
 1

Dynamic Programming

1.0 HTC formulation for DP (Example 7E in W&W, pg. 242)

Consider a “mostly thermal” problem where we have one thermal

plant and one hydro-reservior plant with the following data:

 Composite cost-rate function for thermal plant:
20005.08.4700)(sss PPPF 

 Limits for thermal plant:

1200200  sP

 Flow rate function for hydro plant










00

0,10260
)(

H

HH

H
P

PP
Pq

 Limits for hydro plant generation

2000  HP

 Limits on flow rate

22600  q

 Time interval of interest:

24 hours, 4 hours per interval (i.e., nj=4 hrs, jmax=6 intervals)

 Initial and final reservoir volumes:

V0=10,000 acre-ft

V6=10,000 acre-ft

 Inflow is rj=1000 acre-ft/h for j=1,…,6

 Electric load is given in the following table:

Interval, j Pload,j (MW)

1 600

2 1000

3 900

4 500

5 400

6 300

Units are acre-ft/h

Units are $/h

 2

To apply DP, we need to consider discrete states. Therefore we will

assume a “volume storage step” of 2000 Acre-ft, i.e, the reservoir

volume may only change in a single time interval by multiples of

2000Acre-ft.

From one time interval to the next, we may establish:

 a maximum volume increase corresponding to q=0 where the

inflow of 1000 Acre-ft/hr occurs over 4 hours, giving a

maximum volume increase of 4000Acre-ft.

 a maximum volume decrease corresponding to q=2260Acre-

ft/hr over 4 hours, with 4000 Acre-ft of inflow over that 4

hours, results in a maximum volume decrease of

2260*4-4000=5040Acre-ft

The initial volume together with the above stated maximum volume

increases and decreases provides that we may describe the “feasible

space” for the solution as a set of discrete points on a volume vs.

time period graph, as shown below in Fig. 0a.

Fig. 0a

Terminal

condition

 3

2.0 UC formulation for DP

Recall the example given in the file called “UC” where we

considered a three-unit system over a 72 hour period. In that

example, we identified three viable states and eight difference

loading periods (including the initial loading period). Costs of

transferring from each state in one period to the other states in the

subsequent period were identified. The figure below was used to

characterize these states and transition costs. We concluded that our

problem was a shortest path problem – we desire to find the shortest

path between the first and last node in the network.

Fig. 0b

There are several algorithms for solving shortest path problems,

including Dijkstra’s algorithm, Dial’s algorithm, Label correcting

algorithms, All-pair algorithm, and dynamic programming (DP). We

have also seen that it may be solved using branch and bound (B&B).

S3

S2-H

S2-C

P1 P2 P3 P4 V1 V2 V3

12 0 18 36 42 60 66 72

4 11 4 11 3 11 4 11

356.8

356.8

356.8

278.2

315

253.5
356.8

356.8

356.8 298

352

300
356.8

356.8

356.8 111.8

132

121

223.5

 4

Although B&B is in many cases the most effective method, DP

remains a competitive approach for some kinds of problems. There

are many HTC codes today developed based on DP.

W&W treat DP in Appendix 3B of the economic dispatch chapter

and describe its use for solving the economic dispatch problem with

non-convex cost curves. W&W further use it in Section 5.2.2 of the

UC chapter to solve the UC problem and again in Section 7.8 of the

HTC chapter. We examine the basic algorithm in these notes

following W&W’s description of it their Appendix 3B.

3.0 Illustration of DP

Consider the following minimum cost problem, Fig. 0b. It is

identical to the example given in W&W, Fig. 3.13, p. 75. The

numbers k=1,2,3,4,5 represent hours. At the end of each hour, a

decision is made regarding which state to enter for the next hour.

These states are represented by circles. The arcs represent state

transitions, and the numbers beside each arrow represent the

transition cost. The objective is to find the minimum cost from A-N.

 5

Fig. 0b

Observe that node A has a “zero” in the bottom of it. This indicates:

The minimum-cost sequence to

reach state A has cost of 0.

This is a trivial statement because A represents our starting hour, we

are already “there,” and there is no cost to incur. But we will use this

representation in the other circles as well. Remember that it will

represent the minimum cost sequence of decisions from A to reach

that node.

Our strategy is to compute the minimum cost sequence of decisions

for every node.

A

0
C

B

D

F

E

G

I

H

J

K

M

L

N

5

2

3

6

6

9

8

11

4

9

4

5

2

3

11

8

9

3

6

7

8

5

3

4

k=1 k=2 k=3 k=4 k=5

 6

Once we get the minimum cost sequence of decisions to reach the

nodes at hour k=4, then the problem will be solved by finding the

path that leads to node N at hour 5 for which the minimum cost at

hour 4 plus the transition cost to node N is minimum. The resulting

minimum total cost at node N can be expressed by:

 ),5:,4(),4(min),5(coscoscos NmSmFNF tt
m

t  (1)

where

 Fcost(4,m) is the minimum total cost to reach node m at hour 4.

 Scost(4,m:5,N) is the cost of transition from node m in hour 4 to

node N in hour 5.

Note that (1) minimizes by searching over m, that is, it finds the

minimum cost to reach node N at hour 5 by searching over all of the

nodes m in hour 4.

We use this notation repetitively in what follows, so we emphasize:

 ),5:,4(),4(min),5(coscoscos NmSmFNF tt
m

t  (1)

So what we see that if we can obtain the minimum cost to reach

each node (L and M) at hour 4, we can solve the problem using (1).

But now here is a new problem…. How to obtain the minimum cost

to reach each node at hour 4?

We can treat each node at hour 4 just like we treated node N in the

above example, i.e., we treat each node at hour 4 as if it were the

terminal node. So consider node L, then we can find the minimum

total cost to reach node L according to

 ),4:,3(),3(min),4(coscoscos LmSmFLF tt
m

t  (2a)

Likewise, for node M, we have

Min cost to

reach node

N, hr 5.

Min cost to

reach node

m, hr 4.

Cost of transition

from node m, hr 4,

to node N, hr 5..

 7

 ),4:,3(),3(min),4(coscoscos MmSmFMF tt
m

t  (2b)

Of course to solve (2a) and (2b), we need Fcost(3,m) for nodes

m=H,I,J,K. We do not have them, but we can obtain them using

 ),3:,2(),2(min),3(coscoscos HmSmFHF tt
m

t  (3a)

 ),3:,2(),2(min),3(coscoscos ImSmFIF tt
m

t  (3b)

 ),3:,2(),2(min),3(coscoscos JmSmFJF tt
m

t  (3c)

 ),3:,2(),2(min),3(coscoscos KmSmFKF tt
m

t  (3d)

And to solve (3a-3d), we need Fcost(2,m) for nodes m=E,F,G. We do

not have them, but we can obtain them using

 ),2:,1(),1(min),2(coscoscos EmSmFEF tt
m

t  (4a)

 ),2:,1(),1(min),2(coscoscos FmSmFFF tt
m

t  (4b)

 ),2:,1(),1(min),2(coscoscos GmSmFEF tt
m

t  (4c)

And to solve (4a-4c), we need Fcost(1,m) for nodes m=B,C,D. We do

not have them, but we can obtain them using

 ),1:,0(),0(min),1(coscoscos BmSmFBF tt
m

t  (5a)

 ),1:,0(),0(min),1(coscoscos CmSmFCF tt
m

t  (5b)

 ),1:,0(),0(min),1(coscoscos DmSmFDF tt
m

t  (5c)

To solve (5a-5c), we need Fcost(0,m) for m=A. WE HAVE THAT!

 8

We immediately see the strategy necessary for solving this problem.

Since we know Fcost(0,A)=0, and we know all transition costs (the

numbers on the arcs of Fig. 0b),

We can compute (5a), (5b), and (5c).

Then we compute (4a, 4b, 4c).

Then we compute (3a, 3b, 3c, 3d).

Then we compute (2a, 2b).

Then we compute (1), which solves our problem.

Let’s execute the above procedure using our node-arc diagram to

track where we are. We use a thicker line to mark the optimal path

obtained to a node.

 9

Computing (5a), (5b), and (5c):

 ),1:,0(),0(min),1(coscoscos BmSmFBF tt
m

t  (5a)

 ),1:,0(),0(min),1(coscoscos CmSmFCF tt
m

t  (5b)

 ),1:,0(),0(min),1(coscoscos DmSmFDF tt
m

t  (5c)

Fig. 1

A

0

C

2

B

5

D

3

F

E

G

I

H

J

K

M

L

N

5

2

3

6

6

9

8

11

4

9

4

5

2

3

11

8

9

3

6

7

8

5

3

4

k=1 k=2 k=3 k=4 k=5

 10

Computing (4a, 4b, 4c):

 ),2:,1(),1(min),2(coscoscos EmSmFEF tt
m

t  (4a)

 ),2:,1(),1(min),2(coscoscos FmSmFFF tt
m

t  (4b)

 ),2:,1(),1(min),2(coscoscos GmSmFGF tt
m

t  (4c)

Fig. 2

A

0
C

2

B

5

D

3

F

6

E

10

G

9

I

H

J

K

M

L

N

5

2

3

6

6

9

8

11

4

9

4

5

2

3

11

8

9

3

6

7

8

5

3

4

k=1 k=2 k=3 k=4 k=5

 11

Computing (3a), (3b), (3c), (3d):

 ),3:,2(),2(min),3(coscoscos HmSmFHF tt
m

t  (3a)

 ),3:,2(),2(min),3(coscoscos ImSmFIF tt
m

t  (3b)

 ),3:,2(),2(min),3(coscoscos JmSmFJF tt
m

t  (3c)

 ),3:,2(),2(min),3(coscoscos KmSmFKF tt
m

t  (3d)

Fig. 3

A

0
C

2

B

5

D

3

F

6

E

10

G

9

I

12

H

13

J

11

K

13

M

L

N

5

2

3

6

6

9

8

11

4

9

4

5

2

3

11

8

9

3

6

7

8

5

3

4

k=1 k=2 k=3 k=4 k=5

 12

Computing (2a, 2b):

 ),4:,3(),3(min),4(coscoscos LmSmFLF tt
m

t  (2a)

 ),4:,3(),3(min),4(coscoscos MmSmFMF tt
m

t  (2b)

Fig. 4

Observe here that there are two solutions to (2b), i.e., in finding the

minimum total cost to reach node M, we can either move through

node I or node K; in each case, the minimum total cost is 18. We

can record them both if we like, but it is unnecessary. As long as it

only costs 18 to reach node M, we do not care what route we take to

reach there.

A

0
C

2

B

5

D

3

F

6

E

10

G

9

I

12

H

13

J

11

K

13

M

18

L

15

N

5

2

3

6

6

9

8

11

4

9

4

5

2

3

11

8

9

3

6

7

8

5

3

4

k=1 k=2 k=3 k=4 k=5

 13

Computing (1),

 ),5:,4(),4(min),5(coscoscos NmSmFNF tt
m

t  (1)

Fig. 5

From Fig. 5, we observe that the minimum cost is 19, and the

optimal policy (a sequence of decisions) is given by path

A-C-E-I-L-N.

A

0

C

2

B

5

D

3

F

6

E

10

G

9

I

12

H

13

J

11

K

13

M

18

L

15

N

19

5

2

3

6

6

9

8

11

4

9

4

5

2

3

11

8

9

3

6

7

8

5

3

4

k=1 k=2 k=3 k=4 k=5

 14

4.0 Observations

We make several observations at this point.

1. When problems can be posed as a sequence of decisions, where

 the sequence occurs in a defined manner from step k=0 to

step k=1 to step k=2 to…

 at each step, there are clearly defined states of existence

(nodes)

 transitions occur only between nodes in step k to nodes in

step k+1

 each transition can be assigned a value corresponding to

what needs to be optimized in the problem

then the problem can be solved by recursive use of;

 ),:,1(),1(min),(coscoscos nkmkSmkFnkF tt
m

t  (6)

 Equation (6) is referred to as Bellman’s equation, named for its

 inventor, Richard Bellman [1, 2].

2. The approach is called dynamic programming (DP). Our specific

implementation of DP is forward DP. Forward DP works well

when the initial condition is known, as is the case with most UC

and HTC problems. It is also possible to formulate a backwards

DP algorithm, appropriate when the terminal condition is known.

3. DP works for any problem where the following principle is

satisfied:

Version 1: An optimal policy has the property that whatever

the initial state and initial decision are, the remaining decisions

must constitute an optimal policy with regard to the state

resulting from the first decision.

Version 2: A policy is optimal if, at a stated stage, whatever

the preceding decisions may have been, the decisions still to be

taken constitute an optimal policy when the result of the

previous decisions is included.

Version 3: An optimal policy must contain only optimal

subpolicies.

 15

Version 4: Every optimal solution to a problem contains

optimal solutions to all subproblems.

This principle is called Bellman’s Principle of Optimality.

Notice that the principle of optimality does not say:

If you have optimal solutions to all subproblems, then you can

combine them to get an optimal solution.

With respect to our example problem examined above,
A-C-E-I-L-N is the optimal solution to the problem of reaching N from A.

 C-E-I-L-N is the optimal solution to the problem of reaching N from C.

 E-I-L-N is the optimal solution to the problem of reaching N from E.

 I-L-N is the optimal solution to the problem of reaching N from I.

 L-N is the optimal solution to the problem of reaching N from L.

Therefore, our problem satisfies the principle of optimality.

Perhaps it is of some value to consider a case where the principle of

optimality is not satisfied.

Consider a “longest path problem” for Fig. 6.

Fig. 6

Consider that each arc value represents time and that we want to

maximize the time it takes us to get from A to D. But we can only

touch each node once – this means our path can contain no cycles.

The longest such path from A to D is A-B-C-D.

But what about the longest path from A to B? This is A-C-B.

A C D

B

1

1

3 2

4

 16

Therefore the principle of optimality is not satisfied for this problem

since the optimal solution to the problem (longest path from A to D)

contains a non-optimal solution to a subproblem (longest path from

A to B). Therefore this problem cannot be solved by DP!

[1] R. Bellman, “On the theory of dynamic programming,” Proc. of the National Academy

of Sciences, 1952.

[2] R. Bellman, “Dynamic Programming,” Princeton University Press, Princeton, NJ, 1957.

