
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, NOVEMBER 2008 1727

Multifrontal Solver for Online Power
System Time-Domain Simulation

Siddhartha Kumar Khaitan, James D. McCalley, Fellow, IEEE, and Qiming Chen, Member, IEEE

Abstract—This paper proposes the application of unsymmetric
multifrontal method to solve the differential algebraic equations
(DAE) encountered in the power system dynamic simulation. The
proposed method achieves great computational efficiency as com-
pared to the conventional Gaussian elimination methods and other
linear sparse solvers due to the inherent parallel hierarchy present
in the multifrontal methods. Multifrontal methods transform or
reorganize the task of factorizing a large sparse matrix into a se-
quence of partial factorization of smaller dense frontal matrices
which utilize the efficient Basic Linear Algebra Subprograms 3
(BLAS 3) for dense matrix kernels. The proposed method is com-
pared with the full Gaussian elimination methods and other direct
sparse solvers on test systems and the results are reported.

Index Terms—Differential algebraic equations, dynamic simula-
tion, frontal methods, linear solvers, multifrontal methods, UMF-
PACK.

I. INTRODUCTION

S IMULATION tools are an integral part in the design and
operation of large interconnected power systems. The pur-

pose of simulation is monitoring and tracking, and devising
preventive or corrective action strategies for mitigating the fre-
quency and impact of high consequence events. Dynamic sim-
ulation of power systems is important for secure power grid
expansion, and it significantly impacts future design and op-
eration of large interconnected power systems. The differen-
tial algebraic equations (DAEs) for the dynamic simulation are
solved to get the transient response of the power system. The
power system typically has thousands of components including
generators and associated controls, loads, transformers, lines,
and voltage control elements. Detailed modeling of the power
system results in thousands of differential and algebraic equa-
tions forming the DAE.

There are two broad categories of numerical integration
methods: explicit and implicit. Iterative methods like the
Newton method are needed to solve the implicit nonlinear
equations resulting from implicit numerical methods. The most
attractive feature of implicit methods is that they allow very

Manuscript received December 28, 2007; revised May 13, 2008. Current ver-
sion published October 22, 2008. This work was supported in part by PSerc
Project S26 Risk of Cascading outages and in part by the U.S. Department
of Energy Consortium for Electric Reliability Technology Solutions (CERTS).
Paper no. TPWRS-00960-2007.

S. K. Khaitan and J. D. McCalley are with the Department of Electrical and
Computer Engineering, Iowa State University, Iowa, IA 50010 USA (e-mail:
skhaitan@iastate.edu; jdm@iastate.edu).

Q. Chen is with Macquarie Cook Power, Inc., Houston, TX 77002 USA
(e-mail: qmchen@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2008.2004828

large time steps. Reference [1] reports the usage of 10-s time
steps in EUROSTAG and [2] reports the usage of 20-s time
steps in EXSTAB without losing numerical stability.

In the literature for the solution of dynamic algebraic equa-
tions, [3], there has been a significant effort to develop A-stable,
accurate and fast numerical integration methods with variable
time steps. Reference [1] developed a mixed Adams-BDF al-
gorithm with variable step size and variable integration order to
reliably discriminate between stable and unstable phenomena
and efficiently tackle large stiff power system models. Ref-
erence [2] developed a variable time step implicit integration
scheme based on a modified Trapezoidal method for extended
term time-domain simulation of power systems. In reference
[4], a new decoupled time-domain simulation algorithm is
proposed that takes advantage of both explicit and implicit
methods. It is based on decoupling the system into stiff and
non-stiff parts via invariant subspace decomposition and using
the implicit method for the stiff part and explicit method for
the non-stiff part to gain computationally efficiency. All these
approaches have focused on integration algorithm development
to gain efficiency. Although the various numerical integration
schemes differ in their convergence, order, stability, and other
properties, they do not necessarily offer considerable improve-
ment in computational gain. However, the core of the resulting
nonlinear equations from any of the integration schemes is the
solution of a sparse linear system, which is the most computa-
tionally intensive part of a DAE solver. This is exploited in the
work described here, via implementation of the unsymmetric
multifrontal algorithms for sparse linear systems, which, when
combined with a robust integration scheme, achieve very fast
time-domain simulation.

Section II provides background of the numerical methods
used, namely, the integration scheme, the solution of non-
linear equations and the linear solvers. Section III introduces
frontal methods, useful because they provide foundations on
which multifrontal methods are based. Section IV describes
fundamentals of multifrontal solvers and uses some simple
examples to illustrate. Section V compares simulation results
of a power system simulator deploying multifrontal solvers
with the same simulator deploying other direct sparse solvers
and the Gaussian elimination solver, using two test systems.
Section VI presents a discussion and Section VII concludes.

II. NUMERICAL METHODS

Most current methods for performing power system dynamic
simulation are developed for use on conventional sequential ma-
chines. This leads to the natural conclusion that there are two

0885-8950/$25.00 © 2008 IEEE

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

1728 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, NOVEMBER 2008

viable options to reduce the wall-clock time to solve a computa-
tionally intensive problem like power system time-domain sim-
ulation. These are 1) advanced hardware technology in terms of
speed, memory, I/O, and architecture, and 2) a more efficient al-
gorithm. Although the emphasis is generally on the hardware,
nevertheless efficient algorithms can offer great advantage in
achieving the desired speed. There exists a symbiotic relation-
ship between the two. In this paper, we focus on enhancing al-
gorithm efficiency to achieve high computational gain.

We can safely divide our time-domain simulator software
into three parts, namely 1) a user interface, 2) DAE solver
kernel, and 3) the output assembler. Our studies indicate
about 90%–95% of computation in time-domain simulation is
spent on the DAE solver. Any DAE solver requires numerical
analysis techniques which can be broadly classified into three
categories namely 1) numerical integration, 2) solution of
nonlinear equations, and 3) solution of linear equations. We
review implementation of these numerical techniques in the
following three subsections.

A. Integration Scheme

The power system is modeled, in summary, by a set of dif-
ferential and algebraic equations (DAE). These have inherent
nonlinearities in them, and the resulting DAE is highly stiff.
Switching events, contingencies, and forced outages introduce
significant discontinuities in the system variables. The numer-
ical scheme must converge quickly, give desired accuracy, and
should be reliable and stable. The implicit integration scheme
referred to as the theta method [4] satisfies all the above require-
ments and is used in our simulator. It does not have the infamous
hyper-stability problem [2], which means that an algorithm will
falsely report stability when the physical system is actually un-
stable. This method is also known as the weighted method [4].
Consider

(1)

The theta method can be expressed in the general form as

(2)

where is the time step of integration at time , .
The integration scheme is explicit (or forward) Euler when

, implicit (or backwards) Euler when , and trapezoidal
when . The case is a simple yet robust method
for solving stiff ODEs.

Both the Euler and Trapezoidal integration scheme fit the
equation of the above form. The choice of the theta method
with is preferred over the Trapezoidal rule as
it avoids the numerical oscillations following the occurrence of
switching events, where such oscillations can occur when using
the Trapezoidal rule [5]. The DAE for power systems can be
summarized as

(3)

(4)
where

vector of state variables;

vector of the additional variables.

Discretizing (3) and (4) using the theta-method results in

(5)

(6)

In (5) and (6), only and are unknown variables and
the rest are all known. Choosing , as suggested in [2],
(5) and (6) constitute a set of nonlinear algebraic equations of
the form

(7)

B. Nonlinear Equation Solution

The set of nonlinear algebraic equations in (7) are solved at
each time step using the Newton–Raphson method where, at the
th iteration, the unknowns are updated as follows:

(8)

(9)

where and are obtained by solving

(10)

which can be represented by the set of linear equations

(11)

where

;

differential equation residual [Eq. (5)];

algebraic equation residual [Eq. (6)];

state variables at the th iteration;

additional variables at the th iteration;

deceleration factor;

The Newton iterations terminate when the residual vectors
are “smaller” than pre-specified tolerances based on norm
and rate of convergence. Computation of the correction vector

requires the solution of the set of linear equations
given by (11) which is discussed in the next section.

C. Formulation of Dynamic Algebraic Equations

The set of differential equations is in (12)–(18) at the bottom
of the next page.

In the above formulations, the equations are for all the gener-
ations including the exciter, governor and AGC models. The no-
tation for exciter, governor, and AGC are the same as we showed
in [6]. For generators, the meanings of the notation are the same
as what is in [7]. The limiter for each variable is implemented as
logic in program and is not shown in the above equations. The
program checks all the variable limits for each integration step
and corrects them if necessary. We use the two-axis model [7]
for generator dynamics.

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

KHAITAN et al.: MULTIFRONTAL SOLVER FOR ONLINE POWER SYSTEM TIME-DOMAIN SIMULATION 1729

The set of algebraic equations are as follows, where means
the th generator and means the th generator bus:

(19)

for each generator

(20)

for each generator bus

(21)

for each generator bus

...
... (22)

for the whole linear impedance network with voltage bus
(is the system admittance matrix)

(23)

for each load bus with constant and . The loads in our
test system are modeled as constant active and reactive power
injection.

Equations (19)–(21) are for each individual generator. Equa-
tions (22) and (23) are for the whole network and each voltage
bus respectively. The DAE developed in (12)–(23) are summa-
rized as in (3) and (4).

D. Linear Solver

As seen in the previous section the core of any iterative solver
like Newton–Raphson is the solution of a system of equations
represented by (11). For power systems, the Jacobian matrix

is highly sparse and the fill-in is very low. We use this fact
to gain computational efficiency by employing a multifrontal
based sparse linear solver.

In the solution of the DAE arising out of the dynamic mod-
eling of the power system, the most computationally intensive
steps are the Jacobian building and the solution of the sparse
system of linear equations. However the purpose of the Jaco-
bian is to provide adequate convergence and as long as it is
achieved, one can minimize computation associated with Jaco-
bian updating [2]. Since the terms of the Jacobian involve time
step, there is a direct relation between the variation in time step,
system condition, and frequency of Jacobian building. Effective
strategy to rebuild the Jacobian has resulted in considerable time
saving for each simulation. Thus the key computational step is
the solution of the sparse linear system of equations.

In the solution of the linear equations, the Jacobian ma-
trices do not have any of the desirable structural or numerical
properties such as symmetry, positive definiteness, diagonal
dominance, or bandedness, which are generally associated with
sparse matrices, to exploit in developing of efficient algorithms
for linear direct solvers. In general, the algorithms for sparse
matrices are more complicated than for dense matrices. The
complexity is mainly attributed to the need to efficiently handle
fill-in in the factor matrices. A typical sparse solver consists of
four distinct steps as opposed to two in the dense case.

1) The ordering step minimizes the fill-in and exploits special
structures such as block triangular form.

2) An analysis step or symbolic factorization determines the
nonzero structures of the factors and creates suitable data
structures for the factors.

3) Numerical factorization computes the factor matrices.
4) The solve step performs forward and/or backward

substitutions.
This paper describes multifrontal methods as a new approach

for solving sparse linear systems arising in the power system dy-
namic simulation. Multifrontal methods are a generalization of

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

1730 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, NOVEMBER 2008

the frontal methods developed primarily for finite element prob-
lems [8] for symmetric positive definite systems which were
later extended to unsymmetric systems [9]. These methods were
then applied to a general class of problems in [10]. In the next
two sections, we describe fundamentals of frontal and multi-
frontal methods.

III. FRONTAL METHODS

Frontal methods were originally developed for solving
banded matrices from finite element problems [8]. The mo-
tivation was to limit computation on small matrices to solve
problems on machines with small core memories. Presently
frontal codes are widely used in finite element problems be-
cause very efficient dense matrix kernels, particularly Level
3 Basic Linear Algebra Subprograms (BLAS) [11], can be
designed over a wide range of platforms. A frontal matrix is a
small dense submatrix that holds one or more pivot rows and
their corresponding pivot columns.

The frontal elimination scheme is summarized as follows.
1) Assemble a row into the frontal matrix.
2) Determine if any columns are fully summed in the frontal

matrix. A column is fully summed if it has all of its nonzero
elements in the frontal matrix.

3) If there are fully summed columns, then perform partial
pivoting in those columns, eliminating the pivot rows
and columns and doing an outer-product update on the
remaining part of the frontal matrix.

4) Repeat until all the columns have been eliminated and ma-
trix factorization is complete.

The basic idea in frontal methods is to restrict elimination
operations to a frontal matrix, on which dense matrix opera-
tions are performed using Level 3 BLAS. In frontal scheme, the
factorization proceeds as a sequence of partial factorization on
frontal matrices, which can be represented as

(24)

Pivots can be chosen from the matrix since there are no
other entries in these rows and columns in the overall matrix.
Subsequently, is factorized, multipliers are stored over ,
and the Schur complement is formed, using
full matrix kernels. At the next stage, further entries from the
original matrix are assembled with this Schur complement to
form another frontal matrix.

For example, consider the 6 by 6 matrix shown in Fig. 1(a).
The non-zero entries in the matrix are represented by dots. The
frontal method to factorize the matrix begins by assembling row
1 into an empty frontal matrix shown in Fig. 1(b). At this point,
none of the variables are fully summed. Subsequently, we as-
semble row 2 to get the matrix in Fig. 1(c). Now variable 4 is
fully summed, and hence, column 4 can be eliminated. To elim-
inate a column, a pivot needs to be selected in that column. In
this example, let the pivot be selected from row 2. Rearranging
the matrix to bring the pivot element (2, 4) to the top left posi-
tion, we obtain the matrix in Fig. 1(d). Here, indicates an el-
ement of the upper triangular matrix, and denotes an element
of the lower triangular matrix. After elimination, the updated
frontal matrix is as shown in Fig. 1(e). In this way, we proceed

Fig. 1. Example for frontal method.

with assembling rows. Again, when rows 3 and 4 are assem-
bled, variable 1 is fully summed, and hence the column 1 can
be eliminated. Choosing the pivot element to be (4, 1), the ma-
trix with pivot element moved to the top left corner is shown
in Fig. 1(f), and the updated frontal matrix after elimination is
shown in Fig. 1(g). In this way, the frontal method continues
until matrix factorization is complete.

Although frontal methods achieve large computational gain
[9]–[15], there are many unnecessary operations on the frontal
matrices which are often large and sparse, thus lowering overall
performance. These deficiencies can be at least partially over-
come through allowing the use of more than one front, resulting
in the multifrontal method [16]–[19]. This permits pivot order-
ings that are better at preserving sparsity and also gives more
possibility for exploitation of parallelism via simultaneous pro-
cessing of different fronts.

Thus, in this paper we propose multifrontal methods as a
viable solution methodology for large unsymmetric sparse ma-
trices which are common in power system online dynamic sim-
ulation. The fundamentals of the multifrontal methods are dis-
cussed in the next section.

IV. MULTIFRONTAL METHODS

Multifrontal methods have been reported in previous power
system literature for solution of sparse linear systems arising
in power flow studies. On serial platforms, the multifrontal
methods were used for power flow in references [20] and [21].
Reference [20] implements an earlier version of multifrontal
methods, and since then there has been a lot of research in the
area of multifrontal methods. Currently, there is abundance of
advanced algorithms for ordering schemes to reduce fill-in,
for post-ordering and restructuring of elimination trees, as-
sembly trees, and directed acyclic graphs (DAG). Efficient
and optimized elimination trees, DAG, preordering strategies,
reduced working storage and reduction in indirect memory
access give higher speed and performance [22]–[29]. In [21],

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

KHAITAN et al.: MULTIFRONTAL SOLVER FOR ONLINE POWER SYSTEM TIME-DOMAIN SIMULATION 1731

the main focus was to promote the FPGA technology for
hardware implementation of sparse linear solver, as compared
to the software solution for multifrontal solver UMFPACK
[22]. However, all of these applications were for static power
flow analysis, where matrices have symmetric zero pattern and
nonzero diagonal elements. From the open literature, we have
no indication that multifrontal methods have been applied for
power system time-domain simulation, a particularly inter-
esting application because the Jacobian is highly unsymmetric
with unsymmetric zero pattern.

The multifrontal method, a generalization of the frontal
method, was originally developed for symmetric systems [16].
Subsequently, an unsymmetric multifrontal algorithm UMF-
PACK [22] was developed for general sparse unsymmetric
matrices. They make full use of the high performance computer
architecture by invoking the level 3 Basic Linear Algebra
Subprograms (BLAS) library. Thus memory requirement is
heavily reduced, and computing speed is greatly enhanced.

In this section, we overview the multifrontal method for the
solution systems characterized by large sparse matrices. Begin-
ning with its development in 1983 by Duff and Reid [16], it has
undergone many developments at different stages of its formula-
tion, and different algorithms perform best for different classes
of matrices. Broadly speaking, one can categorize them into
six classes: 1) symmetric positive definite matrices [27]–[30];
2) symmetric indefinite matrices [16], [31], [32]; 3) unsym-
metric matrices with actual or implied symmetric nonzero pat-
tern [18], [33]–[36]; 4) unsymmetric matrices where the unsym-
metric nonzero pattern is partially preserved [37]; 5) unsym-
metric matrices where the unsymmetric nonzero pattern is fully
preserved [38]–[41]; and 6) QR factorization of rectangular ma-
trices [42], [43]. There are significant differences among the var-
ious approaches. Here, we present fundamentals of multifrontal
methods for symmetric positive definite linear systems because
they are easier to understand, and they form the foundation for
application to other classes of matrices. Reference [30] provides
the basis for the concepts presented below on the theory of mul-
tifrontal methods.

Cholesky factorization of an by symmetric positive
definite matrix is defined by . Depending on the
order in which the matrix entries are accessed and/or updated
for factorization, the Cholesky factorization can be classified
into row, column, or submatrix Cholesky schemes. Multifrontal
methods perform Cholesky factorization by submatrices, where
each factor column is formed and all of its updates to the
submatrix remaining to be factored are computed. However, the
novel feature of the multifrontal method is that the update con-
tributions from a factor column to the remaining submatrix are
computed, but not applied directly to the matrix entries. They
are aggregated with contributions from other factor columns
before updates are performed.

We explain the main concepts of the multifrontal method
through an example. Consider a sparse symmetric positive defi-
nite by matrix and its Cholesky factor as shown in Fig. 2.
Each “•” represents an original nonzero in the matrix , and “o”
represents a fill-in in the factor matrix . The elimination tree of
the matrix represented by is defined to be the structure

Fig. 2. Example symmetric positive definite matrix and its Cholesky factor.

Fig. 3. Elimination tree for matrix A.

with nodes such that node is the parent of if
and only if

(25)

The elimination tree is a tree if is irreducible, which we
assume here. There are as many nodes in the tree as there are
columns in the matrix (or the Cholesky factor). In this example,
we have eight nodes.

From Fig. 2, we observe that for the fourth node , the parent
node is , and for the parent node is . Similarly for each
node we can derive the parent node. Thus, traversing the path
for all the nodes, we obtain the elimination tree shown in Fig. 3
for the example in Fig. 2.

Fundamental to understanding the multifrontal method are
the concepts of descendents of a node in the elimination tree,
subtree update matrix and frontal matrix, and update matrix,
which we present in the following three subsections. A fourth
subsection summarizes the method.

A. Descendents of A Node in the Elimination Tree

The descendants of the node in the elimination tree
contains and the set of nodes in the subtree rooted at the node
. The symbol is used to represent the set of descendents.

For the above example the descendent of 1 is , of 2
are , of 3 is , of 4 are
and of 6 are .

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

1732 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, NOVEMBER 2008

B. Subtree Update Matrix and Frontal Matrix

Let () be nonzero row subscripts in the th
column of the Cholesky factor, and . Then, the subtree
update matrix at column for the sparse matrix is defined
to be

...
(26)

and the frontal matrix is defined to be

...
(27)

Both and have order which is equal to the number
of nonzeros in the th column of the Cholesky factor which
includes the diagonal element. From the definition of we
see that when is computed, the first row/column of has
been completely updated. Therefore, one step of elimination on

gives the nonzero entries of the factor column of the
Cholesky factor of a an by symmetric positive definite
matrix is defined by . So can be factorized as

...

(28)

This gives the update matrix after one step elimination on
. It is a full matrix and is derived from (16) to be

... (29)

The definition of and indicate that is used to form
the th frontal matrix ; whereas is generated from by
an elimination step. has one more row/column than .

From knowledge of the descendants given in Section IV-A,
together with the definition of the subtree update matrix, we
have , and so is

(30)

Therefore

(31)

Similarly, we can then calculate , and hence and the
update matrix. The process continues until the entire matrix is
factorized. The advantage of the multifrontal method is that it
is not sequential, rather it has a parallel hierarchy as can be ob-
served from the elimination tree of the example. Formation of
the subtree update matrix begins on multiple fronts, namely, ,

, and . We can verify that for the above example the sub-
tree update matrices to are as follows.

(32)

C. Matrix Extend Add Operator and Update Matrix

Let be an by matrix with and be an by
matrix with . Each row/column of and corresponds
to a row/column of the given by matrix . Let

be the subscripts of in , and be
those of . Let be the union of the two subscript
sets. The matrix R can be extended to conform to the subscript
set (), by introducing a number of zero rows and
columns. In a similar way, the matrix can be extended. Here,

is defined to be the by matrix formed by adding the
two extended matrices of and . The matrix operator “ ” is
known as the matrix extend-add operator. For example, let

(33)

(34)

In terms of the extend-add operator defined above, we see
that the relationship between the frontal matrices and the
update matrices is

...
(35)

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

KHAITAN et al.: MULTIFRONTAL SOLVER FOR ONLINE POWER SYSTEM TIME-DOMAIN SIMULATION 1733

Fig. 4. Algorithm for multifrontal Cholesky factorization.

where are the children of node in the elimination
tree. Thus , the aggregate of all
outer-product updates from columns in . Since

are the children of the node in the elimination tree,
is the disjoint union of the nodes in the subtree

, and all updates from columns in
are included in . The process of forming the th
frontal matrix from and the update matrices of its tree
children is the frontal matrix assembly operation, and the tree
structure on which the assembly operations are based is called
the assembly tree [14].

The operations described in the above three subsections,
which are the essence of the multifrontal methods, are sum-
marized in the form of an algorithm for multifrontal Cholesky
factorization in Fig. 4.

D. Summary

The multifrontal method reorganizes the numerical computa-
tion, and the factorization is performed as a sequence of factor-
izations on multiple fronts. In practice, structural preprocessing
[30] is done to reduce the working storage requirements by re-
structuring the tree and finding the optimal post-ordering of the
tree. After the preprocessing, the computation of the Cholesky
factor matrix by the multifrontal method is done as described in
the above algorithm of Fig. 4.

E. Illustration

We illustrate the operations of the multifrontal method with
the example of Fig. 5, using the same unsymmetrical matrix of
Fig. 1 for which the operations of the frontal method were illus-
trated in Section III. The frontal matrices here are rectangular
and not square.

Consider the unsymmetrical matrix shown in Fig. 5(a). An
initial pivot element is chosen, say element (1, 1). The corre-
sponding first frontal matrix with this pivot row and column and
all contributions to them is shown in Fig. 5(b). Subsequently, a
pivot operation is performed to eliminate variable 1, which gives
the resultant frontal matrix with (upper triangular matrix),
(lower triangular matrix), and the nonzero entries in the non-
pivot rows and columns corresponding to the contribution block
(represented by dots). Further, after the elimination of variable

Fig. 5. Example for unsymmetric multifrontal method.

1, another pivot is selected, say (3, 2). A new frontal matrix is
then constructed with row 3 and column 2, with all contribu-
tions to them from both the original matrix and the contribution
block of the previous frontal matrix. The resulting frontal ma-
trix is shown in Fig. 5(c). After performing a pivot operation to
eliminate variable 2, we get the matrix as shown in Fig. 5(d), but
here another pivot operation on element (4, 3) can be performed
to eliminate variable 3 as well, since all contributions to row 4
and column 3 can also be assembled into the same matrix. A
pivot operation on element (4, 3) reduces the frontal matrix fur-
ther as shown in Fig. 5(e). In this way, assembly of the frontal
matrices continues, and pivot operations are performed on them
until the matrix is completely factorized.

In the present study, UMFPACK 4.4 [26] is used as the en-
gine for the solution of (5) and (6) by the multifrontal method.
UMFPACK consists of a set of ANSI/ISO C routines for solving
unsymmetric sparse linear systems using the unsymmetric mul-
tifrontal method. It requires the unsymmetric, sparse matrix to
be input in a sparse triplet (compressed sparse column) format.

The solver has within itself different fill reducing ordering
schemes built in and it selects the best ordering scheme for the
problem at hand to reduce fill-in and make it more memory
efficient. The default ordering scheme [24], [44], [45] is ap-
proximate minimum degree (AMD) with suitable pivotal search
during numerical factorization. It finds both a row and column
pivot ordering as the matrix is factorized. No preordering or
partial preordering is used. At the start of the factorization, no
frontal matrix exists. It begins a new frontal matrix with a global
Markowitz-style pivot search. All pivots with zero Markowitz
cost are eliminated first and placed in the factors. The ana-
lyze phase then automatically selects one of three ordering and
pivoting strategies (unsymmetric, 2-by-2, and symmetric). For
symmetric matrices with a zero-free diagonal, the symmetric
strategy is used. This computes a column ordering using AMD.
It combines a column ordering strategy with a right-looking
unsymmetric-pattern multifrontal numerical factorization. No
modification of the column ordering is made during the numer-
ical factorization. For symmetric indefinite problems with zeros
on the diagonal, 2-by-2 strategy is chosen. This looks for a row
permutation that puts nonzero entries onto the diagonal. The
symmetric strategy is then applied to the permuted matrix.

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

1734 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, NOVEMBER 2008

Fig. 6. Six-generator test system.

The multifrontal method offers a significant performance
advantage over more conventional factorization schemes by
permitting efficient utilization of parallelism and memory
hierarchy. We provide evidence of this by comparing the
performance of Newton’s method when coupled with the mul-
tifrontal solver and when coupled with other sparse solvers or
the Gaussian elimination solver for linear equations.

F. Implementation

Regarding the implementation of the solver, the major issues
that we worked on were:

1) The UMFPACK is a set of ANSI/ISO C routines. Since
we have developed our simulator in Visual C++, all the
C routines of the solver were converted to their VC++
counterparts.

2) The solver takes input in the sparse triplet format (com-
pressed sparse format). So the input matrices from the sim-
ulator were converted to the sparse triplet format, and the
interface wrapper was written for the solver to be called
from the simulator.

3) The interface wrapper was written for the output of the
solver into the simulator for further analysis.

V. CASE STUDIES

The proposed method is tested on two systems 1) a Test
system with six generators, 21 buses, 21 lines, nine trans-
formers, and three tie lines as shown in Fig. 6 and 2) the IEEE
RTS-96 [46], [47] with 33 generators as shown in Fig. 7.
Contingencies for both systems are simulated for 3600 s on a

Fig. 7. IEEE RTS-96 Test System.

Pentium 4, 2.8-GHz, and 1 GB of RAM, with the contingency at
and 20% load ramping from 900 to 2700 s. Performance

comparison is performed against Gaussian elimination methods
and other direct sparse solvers which include CHOLMOD [49],
a set of ANSI C routines for sparse Cholesky factorization
and update/downdate, GPLU [24] QR factorization [50] and
a sparse LU factorization routine which utilizes routines from
LAPACK. These sparse solvers are also present in Matlab.
Fig. 8 below shows for the six-generator test system the com-
parison of simulation plots by the Multifrontal method and the
other sparse solvers for an initial contingency of a generator
and two line trips at second. As seen in the figure, both
the methods provided the same solution. This was also found
to be true for all the other solvers for both test systems.

Figs. 9 and 10 show the structure of the sparse Jacobian ma-
trix before and after after reordering to improve computational
efficiency. Table I shows the performance comparison for the
multifrontal method with the full Gaussian elimination algo-
rithm and the sparse solvers on the six-generator test system for
six different critical initiating contingencies on the system. For
the sparse solvers only the best results of all the sparse solvers
are reported. Column 1 shows the contingency number, columns
2, 3, and 4 show the simulation time in seconds with the multi-
frontal algorithm, Gaussian elimination, and the sparse solvers,
respectively. Column 5 shows the speed-up using the multi-
frontal method compared to Gaussian, which varies between
3.75 to 7 times; Column 6 shows the speed-up with other sparse
solvers, varying between 3 to 5.4 times. For this system there
are a total of around 300 contingencies including all N-1 contin-
gencies, contingencies due to breaker failure, due to protection

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

KHAITAN et al.: MULTIFRONTAL SOLVER FOR ONLINE POWER SYSTEM TIME-DOMAIN SIMULATION 1735

Fig. 8. Comparison of simulation plots for multifrontal method and other
sparse solvers.

Fig. 9. Original Jacobian for the six-generator sample system.

failure to trip, and due to inadvertent tripping. The time savings
for 300 contingencies is provided in columns 7 and 8. For this
number of contingencies, the multifrontal method would save
around 16 to 22 h computing time compared to Gaussian elim-
ination and 11 to 17 h compared to other sparse solvers.

Table II similarly shows the performance comparison results
for the 32-generator RTS system for three different critical initi-
ating contingencies on the system. We observe that the speed-up
against the Gaussian elimination varies between 4 to 6.4 times
and against the other sparse solvers it varies between 3.2 to 4.2
times. Again for this system if we are to analyze 300 contin-
gencies as in the previous case, we can see from columns 7 and
8 that using the multifrontal method saves around 67 to 100 h

Fig. 10. Approximate minimum degree reordering of the matrix in Fig. 9.

TABLE I
PERFORMANCE COMPARISON FOR SIX-GENERATOR TEST SYSTEM

TABLE II
PERFORMANCE COMPARISON FOR IEEE TEST SYSTEM

computing time compared to Gaussian elimination and between
49 to 67 h compared to other commonly available sparse solvers.

VI. DISCUSSION

From the numerical results in the last section we observe that
the time saving is almost linearly related to the increase in the
number of generators in the system and also the speed up in-
creases with the size of the system. In the test system we had
six generators and in the RTS system there were 32 generators.

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

1736 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, NOVEMBER 2008

There was almost five times increase in the number of genera-
tors (and thus the number of dynamical states). From Tables I
and II, we can see that there was a corresponding increase in
time savings and speed up. This is because the size of the ma-
trix linearly scales with the number of generators (assuming
tenth-order ODE per generator) and the algebraic equations cor-
responding to the network. The gain offered by the multifrontal
methods becomes significantly more important as system size
increases.

To get an idea about the size of the problem which the large
control centers deal with in practice, we can consider one large
US ISO, where the real-time model represents approximately
32 000 buses and 42 000 branches [51]. It is likely this model
contains over 3000 generators. The magnitude of transient sim-
ulation is therefore in terms of tens of thousands of differential
algebraic equations. Thus computational speed is a main con-
cern, together with data measurement, network processing, and
modeling.

Modern power system operators are supervising one of the
most complex engineering systems in existence. Under normal
conditions they are able to control the power system with
sufficient automatic control support, and they have computa-
tional support to help them respond quickly and effectively to
disturbance conditions for likely contingencies (typically N-1).
Yet, there is very little decision support available to them for
responding to severe disturbances and complex unfolding of
the post disturbance phenomena, when catastrophic conditions
can sometimes, perhaps even often, be avoided if the operator
has a decision aid. Such a decision-aid necessarily needs to be
highly efficient to address extended-term phenomena for large
systems. Thus, a fast time-domain simulator, capable of per-
forming extended-term (several hours) of simulation, is highly
desirable. Our particular interest is for online deployment of
long-term time-domain simulation, and in this context, multi-
frontal methods may be viewed as a fundamentally important
enabling technology.

VII. CONCLUSION

We observe from the two examples presented that the
amount of time saving and speed-up increases with the size of
the system. For systems having size orders of magnitude larger,
the efficiency gain may also be orders of magnitude larger.
We project for a 500 generator system, computation time for
simulating 300 contingencies over 3600 s would be an order
of magnitude faster than Gaussian elimination methods or
other non-multifrontal direct sparse solvers. The computational
gain in general increases with the size of the matrix [22], [44]
due to inherent parallel hierarchy. However the complexity
of the algorithm can vary depending on the problem. Thus
the multifrontal methods are highly appealing for enhancing
computational efficiency of power system time-domain sim-
ulation. Decreasing computation time for any heavily used
tool is advantageous as it increases the engineer’s ability to
complete work more quickly and/or to analyze more scenarios.
Our particular interest is for online deployment of long-term
time-domain simulation, and in this context, multifrontal
methods may be viewed as a fundamentally important enabling
technology.

REFERENCES

[1] J. Astic, A. Bihain, and M. Jerosolimski, “The mixed Adams-BDF vari-
able step size algorithm to simulate transient and long-term phenomena
in power systems,” IEEE Trans. Power Syst., vol. 9, no. 2, pp. 929–935,
May 1994.

[2] J. Sanchez-Gasca, R. D’Aquila, W. Price, and J. Paserba, “Variable
time step, implicit integration for extended-term power system dy-
namic simulation,” in Proc. IEEE Proc. Power Industry Computer
Application Conf., May 7–12, 1995, pp. 183–189.

[3] K. Brenan, S. Campbell, and L. Petzold, Numerical Solution of Initial-
Value Problems in Differential- Algebraic Equations. Philadelphia,
PA: SIAM, 1996.

[4] M. Berzins and R. Furzeland, “An adaptive theta method for the solu-
tion of stiff and non-stiff differential equations,” App. Numer. Math.,
vol. 9, p. 1.19, 1992.

[5] F. Alvarado, R. Lasseter, and J. Sanchez, “Testing of trapezoidal in-
tegration with damping for the solution of power transient problems,”
IEEE Trans. Power App. Syst., vol. PAS-102, no. 12, pp. 3783–3790,
1983.

[6] Q. Chen, “The probability, identification and prevention of rare events
in power system,” Ph.D. dissertation, Dept. Elect. Comp. Eng., Iowa
State Univ., Ames, 2004.

[7] P. M. Anderson and A. A. Fouad, Power System Control and Stability
The Institute of Electrical and Electronic Engineers, Inc., 1994.

[8] B. Irons, “A frontal solution scheme for finite element analysis,”
Numer. Meth. Eng., vol. 2, pp. 5–32, 1970.

[9] P. Hood, “Frontal solution program for unsymmetric matrices,” Int. J.
Numer. Meth. Eng., vol. 10, pp. 379–400, 1976.

[10] I. Duff, MA32—A Package for Solving Sparse Unsymmetric Systems
Using the Frontal Method, Her Majesty’s Stationery Office, London,
U.K., 1981, AERE R11009.

[11] J. Dongarra, J. D. Croz, and S. Hammarling, “A set of level 3 basic
linear algebra subprograms,” ACM Trans. Math. Sofw., vol. 16, pp.
1–17, 1990.

[12] I. Duff, “A review of frontal methods for solving linear systems,”
Comput. Phys. Commun., vol. 97, pp. 45–52, 1996.

[13] I. Duff and J. Scott, A Comparison of Frontal Software With Other
Sparse Direct Solvers, Rutherford Appleton Laboratory, 1996a,
RAL-TR-96–102 (Revised).

[14] I. Duff and J. Scott, “The design of a new frontal code for solving sparse
unsymmetric systems,” ACM Trans. Math. Softw., vol. 22, no. 1, pp.
30–45, 1996b.

[15] I. Duff and J. Scott, Ma42—A new Frontal Code for Solving Sparse
Unsymmetric Systems, Rutherford Appleton Laboratory, 1993,
RAL-93–064.

[16] I. Duff and J. Reid, “The multifrontal solution of indefinite sparse sym-
metric linear systems,” ACM Trans. Math. Softw., vol. 9, pp. 302–325,
1983.

[17] I. Duff and J. Scott, “The use of multiple fronts in Gaussian elimi-
nation,” in Proc. 5th SIAM Conf. Applied Linear Algebra, 1994b, pp.
567–571.

[18] I. Duff and J. Reid, “The multifrontal solution of unsymmetric sets
of linear systems,” SIAM J. Sci. Statist. Comput., vol. 5, pp. 633–641,
1984.

[19] I. Duff and J. Reid, “The design of MA48, a code for the direct solution
of sparse unsymmetric linear systems of equations,” ACM Trans. Math.
Softw., vol. 22, pp. 187–226, 1996.

[20] T. Orfanogianni and R. Bacher, “Using automatic code differentiation
in power flow algorithms,” IEEE Trans. Power Syst., vol. 14, no. 1, pp.
138–144, Feb. 1999.

[21] J. Johnson, P. Vachranukunkiet, S. Tiwari, P. Nagvajara, and C.
Nwankpa, “Performance analysis of loadflow computation using
FPGA,” in Proc. 15th Power Systems Computation Conf., 2005.

[22] T. Davis and I. Duff, “A combined unifrontal/multifrontal method for
unsymmetric sparse matrices,” ACM Trans. Math. Softw., vol. 25, no.
1, pp. 1–19, 1997.

[23] T. Davis, “Algorithm 832: UMFPACK—An unsymmetric-pattern
multifrontal method,” ACM Trans. Math. Softw., vol. 30, no. 2, pp.
196–199, 2004.

[24] T. Davis, “A column pre-ordering strategy for the unsymmetric-pattern
multi-frontal method,” ACM Trans. Math. Softw., vol. 30, no. 2, pp.
165–195, 2004.

[25] T. Davis, P. Amestoy, and I. Duff, “Algorithm 837: AMD, an approxi-
mate minimum degree ordering algorithm,” ACM Trans. Math. Softw.,
vol. 30, no. 3, pp. 381–388, 2004.

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

KHAITAN et al.: MULTIFRONTAL SOLVER FOR ONLINE POWER SYSTEM TIME-DOMAIN SIMULATION 1737

[26] T. Davis, J. Gilbert, and E. Larimore, “Algorithm 836: COLAMD,
an approximate column minimum degree ordering algorithm,” ACM
Trans. Math. Softw., vol. 30, no. 3, pp. 377–380, 2004.

[27] C. Ashcraft and R. Grimes, “The influence of relaxed supernode par-
titions on the multifrontal method,” ACM Trans. Math. Softw., vol. 15,
no. 4, pp. 291–309, 1989.

[28] M. Heath and P. Raghavan, “A Cartesian parallel nested dissection
algorithm,” SIAM J. Matrix Anal. Appl., vol. 16, no. 1, pp. 235–253,
1995.

[29] A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar,
“PSPASES: an efficient and parallel sparse direct solver,” in Kluwer
International Series in Engineering and Science, T. Yang, Ed. Nor-
well, MA: Kluwer, 1999, vol. 515.

[30] J. Liu, “The multifrontal method for sparse matrix solution: Theory and
practice,” SIAM Rev., vol. 34, no. 1, pp. 82–109, 1992.

[31] I. Duff and J. Reid, Ma27—A Set of Fortran Subroutines for
Solving Sparse Symmetric Sets of Linear Equations, AERE Har-
well Laboratory, United Kingdom Atomic Energy Authority, 1982,
AERE-R-10533.

[32] I. Duff, A new Code for the Solution of Sparse Symmetric Definite
and Indefinite Systems, Rutherford Appleton Laboratory, 2002,
TR-2002–024.

[33] P. Amestoy and I. Duff, “Vectorization of a multiprocessor multifrontal
code,” Int. J. Supercomput. Appl., vol. 3, no. 3, pp. 41–59, 1989.

[34] P. Amestoy, I. Duff, J. L’Excellent, and J. Koster, “A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling,”
SIAM J. Matrix Anal. Appl., vol. 23, no. 1, pp. 15–41, 2001a.

[35] I. Duff, “The solution of nearly symmetric sparse linear systems,”
in Computing Methods in Applied Sciences and Engineering, VI, R.
Glowinski and J. Lions, Eds. Amsterdam, The Netherlands: North
Holland, 1984, pp. 57–74.

[36] I. Duff and J. Reid, “A note on the work involved in no-fill sparse matrix
factorization,” SIAM J. Numer. Anal., vol. 3, pp. 37–40, 1983b.

[37] P. Amestoy and C. Puglisi, “An unsymmetrized multifrontal LU fac-
torization,” SIAM J. Matrix Anal. Appl., vol. 24, pp. 553–569, 2002.

[38] T. Davis and I. Duff, “An unsymmetric-pattern multifrontal method for
sparse LU factorization,” SIAM J. Matrix Anal. Appl., vol. 18, no. 1, pp.
140–158, 1997.

[39] A. Gupta, “Improved symbolic and numerical factorization algorithms
for unsymmetric sparse matrices,” SIAM J. Matrix Anal. Appl., vol. 24,
pp. 529–552, 2002.

[40] S. Hadfield, “On the LU factorization of sequences of identically struc-
tured sparse matrices within a distributed memory environment,” Ph.D.
dissertation, Univ. Florida, Gainesville, 1994.

[41] S. Hadfield and T. Davis, “The use of graph theory in a parallel multi-
frontal method for sequences of unsymmetric pattern sparse matrices,”
Cong. Numer., vol. 108, pp. 43–52, 1995.

[42] P. Amestoy, I. Duff, and C. Puglisi, “Multifrontal QR factorization in
a multiprocessor environment,” Numer. Lin. Algeb. Appl., vol. 3, no. 4,
pp. 275–300, 1996a.

[43] P. Matstoms, “Sparse QR factorization in MATLAB,” ACM Trans.
Math. Softw., vol. 20, no. 1, pp. 136–159, 1994.

[44] A. Gupta, Recent Advances in Direct Methods for Solving Unsym-
metric Sparse Systems of Linear Equations, 2001, IBM Res. Rep., RC
22039 (98933).

[45] X. Li, Direct Solvers for Sparse Matrices, 2006.
[46] The Reliability Test System Task Force of the Application of Prob-

ability Methods Subcommittee, “The IEEE Reliability Test System,”
IEEE Trans. Power App. Syst., vol. PAS-98, pp. 2047–2045, 1979.

[47] The Reliability Test System Task Force of the Application of Proba-
bility Methods Subcommittee, “The IEEE Reliability Test System—
1996,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010–1018, Aug.
1999.

[48] M. Raju and J. S. T’ein, “Development of direct multifrontal solvers
for combustion problems,” Numer. Heat Transf.-part B, vol. 53, no. 3,
pp. 191–207, 2008.

[49] T. A. Davis, CHOLMOD Version 1.0 User Guide, Dept. of Com-
puter and Information Science and Engineering, Univ. Florida,
Gainesville, 2005. [Online]. Available: http://www.cise.ufl.edu/re-
search/sparse/cholmod.

[50] Gilbert, R. John, C. Moler, and R. Schreiber, “Sparse matrices in
MATLAB: Design and implementation,” SIAM J. Matrix Anal. Appl.,
vol. 13, pp. 333–356, 1992.

[51] [Online]. Available: ftp://ftp.nerc.com/pub/sys/all_updl/oc/rtbptf/Sec-
tion%204_2_1_08.pdf.

Siddhartha Kumar Khaitan received the B.E.
degree in electrical engineering from Birla Institute
of technology, Mesra, India, in 2003 and the M.Tech.
degree from the Indian Institute of Technology,
Delhi, India, in 2005.

He is currently a Post Doctoral Research Associate
at Iowa State University, Ames. His current research
interests are power system dynamic simulation, cas-
cading, numerical analysis, linear algebra, and par-
allel computing.

Mr. Khaitan was the topper and Gold Medalist in
his undergraduate studies.

James D. McCalley (F’04) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Georgia Tech, Atlanta, in 1982, 1986, and 1992,
respectively.

He was employed with Pacific Gas and Electric
Company, San Francisco, CA, from 1985–1990 as a
Transmission Planning Engineer. He is now a Pro-
fessor of electrical and computer engineering at Iowa
State University, Ames, where he has been employed
since 1992.

Dr. McCalley is a registered Professional Engineer
in California.

Qiming Chen (S’00–M’03) received the B.S. and
M.S. degrees of in science from Huazhong Univer-
sity of Science and Technology, Wuhan, China, in
1995 and 1998, respectively, and the Ph.D. degree
from Iowa State University, Ames, in 2004.

He was a Planning Engineer with PJM Intercon-
nection, Philadelphia, PA, from 2003 to 2008. He is
currently a Manager for power system modeling with
Macquarie Cook Power, Inc., Houston, TX.

Authorized licensed use limited to: Iowa State University. Downloaded on September 9, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

