

covered in [3, ch 7]. 

 

4. Approximate pseudo-measurements  

 

A key step in state estimation is to test for 

observability. If the network is not observable, 

i.e., if we do not have enough independent 

measurements, then we will not be able to 

obtain a network model.  
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When the state estimator detects that the 

network is unobservable, it can make use of 

approximate pseudo-measurements. Examples 

of such approximate pseudo-measurements 

include: 

 Information obtained from plant operators over 

phone or e-mail. 

 Information obtained from previous 

measurements. 

 Information obtained from a load flow 

calculation. 

In using approximate pseudo-measurements, it 

is generally good practice to pair it with a 

relatively large variance in the weighting 

matrix, given that it is in fact “approximate.” 

 

5. Quality of the state estimate 

 

Although the state estimator provides the “best” 

estimate of the states given all available 

measurements, there remains the rather 

important question of:  

How good is the state estimate? 
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Clearly, if the state estimate is very poor, we 

will not want to use it even if it is the “best.” 

 

There are two issues related to state estimate 

quality.  

 Bad data: Some data might be completely 

erroneous, polluted with some kind of gross 

error beyond the normal meter error. For 

example, a transducer may be wired 

incorrectly or is malfunctioning and gives a 

negative number or a zero or a number that is 

10 times what it should be. 

 Meter error: We have already discussed that 

meter error will always be present. We should 

check to ensure that there is not one or more 

meters in a crucial location having magnitude 

large enough to cause the entire state estimate 

to have unacceptable quality. 

 

Your text provides an overview of these topics 

in Section 12.6.1 “Detection and Identification 

of Bad Measurements,” which depends on 

Hypothesis Testing. 
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