Homework \#2, EE 553, Fall 2012, Dr. McCalley, Due Monday, September 17, 2012

1. Solve for x in the below by hand, using LU-decomposition.

$$
\left[\begin{array}{cccc}
4 & 1 & 1 & 1 \\
0 & 2 & -1 & -2 \\
1 & 0 & 3 & 1 \\
0 & 1 & 1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
4 \\
8
\end{array}\right]
$$

2. Consider the two different numbering systems for the network given below. For each numbering system, determine the number of fill-ups and the number of row operations assuming no re-ordering is performed after the first row operation. Indicate which scheme is better and why. Describe a better scheme.
(a)

(b)

3. For the lossless network shown below, the following data are given:

Bus 1

Bus 2

$$
\begin{aligned}
& \mathrm{z} 1=\mathrm{V} 1=1.02, \sigma 1=0.1 \\
& \mathrm{z} 2=\mathrm{V} 2=1.0, \sigma 2=0.1 \\
& \mathrm{z3}=\mathrm{P} 12=2.0, \sigma 3=0.05 \\
& \mathrm{z} 4=\mathrm{Q} 12=0.2, \sigma 4=0.05
\end{aligned}
$$

Let
$\underline{x}^{(0)}=\left[\begin{array}{c}x_{1}^{(0)} \\ x_{2}^{(0)} \\ x_{3}^{(0)}\end{array}\right]=\left[\begin{array}{c}\theta_{2}^{(0)} \\ V_{1}^{(0)} \\ V_{2}^{(0)}\end{array}\right]=\left[\begin{array}{c}0 \\ 1.02 \\ 1.0\end{array}\right]$
and perform one iteration of the least squares state estimation solution procedure to find $\mathrm{x}^{(1)}$.
4. Consider the system below. Real power measurements taken as follows: $\mathrm{P}_{12}=0.62 \mathrm{pu}, \mathrm{P}_{13}=0.06 \mathrm{pu}$, and $P_{32}=0.37 \mathrm{pu}$. All voltages are 1.0 per unit, and all measurement devices have $\sigma=0.01$. Assume the bus 3 angle is reference. So the state vector is therefore $\underline{x}=\left[\begin{array}{lll}\theta_{1} & \theta_{2}\end{array}\right]^{T}$. Your textbook solves this problem using DC power flow equations on pp. 467-471. Repeat, following the indicated steps below, but use AC power flow equations.

a) Determine the vector of measurement expressions $\underline{h}(\underline{x})$, the derivative expressions $\underline{H}=\frac{\partial \underline{h}(\underline{x})}{\partial \underline{x}}$, and the weighting matrix \underline{R}.
b) Compute $\underline{H}\left(\underline{x}^{(0)}\right), \underline{\mathrm{h}}\left(\underline{x}^{(0)}\right)$ for an estimate of $\underline{\mathrm{x}}^{(0)}=\left[\begin{array}{lll}0.024 & -0.093\end{array}\right]^{\mathrm{T}}$ (units of radians).
c) Compute $\underline{A}=\left.\underline{H}^{T}(\underline{x}) \underline{R}^{-1} \underline{H}(\underline{x})\right|_{\underline{x}^{(0)}}, \underline{b}=\underline{H}^{T}(\underline{x}) \underline{R}^{-1}[(\underline{z}-\underline{h}(\underline{x}))]_{\underline{x}^{(0)}}$
d) Solve $\underline{A} \Delta \underline{x}=\underline{b}$ for $\Delta \underline{x}$.
5. Work problem 12.3 in your $\mathrm{W} \& \mathrm{~W}$ textbook.

