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Nonlinear optimal power flow 
 

1.0 Some introductory comments 

 

Although the LPOPF does bring in the transmission constraints, it 

does not handle voltage or reactive power constraints. It is possible 

to approximate losses via a linear loss function, which improves 

the LPOPF, but the approximation is not very good.  

 

The nonlinear OPF (NLOPF) addresses both of these issues, but at 

a “cost” of significantly higher computation. We will also see that 

the NLOPF admits additional control capabilities that can be very 

useful.  

 

We utilize [1] significantly in these notes. Please read Section 

13.1-13.2 of W&W. 

 

2.0 Formulation 

 

Define: 

 ng: number of generators 

 N: number of buses 

 x: state vector 

 u: control vector 

 Ei: the voltage magnitude at bus i 

 θi: the angle at bus i 

 Pgi: the generation level at bus i 

 

 

We will describe state and control vectors, the objective function, 

the equality constraints, and the inequality constraints. 

 

 

 

W&W denote 









p

u
y  where u is the same as our u, but 

p includes “fixed parameters” such as load. I will not use 

p, thus, y=u. 
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State and control vectors: 

The state and control vectors are expressed as 
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Note the numbering scheme: generator buses are numbered first 

1,…,ng, then load buses ng+1,…,N. Also notice: 

 The state vector contains the bus voltage magnitudes and angles 

that we cannot control (it may also include Pg1, as seen later).  

 The control vector contains the generation levels and bus 

voltage magnitudes that we can control (this vector contains 

what we previously called the decision variables). It is also 

possible to include taps associated with tap-changing 

transformers in this vector.  

 

Objective function: 

The objective function for the most common OPF problem is an 

economic objective function. In our case, we will assume that it is 

cost, to be consistent with our LPOPF formulation. It is given by: 
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Here, fpg1(x,u) represents Pg1, and is a dependent variable. So Pg1 

(reference bus), is not a decision variable (and therefore not in the 

control vector). Yet its dependence on the vectors x and u requires 

that we include it in the objective function. Also observe that the 

dependence of fpg1 on x comes only through F1(Pg1). This means 

the Pgi are all chosen independently, except for Pg1 which is 
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determined by the solution (x, u). As we said before, other 

objective functions can be used.  

Equality constraints:  

The equality constraints are given by the power flow equations, 

expressed below: 
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We see from the above equations that we have 2N-ng equality 

constraints. We do not include the reactive power equations for the 

generator buses because doing so brings in the extra (unknown) 

variable Qk. We do not have to include the real power flow 

equation for the reference bus, but we may, and it is advantageous 

to do so because we need Pg1 to evaluate the objective. If we do 

include the ref bus real power flow equation, then  then x needs to 

be changed to include Pg1 as shown below:  

























































 



1

1

2

1

2

g

N

n

N

N

n

N

P

E

Ex

E

E
x

g

g 














 

 

    Assuming we do include the ref bus real power flow equation, 

we denote the equality constraints as follows: 
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Inequality constraints:  

There are four basic types of inequality constraints. 

a. Generator real power limits: 

ggigigi niPPP ,,1max,min,    (4a) 

b. Generator reactive power limits: 

ggigigi niQQQ ,,1max,min,    (4b) 

c. Load bus voltage limits: 
NniEEE giii ,1max,min,    (4c) 

d. Line flow constraints: 

Lineskkk NkTTT ,,1max,max,   (4d) 

We denote all of (4a)-(4d) as: 
0),( uxh       (4) 

This can be done for any constraint xmin<x<xmax as follows: 

  Lower Bound:  x>xmin-x<-xmin-x+xmin<0h1(x)=-x+xmin<0 

  Upper Bound:  x<xmaxx-xmax<0h2(x)=x-xmax<0 

 

We are now in a position to clearly state our problem as: 
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Lagrangian:  

The Lagrangian of our problem (5) is given by 
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Notice that we have used a form where the equality and inequality 

constraint terms are added. This is to be consistent with W&W, eq. 

(13.15). This will result in the corresponding Lagrange multipliers 

being the negative of what they would be if the equality and 

inequality constraint terms were subtracted. 

 

Optimality conditions:  

By KKT, the optimality conditions are 
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The last condition, 7d, is the complementary condition.  

 

We are now in a position to discuss solution techniques to solving 

the above set of equations (7a)-(7d). 

 

3.0 Solution by generalized reduced gradient (GRG) 

 

This method is also called the method of steepest descent and was 

first described for the OPF problem in [2].  

 

It can solve the equality-constrained problem very well.  

 

It solves the inequality-constrained problem only via an iterative 

approach, as we have done before, where we begin by assuming no 

inequality constraints are binding, solve the problem, include only 

those violated inequality constraints in a new solution, then solve 

W&W, eq. (13.18) and (13.19) , do not 

include the last terms in (7a,7b) because 

they (p. 519, top)  “are only representing 

equality constraints at this point.” 
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again, and repeat until we get a solution with no violated inequality 

constraints. 

 

Therefore the problem that we need to solve here is the one in the 

inner loop, where any violated inequality constraint is assumed to 

be included in the equality constraint vector g(x,u)=0. This 

conforms to what W&W do via “The Gradient Method” of 13.2.1. 

 

So we are trying to solve the following equations: 
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where 

),(),(),,( uxguxfux
T L    (9) 

 

The basic idea of the solution procedure is as follows: 

1. We desire to minimize f(x,u).  

2. We can only change u.  

3. So we desire to move in the direction of steepest descent with 

respect to the function f(x,u). This direction is given by 

),( uxfu  

4. But x is a function of u, that is, x=Z(u) where Z is some 

unknown function that maps the vector u to the vector x.  

5. Therefore we can write 

)),((),( uuZfuxf   

And the question is, how to obtain fu ? Notationally, we have 
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where the total derivative represents the change in f per unit 

change in u where x also changes (and the partial derivative 

represents the change in f per unit change in u where x remains 

fixed).  

 

To get the desired gradient function, we begin by expressing 
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But dx must be a function of du since x is a function of u. Let’s 

express this via the following observation:  

If we change u by a small amount du, and x changes by a small 

amount dx, then to satisfy g(x,u)=0, it must be true that 
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Solving (11) for dx, we obtain  
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Substitution of (12) into (10) results in 
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Factoring du to the right, 
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In the above, du is a column vector and the expression inside the 

curly brackets is a row vector.  

 

Now we want to bring the du over to the left-hand-side. To do so, 

we must transpose the left-hand-side so that it will also be a row 

g(x,u)=0 are 

the pf eqtns. 

Observe that 

we have the 

same number 

of equations 

as we have 

state variables 

x (2N-Ng with 

the ref bus  

real pf 

equation and 

Pg1 in x, and 

2N-Ng-1 

without).  In 

the latter case, 

the matrix 

being inverted 

in (12) is 

exactly the 

Jacobain. 
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vector. At the same time, we also rearrange the order of the term 

on the right. 
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Recall the linear algebra rule that [ABC]
T
=C

T
B

T
A

T
. Use this to 

take the transpose of both sides of (15) to obtain: 
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Now I will make the following claim; 

Claim: 
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Proof: Repeating (8a), we have 

0
),,,(















)]u,x(gλ[

xx

)u,xf(

x

ux TL
  (8a) 

Use the following fact: If λ is a constant vector, and b=b(x), and 

both are the same dimension, then 
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Use the above in (8a) to obtain 
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Solving (18) for λ, we obtain: 
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QED 
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Note that the first term (inside the curly brackets) of (17) is [J
T
]
-1

, 

where J is the power flow Jacobian with the addition of any 

binding inequality constraints. 

 

Repeating (16) 
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Substitute (17) into (16) results in 
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Although both (16) and (19) are referred to as the reduced 

gradient, when we use this term, we will be referring to (19).  

 

Eq. (16) is the reason for the name, i.e., it is the partial derivative 

of f wrspt u “reduced” by the term on the right of (16). The term on 

the right accounts for the fact that a small change ∆u creates a 

small induced change ∆x due to the power flow equations (and 

corresponding changes to power flow equations must be negative, 

as indicated by (11) and (12)).  

4.0 Algorithm 

Here is the GRG algorithm for solving the NLOPF problem. 

 

1. Let k = 1. Guess an initial control vector u
(k)

. (Use economic 

dispatch with losses or without losses to make the initial guess).  

 

2. Given u
(k)

, solve for x
(k)

 from (8c), repeated here for 

convenience:  
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This is just a power flow solution! 

 



 10 

3. Compute: 
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4. Compute the “steepest ascent” direction, i.e., the gradient of f, 

according to (19) 
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(the reduced gradient). 

 

5. Update the control vector by moving it in the direction of 

steepest descent. 
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where α
(k)

 is a step size which is reduced for every iteration. 

 

6. If  ),( uxfu , stop. Else, k=k+1, and go to (2). 

 

 

5.0 Examples 

 

Example 1, EDC without losses: 

For the system shown below, solve economic dispatch problem 

without losses. The cost functions are given by 
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Fig. 1 

 

The optimality conditions are: 
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Writing these in matrix form we obtain 
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Solving using Matlab, we obtain: 
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Example 2, EDC with losses: 

 

We will derive the loss function since this is such a simple system.  

 

The real power flowing across a line is expressed as 

y=1-j10 

PG1 

V1=1.0 

PD1=3.0 
PD2=1.0 

V2=1.0 
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Applying this to our system, and assuming θ1=0, we have: 
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Losses may be expressed as the difference between the flow into 

the line and the flow out of the line. Denoting 12P as the flow out 

of the line and into bus 2, we have 

21121212 PPPPPL      (E2-3) 

Substituting (E2-1) and (E2-2) into (E2-3), we have 
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Recall the Taylor series expansion for cosine: 
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Substituting the approximation of (E2-5) into (E2-4), we have 
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But we want to express the losses as a function of our decision 

variables PG1 and PG2.  

 

We expressed losses as the sum of the flows into either end of the 

line per (E2-3). Now let’s express the difference of the flows into 

either end of the line: 
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2)1(3 21212112  GGGG PPPPPP  (E2-7) 

We may also use (E2-1) and (E2-2) to express the difference of the 

flows into either end of the line: 
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If the angle is small, then (E2-8) becomes: 

22112 20PP    (E2-9) 

Equating (E2-7) and (E2-8), we get 
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By (E2-6), the loss function is the square of (E2-10), i.e.,  
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From (E2-11), we may compute the penalty factors according to: 
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Setting up the optimality conditions, we have: 
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Solving (E2-13a) for PG1 and PG2, we obtain: 
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We also know that 
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Let’s use Lambda iteration to solve (E2-13a) and (E2-13b). Here is 

matlab code for making the evaluation given λ: 
pg1=(lam-1)/(6+lam/200) 

pg2=(lam-0.5)/(1-lam/200) 

ploss=((pg1-pg2-2)^2)/400 

pd=pg1+pg2-ploss 

We initialize with the solution provided by Example 1 and arrive at 

the solution below, on the left, which is compared to the solution 

obtained in the previous example on the right: 
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Example 3, Optimal power flow: 

Solve the problem of Example 2 using the optimal power flow. 

Ignore all constraints. 

 

Variables: 
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Since both buses have generators, they are voltage control buses. 

Therefore the voltage magnitudes are considered to be known. 

Since the bus 1 angle is the reference, there is only one unknown 

angle that this will be a state variable, i.e., x1=θ2.  

 

We will model both real power flow equality constraints and will 

therefore need to identify that the bus 1 generation is a state 

variable, and so x2=PG1. Thus, in the notation of (3), fpg1(x,u)=x2. 

 

There is only one control variable and it is u=PG2. (We could 

identify the voltages at each bus as control variables, but we will 

not here in order to maintain as simple a model as possible here.) 

 

Objective function: 

The objective function is given by 
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Equality constraints: 

The equality constraints are the power flow equations. But since 

there are no PQ buses in this network, there are no reactive power 

equations. Therefore we need only consider the real power flow 

equations at the two buses.  Recalling (3a) and (3c), we have: 
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and  

dkGkk PPP   

This results in: 
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With y=1-j10, Y11=1-j10, Y12=-1+j10, so the above become: 
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Replacing the variables with x1=θ2, x2=PG1, and u=PG2, the equality 

constraints become: 
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Combining the constants, we get 
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Problem statement:  

The problem statement then becomes the following: 
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Lagrangian: 

The Lagrangian function becomes: 
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Optimality conditions:  

The appropriate optimality conditions are given by 
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Homework #6 for next Monday:  

Problem 1: Use the Generalized Reduced Gradient 

procedure to solve the above problem. 

 



 18 

The answers you should obtain are: 

λ1=4.2297, λ2=4.0174, x1=0.252, x2=0.5383, u=3.5174  

 

Compare to EDC and EDC+losses 

 
Solution w/ loss   Solution w/o losses OPF 
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Observe that the signs of λ1 and λ2 are both positive. Let’s 

think through what this means: 

 Our original formulation (see OptimizationIntro.ppt) 

formulated the Lagrangian by subtracting off the equality 

constraint terms, according to: 
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 We interpreted the Lagrange multipliers as the increase 

in the objective function when the right-hand-side (RHS) 

of the corresponding constraint is increased by one unit.  

 Now we have formulated the Lagrangian by adding the 

equality constraint terms, according to: 

)(),( ,u,xguxf),u,x(
T

 L  
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 So we interpret the Lagrange multipliers as the decrease 

in the objective function when the RHS of the 

corresponding constraint is increased by one unit. 

 Observe our equality constraints: 
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When we establish “right-hand-sides” these become: 

1sin10cos1),(

3sin10cos1),(
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These RHS are just the negative of the demands. 

Increasing them makes the demands smaller. 

 So the definition of λ1, λ2 as “decrease in objective 

function when RHS of corresponding constraints are 

increased by one unit” means that positive λ’s indicate 

the cost decreases as demand decreases – makes sense! 
 

 

6.0 Matrix of second partials approach (Newton method) 

 

The method described in section 5.0 updates the control variables 

at every iteration step along the direction of steepest descent with 

respect to the control variables. The problem with this method is 

that the step size must be small, requiring multiple iterations to 

identify the solution, and since each iteration requires a full power 

flow solution, the method can be quite computationally intensive 

for large systems. 

 

Another way to solve the problem is to view the equations 

established by the first order conditions as a set of simultaneous 

nonlinear equations to solve. This means we can use our familiar 

Newton-Raphson method to solve! Reference [3] provides a good 

articulation of this method.  
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A key concept in applying this method is that the nonlinear 

equations that we must solve are actually the first derivative of the 

objective and equality constraints. In order to apply the NR 

approach, we can denote all variables in the equations of the 

optimality conditions as z, i.e.,  
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Then the Lagrangian function as expressed in (9)  
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To solve the nonlinear equations: 
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we need the Jacobian matrix of these equations, which we denote 

by H(z), where its elements are given by 
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The matrix H(z), which is the Jacobian with respect to the first-

order conditions, is the Hessian with respect to the Lagrangian 

function. 

 

Once the Hessian is obtained, the NR procedure is performed as 

usual, based on the update relation: 

  )()(
1)()()1(

zzHzz z
kkk

L
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Homework #6 for next Monday:  

Problem 2: For the matrix of the system used in HW6, 

Problem #1, assume the initial solution z(0) obtained by the 

economic dispatch solution, obtain the Hessian matrix, and 

take a single step to obtain a new point z(1). 
 

7.0 Penalty function approach 

We motivate this approach by looking at two simple cases. Our 

general goal is to change a constrained optimization problem into 

an unconstrained optimization problem. We require the objective 

function be convex and the feasible space be a convex set. This 

approach is discussed very briefly in W&W, pp. 530-531 as a 

method of handling inequality constraints. But as we will see, it 

can handle both equality and inequality constraints. 

 

Prob. 1.0-a (constrained optimization with equality constraint): 

0)(

subject to

)(min

xg

xf

 

Observe: 

1. g(x) must be zero at any feasible solution. 

2. [g(x)]
2
=0 implies g(x)=0, and therefore, by (1), that [g(x)]

2
=0 

implies that x is a feasible solution.  

3. [g(x)]
2
≥0 is always true and therefore [g(x)]

2
=0 identifies the 

minimum value of [g(x)]
2
. 

4. By (3), minimizing [g(x)]
2
 will result in finding the value of x 

that imposes [g(x)]
2
=0. Therefore, by (2), minimizing [g(x)]

2 

will result in a feasible value of x. 

 

With the above in mind, consider the following new problem: 

 

Prob. 1.1-a (unconstrained optimization): 
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)(min x  

where 

    2
11 )]([)(;)( )()( xgxgpxgpxfx    

 

We cannot guarantee that this new problem will find the solution 

to problem Prob 1.0-a. To see why, observe in Fig. 2 the functions: 

22

2

2

3)3(

3)3(

xxy

xy

xy







 

We note that the first one has a minimum at x=3, the second one 

has a minimum at x=0, and the third one, which is the sum of the 

first two, has a minimum at about x=1.  

 
Fig. 2 
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What we can guarantee is that that Prob. 1.1-a will find a feasible 

solution to Prob. 1.0-a if we make α large enough. In our example, 

let’s choose α=4. The solution is displayed in Fig. 3 where we 

observe that the minimum of the sum has moved to the left and 

now occurs at about 0.3 or 0.4. Clearly, the larger we make α, the 

more the second function, y=x
2
, will dominate, and the closer the 

minimum of the sum will be to the minimum of y=x
2
. 

 
Fig. 3 

 

We can draw the conclusion that Prob. 1.1-a is guaranteed to find a 

feasible solution (one that satisfies the equality constraint) if we 

make α large enough.  

 

We can generalize this conclusion to the case of multiple equality 

constraints, as follows.  

 

Prob. 1.0-b (constrained optimization with N equality constraints): 
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0)(

subject to

)(min

xg

xf

 

 

 

 

Prob. 1.1-b (unconstrained optimization): 

)(min x  

where 

    2
11

1

)]([)(;)()()( xgxgpxgpxfx iii

N

i

 



 

 

Now let’s consider inequality constraints. 

 

Prob. 2.0-a (constrained optimization with inequality constraint): 

0)(

subject to

)(min

xh

xf

 

Will the same approach work that we used for equality constraints? 

That is, define 

    2
22 )]([)(;)( )()( xhxhpxhpxfx    

and then solve min φ(x)  using a large value of α – will this work? 

That is, will it guarantee to find a feasible solution?  

 

 This would only work if we know h(x)≤0 to be binding because 

it would impose h(x)=0, thus, not providing for the possibility that 

h(x)<0.  

 

So we would like to have a penalty function p2 which will impose 

h(x)=0 if h(x)≤0 is binding but allow h(x)<0 if not.  
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We can write such a penalty function as 

 











0)( if0

0)( if)]([
)(

2

2
xh

xhxh
xhp

 

The top function corresponds to the case when the constraint is 

binding, in which case we use the same penalty function that we 

used for equality constraints. The bottom function corresponds to 

the case when the constraint is non-binding, in which case we 

simply add 0 to the objective which has no effect on the solution.  

 

Notationally, we may express the same thing as 

    22 )(,0max)( xhxhp   

where we see that  

 if h(x)≤0 (and therefore non-binding), then p2=0
2
=0. 

 if h(x)>0 (and therefore binding), then p2=[ h(x)]
2
. 

 

The function p2 is illustrated in Fig. 2. 

 
Fig. 2 

P2 

h(x)   

[h(x)]
2
 

0 
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We can define a continuous function that has a similar 

characteristic: 

  0;)( )(
2  kexhp xkh

 

which may be appropriately shaped if desired. For example, Fig. 3 

illustrates the function 

  )(5
2 )( xhexhp   

where it is clear that the function is almost 0 where h(x)=0, is 0 for 

h(x)<0, and gets big for h(x)>0. 

 
Fig. 3 

Use of the continuous function provides that the function is 

differentiable everywhere, which can be beneficial when solving 

the equations imposed by the KKT conditions.  

 

And so we see a way to handle inequality constraints with a 

penalty function as an unconstrained optimization problem. 
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Prob. 2.1-a (unconstrained optimization): 

)(min x  

where 

   











0)( if0

0)( if)]([
)(;)( )()(

2

22
xh

xhxh
xhpxhpxfx i  

As in the case of equality constraints, we can draw the conclusion 

that Prob. 2.1-a is guaranteed to find a feasible solution (one that 

satisfies the inequality constraint) if we make α large enough. 

 

We can generalize this conclusion to the case of multiple equality 

constraints, as follows.  

 

Prob. 2.0-b (constrained optimization with M inequality constraints) 

0)(

subject to

)(min

xh

xf

 

 

 

Prob. 2.1-b (unconstrained optimization): 

)(min x  

where 

   









 

 0)( if0

0)( if)]([
)(;)( )()(

2

22

M

1i xh

xhxh
xhpxhpxfx

i

ii
ii  

 

Finally, we may generalize our results to the case of multiple 

equality constraints and multiple inequality constraints. 
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Prob. 3.0-a (constrained optimization with 1 equality and 1 

inequality constraint) 

0)(

0)(

subject to

)(min





xh

xg

xf

 

 

Prob. 3.1-a (unconstrained optimization): 

)(min x  

where 
    

 

 















0)( if0

0)( if)]([
)(

)]([)(

where

)()(  )()(

2

2

2
1

21

xh

xhxh
xhp

xgxgp

xhpxgpxfx 

 

 

Prob. 3.0-b (constrained optimization with N inequality constraints) 

0)(

0)(

subject to

)(min





xh

xg

xf

 

 

Prob. 3.1-b (unconstrained optimization): 
)(min x  

where 
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0)( if0

0)( if)]([
)(

)]([)(

where

)()(  )()(

2

2

2
1

M

1i

2

N

1i

1

xh

xhxh
xhp

xgxgp

xhpxgpxfx

i

ii
i

ii

ii

 

Now, we ask the following question: If solution to the above 

unconstrained optimization problems only finds us a feasible 

solution, what good is it? 

 

To answer this question, we modify our last, most general 

formulation by replacing α with α
(k)

. Thus, Prob. 3.1-b becomes 

Prob. 3.1-b (unconstrained optimization): 
)(min x  

where 

   

 

 
























 



0)( if0

0)( if)]([
)(

)]([)(

where

)()(  )()(

2

2

2
1

M

1i

2

N

1i

1
)(

xh

xhxh
xhp

xgxgp

xhpxgpxfx

i

ii
i

ii

ii
k

 

This suggests that we will develop a sequence of solutions 

corresponding to α
(1)

, α
(2)

, α
(3)

,… 

 

To see how we want to modify α
(k)

, observe that 

 If α
(k)

 is very small, then the objective function dominates, and 

the problem is essentially 

)(min xf  

 If α
(k)

 is very large (we have already seen this), then the 

constraints dominate, and the problem is essentially  
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0)( if0

0)( if)]([
)(

)]([)(

where

)()(  )(min

2

2

2
1

M

1i

2

N

1i

1
)(

xh

xhxh
xhp

xgxgp

xhpxgpx

i

ii
i

ii

ii
k

 

And so we see that we can use α
(k)

 to adjust the relative weight 

between the objective function and the constraints. 

 

Now consider a sequence of problems as follows: 

1. Let k=1 and guess {x
(k)

,  α
(k)

} (the starting solution). 

2. Solve the unconstrained minimization problem: 

   

 

 
























 



0)( if0

0)( if)]([
)(

)]([)(

where

)()(  )()(min

2

2

2
1

M

1i

2

N

1i

1
)(

xh

xhxh
xhp

xgxgp

xhpxgpxfx

i

ii
i

ii

ii
k

 

using α
(k)

 and x
(k)

 as the starting solution. Denote the new 

solution as x
(k+1)

. 

3. If |x
(k+1)

- x
(k)

|<ε, stop. Otherwise,  

a. Let α
(k+1)

=β × α
(k)

 

b. k=k+1 

c. Go to 2. 

 

Question: Should β<1 or β>1? 

 

In other words, as we progress through this sequence of 

unconstrained optimization problems, do we want to increase 

emphasis on constraints or decrease emphasis on constraints? 

 

The answer to this question is based on the following information: 
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 Large values of α create ill-conditioned nonlinear problems (i.e., 

problems for which nonlinear solvers do not converge quickly 

or do not converge at all).  

 Ill-conditioned problems are very sensitive to the accuracy of 

the starting solution. If the starting solution is poor, then an ill-

conditioned problem may not converge at all. 

 

Since our worst guess is at the beginning of the sequence, we want 

to make α very small at the beginning of the sequence in order to 

avoid ill-conditioning. 

 

Then we will change α so that we creep towards the feasible region 

with each successive solution until the stopping criterion is 

satisfied. 

 

The implication of the last statement is that β>1. 

 

Note carefully: We have transformed a constrained optimization 

problem into a sequence of unconstrained optimization problems 

whose solutions gradually move from the infeasible region to the 

feasible region.  

 

This type of penalty function method is referred to as an Exterior 

Point penalty function method.  

 

Two Final Comments:  

 

1. At each stage of the penalty function method, we solve an 

unconstrained nonlinear optimization problem. There are many 

methods to do this. Below are three classes of such methods: 

a. Without derivatives: Cyclic coordinate, Hook & Jeeves, 

Rosenbrock 

b. With derivatives: Steepest descent, Newton’s method 
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c. Conjugate directions (may or may not use derivatives): 

Davidon-Fletcher-Powell (uses derivatives); Fletcher-

Reeves, and Zangwill. 

2. Our focus has been on exterior penalty function methods. 

However, there is another broad class of penalty function 

solution methods applicable to solution of the Optimal Power 

Flow. These are called Interior Point penalty function methods. 

This class of solutions has also been referred to as Barrier 

Function methods. The main difference between Exterior Point 

methods and Interior Point methods is that whereas the former 

depend on a sequence of infeasible solutions that gradually 

move towards the feasible region, the latter depend on a 

sequence of feasible solutions that gradually move towards the 

boundary of the feasible region.  

 

Example [4]: 
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