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Dynamic Programming 

 

1.0 HTC formulation for DP (Example 7E in W&W, pg. 242) 

 

Consider a “mostly thermal” problem where we have one thermal 

plant and one hydro-reservior plant with the following data: 

 Composite cost-rate function for thermal plant: 
20005.08.4700)( sss PPPF   

 Limits for thermal plant: 

1200200  sP  

 Flow rate function for hydro plant 
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 Limits for hydro plant generation 

2000  HP  

 Limits on flow rate 

22600  q  

 Time interval of interest: 

24 hours, 4 hours per interval (i.e., nj=4 hrs, jmax=6 intervals) 

 Initial and final reservoir volumes: 

V0=10,000 acre-ft 

V6=10,000 acre-ft 

 Inflow is rj=1000 acre-ft/h for j=1,…,6 

 Electric load is given in the following table: 

Interval, j Pload,j (MW) 

1 600 

2 1000 

3 900 

4 500 

5 400 

6 300 

Units are acre-ft/h 

Units are $/h 
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To apply DP, we need to consider discrete states. Therefore we will 

assume a “volume storage step” of 2000 Acre-ft, i.e, the reservoir 

volume may only change in a single time interval by multiples of 

2000Acre-ft. 

 

From one time interval to the next, we may establish: 

 a maximum volume increase corresponding to q=0 where the 

inflow of 1000 Acre-ft/hr occurs over 4 hours, giving a 

maximum volume increase of 4000Acre-ft. 

 a maximum volume decrease corresponding to q=2260Acre-

ft/hr over 4 hours, with 4000 Acre-ft of inflow over that 4 

hours, results in a maximum volume decrease of  

2260*4-4000=5040Acre-ft 

 

The initial volume together with the above stated maximum volume 

increases and decreases provides that we may describe the “feasible 

space” for the solution as a set of discrete points on a volume vs. 

time period graph, as shown below in Fig. 0a. 

 
Fig. 0a 
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condition 
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2.0 UC formulation for DP 

 

Recall the example given in the file called “UC” where we 

considered a three-unit system over a 72 hour period. In that 

example, we identified three viable states and eight difference 

loading periods (including the initial loading period). Costs of 

transferring from each state in one period to the other states in the 

subsequent period were identified. The figure below was used to 

characterize these states and transition costs. We concluded that our 

problem was a shortest path problem – we desire to find the shortest 

path between the first and last node in the network.  

 
Fig. 0b 

 

There are several algorithms for solving shortest path problems, 

including Dijkstra’s algorithm, Dial’s algorithm, Label correcting 

algorithms, All-pair algorithm, and dynamic programming (DP). We 

have also seen that it may be solved using branch and bound (B&B).  
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Although B&B is in many cases the most effective method, DP 

remains a competitive approach for some kinds of problems. There 

are many HTC codes today developed based on DP.  

 

W&W treat DP in Appendix 3B of the economic dispatch chapter 

and describe its use for solving the economic dispatch problem with 

non-convex cost curves. W&W further use it in Section 5.2.2 of the 

UC chapter to solve the UC problem and again in Section 7.8 of the 

HTC chapter. We examine the basic algorithm in these notes 

following W&W’s description of it their Appendix 3B. 

 

3.0 Illustration of DP 

Consider the following minimum cost problem, Fig. 0b. It is 

identical to the example given in W&W, Fig. 3.13, p. 75. The 

numbers k=1,2,3,4,5 represent hours. At the end of each hour, a 

decision is made regarding which state to enter for the next hour. 

These states are represented by circles. The arcs represent state 

transitions, and the numbers beside each arrow represent the 

transition cost. The objective is to find the minimum cost from A-N. 
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Fig. 0b 

 

Observe that node A has a “zero” in the bottom of it. This indicates: 

The minimum-cost sequence to  

reach state A has cost of 0.  

 

This is a trivial statement because A represents our starting hour, we 

are already “there,” and there is no cost to incur. But we will use this 

representation in the other circles as well. Remember that it will 

represent the minimum cost sequence of decisions from A to reach 

that node.  

 

Our strategy is to compute the minimum cost sequence of decisions 

for every node.  
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Once we get the minimum cost sequence of decisions to reach the 

nodes at hour k=4, then the problem will be solved by finding the 

path that leads to node N at hour 5 for which the minimum cost at 

hour 4 plus the transition cost to node N is minimum. The resulting 

minimum total cost at node N can be expressed by:  

 ),5:,4(),4(min),5( coscoscos NmSmFNF tt
m

t    (1) 

where  

 Fcost(4,m) is the minimum total cost to reach node m at hour 4. 

 Scost(4,m:5,N) is the cost of transition from node m in hour 4 to 

node N in hour 5. 

Note that (1) minimizes by searching over m, that is, it finds the 

minimum cost to reach node N at hour 5 by searching over all of the 

nodes m in hour 4. 

 

We use this notation repetitively in what follows, so we emphasize: 

 ),5:,4(),4(min),5( coscoscos NmSmFNF tt
m

t    (1) 

 

 

 

 

So what we see that if we can obtain the minimum cost to reach 

each node (L and M) at hour 4, we can solve the problem using (1).  

 

But now here is a new problem…. How to obtain the minimum cost 

to reach each node at hour 4? 

 

We can treat each node at hour 4 just like we treated node N in the 

above example, i.e., we treat each node at hour 4 as if it were the 

terminal node. So consider node L, then we can find the minimum 

total cost to reach node L according to 

 ),4:,3(),3(min),4( coscoscos LmSmFLF tt
m

t    (2a) 

Likewise, for node M, we have 

Min cost to 

reach node 

N, hr 5. 

Min cost to 

reach node 

m, hr 4. 

Cost of transition 

from node m, hr 4, 

to node N, hr 5.. 
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 ),4:,3(),3(min),4( coscoscos MmSmFMF tt
m

t    (2b) 

 

Of course to solve (2a) and (2b), we need Fcost(3,m) for nodes 

m=H,I,J,K. We do not have them, but we can obtain them using  

 ),3:,2(),2(min),3( coscoscos HmSmFHF tt
m

t    (3a) 

 ),3:,2(),2(min),3( coscoscos ImSmFIF tt
m

t    (3b) 

 ),3:,2(),2(min),3( coscoscos JmSmFJF tt
m

t    (3c) 

 ),3:,2(),2(min),3( coscoscos KmSmFKF tt
m

t    (3d) 

 

And to solve (3a-3d), we need Fcost(2,m) for nodes m=E,F,G. We do 

not have them, but we can obtain them using 

 ),2:,1(),1(min),2( coscoscos EmSmFEF tt
m

t    (4a) 

 ),2:,1(),1(min),2( coscoscos FmSmFFF tt
m

t    (4b) 

 ),2:,1(),1(min),2( coscoscos GmSmFEF tt
m

t    (4c) 

 

And to solve (4a-4c), we need Fcost(1,m) for nodes m=B,C,D. We do 

not have them, but we can obtain them using 

 

 ),1:,0(),0(min),1( coscoscos BmSmFBF tt
m

t    (5a) 

 ),1:,0(),0(min),1( coscoscos CmSmFCF tt
m

t    (5b) 

 ),1:,0(),0(min),1( coscoscos DmSmFDF tt
m

t    (5c) 

To solve (5a-5c), we need Fcost(0,m) for m=A. WE HAVE THAT! 
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We immediately see the strategy necessary for solving this problem. 

Since we know Fcost(0,A)=0, and we know all transition costs (the 

numbers on the arcs of Fig. 0b),  

We can compute (5a), (5b), and (5c).  

Then we compute (4a, 4b, 4c). 

Then we compute (3a, 3b, 3c, 3d). 

Then we compute (2a, 2b).  

Then we compute (1), which solves our problem.  

 

Let’s execute the above procedure using our node-arc diagram to 

track where we are. We use a thicker line to mark the optimal path 

obtained to a node.  
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Computing (5a), (5b), and (5c): 

 ),1:,0(),0(min),1( coscoscos BmSmFBF tt
m

t    (5a) 

 ),1:,0(),0(min),1( coscoscos CmSmFCF tt
m

t    (5b) 

 ),1:,0(),0(min),1( coscoscos DmSmFDF tt
m

t    (5c) 

 

 
Fig. 1 
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Computing (4a, 4b, 4c): 

 ),2:,1(),1(min),2( coscoscos EmSmFEF tt
m

t    (4a) 

 ),2:,1(),1(min),2( coscoscos FmSmFFF tt
m

t    (4b) 

 ),2:,1(),1(min),2( coscoscos GmSmFGF tt
m

t    (4c) 

 
Fig. 2 
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Computing (3a), (3b), (3c), (3d): 

 ),3:,2(),2(min),3( coscoscos HmSmFHF tt
m

t    (3a) 

 ),3:,2(),2(min),3( coscoscos ImSmFIF tt
m

t    (3b) 

 ),3:,2(),2(min),3( coscoscos JmSmFJF tt
m

t    (3c) 

 ),3:,2(),2(min),3( coscoscos KmSmFKF tt
m

t    (3d) 

 
Fig. 3 
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Computing (2a, 2b): 

 ),4:,3(),3(min),4( coscoscos LmSmFLF tt
m

t    (2a) 

 ),4:,3(),3(min),4( coscoscos MmSmFMF tt
m

t    (2b) 

 

 
Fig. 4 

Observe here that there are two solutions to (2b), i.e., in finding the 

minimum total cost to reach node M, we can either move through 

node I or node K; in each case, the minimum total cost is 18. We 

can record them both if we like, but it is unnecessary. As long as it 

only costs 18 to reach node M, we do not care what route we take to 

reach there. 
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Computing (1),  

 ),5:,4(),4(min),5( coscoscos NmSmFNF tt
m

t    (1) 

 
Fig. 5 

 

From Fig. 5, we observe that the minimum cost is 19, and the 

optimal policy (a sequence of decisions) is given by path  

A-C-E-I-L-N. 
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4.0 Observations 

 

We make several observations at this point. 

1. When problems can be posed as a sequence of decisions, where  

 the sequence occurs in a defined manner from step k=0 to 

step k=1 to step k=2 to… 

 at each step, there are clearly defined states of existence 

(nodes) 

 transitions occur only between nodes in step k to nodes in 

step k+1 

 each transition can be assigned a value corresponding to 

what needs to be optimized in the problem 

then the problem can be solved by recursive use of;  

 ),:,1(),1(min),( coscoscos nkmkSmkFnkF tt
m

t   (6) 

  Equation (6) is referred to as Bellman’s equation, named for its  

  inventor, Richard Bellman [1, 2].  

2. The approach is called dynamic programming (DP). Our specific 

implementation of DP is forward DP. Forward DP works well 

when the initial condition is known, as is the case with most UC 

and HTC problems. It is also possible to formulate a backwards 

DP algorithm, appropriate when the terminal condition is known. 

3. DP works for any problem where the following principle is 

satisfied: 

Version 1: An optimal policy has the property that whatever 

the initial state and initial decision are, the remaining decisions 

must constitute an optimal policy with regard to the state 

resulting from the first decision. 

Version 2: A policy is optimal if, at a stated stage, whatever 

the preceding decisions may have been, the decisions still to be 

taken constitute an optimal policy when the result of the 

previous decisions is included. 

Version 3: An optimal policy must contain only optimal 

subpolicies. 
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Version 4: Every optimal solution to a problem contains 

optimal solutions to all subproblems.  

This principle is called Bellman’s Principle of Optimality. 

Notice that the principle of optimality does not say: 

If you have optimal solutions to all subproblems, then you can 

combine them to get an optimal solution. 

 

With respect to our example problem examined above,  
A-C-E-I-L-N  is the optimal solution to the problem of reaching N from A. 

    C-E-I-L-N  is the optimal solution to the problem of reaching N from C. 

        E-I-L-N  is the optimal solution to the problem of reaching N from E. 

           I-L-N  is the optimal solution to the problem of reaching N from I. 

              L-N  is the optimal solution to the problem of reaching N from L. 

Therefore, our problem satisfies the principle of optimality. 

 

Perhaps it is of some value to consider a case where the principle of 

optimality is not satisfied. 

 

Consider a “longest path problem” for Fig. 6.  

 
Fig. 6 

Consider that each arc value represents time and that we want to 

maximize the time it takes us to get from A to D. But we can only 

touch each node once – this means our path can contain no cycles.   

The longest such path from A to D is A-B-C-D.  

 

But what about the longest path from A to B? This is A-C-B.  
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Therefore the principle of optimality is not satisfied for this problem 

since the optimal solution to the problem (longest path from A to D) 

contains a non-optimal solution to a subproblem (longest path from 

A to B). Therefore this problem cannot be solved by DP! 
                                                 

[1] R. Bellman, “On the theory of dynamic programming,” Proc. of the National Academy 

of Sciences, 1952.  

[2] R. Bellman, “Dynamic Programming,” Princeton University Press, Princeton, NJ, 1957.  


