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origins in Kron's equivalent circuits, and owes its utility to the
modern computer. Perhaps some day the authors or their successors
will extend the circuits to include the effects of harmonics, but I
agree that such a refinement is not required now.
The theory presented in the paper appears to me to be entirely

sound, but I shall not attempt to understand it.
Since this new motor is truly unique and should have a wide

use, it ought to be given a distinctive name. It is the custom in
scientific circles to give the name of its discoverer to every new
theory or device, so there is good precedent for naming this motor
after one of those who pioneered it. The present authors both have
three-syllable names, so these are not really suitable. Since C. A.
Nickle was the first to propose a single-phase motor with a stepped
air gap, and as I believe he was granted a patent on it, I suggest that
this new motor be named the "Nickle Motor." This is quite eupho-
nius, and it has the advantage of connoting a very low-cost device,
which the new design certainly promises to be.

Doran D. Hershberger and John L. Oldenkamp: We wish to thank
Mr. Alger for his kind remarks on our analysis of the motor. As
was pointed out by Mr. Alger, the equivalent circuit of this single-
winding motor can be obtained from Kron's generalized equivalent
circuit.
The initial development and analysis was done without the

analyses that had been contributed by others. The final analysis
used the techniques attributed to Kron as outlined in Alger's The
Nature of Polyphase Induction Machines.
The reference to the work of C. A. Nickle is interesting and is

appreciated. Unfortunately, no written records of Nickle's ac-
complishments could be found: it is believed that he increased the
air gap of the unshaded section of a shaded-pole hysteresis motor to
equalize the flux densities of the shaded and unshaded sections.

Manuscript received March 14, 1968.
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Abstract-A practical method is given for solving the power flow
problem with control variables such as real and reactive power and
transformer ratios automatically adjusted to minimize instantaneous
costs or losses. The solution is feasible with respect to constraints
on control variables and dependent variables such as load voltages,
reactive sources, and tie line power angles. The method is based on

power flow solution by Newton's method, a gradient adjustment
algorithm for obtaining the minimum and penalty functions to ac-

count for dependent constraints. A test program solves problems of
500 nodes. Only a small extension of the power flow program is
required to implement the method.

I. INTRODUCTION

T HE SOLUTION of power flow problems on digital com-
puters has become standard practice. Among the input data

which the user must specify are parameter values based on judg-
ment (e.g., transformer tap settings). More elaborate programs
adjust some of these control parameters in accordance with local
criteria (e.g., maintaining a certain voltage magnitude by adjust-
ing a transformer tap). The ultimate goal would be to adjust the
conitrol parameters in accordance with one global criterion in-
stead of several local criteria. This may be done by defining an
objective and finding its optimum (minimum or maximum);
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this is the problem of static optimization of a scalar objective
function (also called cost function). Two cases are treated: 1)
optimal real and reactive power flow (objective function = in-
stantaneous operating costs, solution = exact economic dispatch)
and 2) optimal reactive power flow (objective function = total
system losses, solution = minimum losses).
The optimal real power flow has been solved with approximate

loss formulas and more accurate methods have been proposed
[2]-[5]. Approximate methods also exist for the optimal reactive
power flow [6]-[9]. Recently attempts have been made to solve
the optimal real and/or reactive power flow exactly [10], [11].
The general problem of optimal power flow subject to equality
and inequality constraints was formulated in 1962 [12], and later
extended [13]. Because very fast and accurate methods of power
flow solution have evolved, it is now possible to solve the optimal
power flow efficiently for large practical systems.

This paper reports progress resulting from a joint research
effort by the Bonneville Power Administration (BPA) and Stan-
ford Research Institute [101. The approach consists of the solu-
tion of the power flow by Newton's method and the optimal ad-
justment of control parameters by the gradient method. Recently
it has come to the authors attention that a very similar approach
has been successfully used in the U.S.S.R. [14]-[16].
The ideas are developed step by step, starting with the solution

of a feasible (nonoptimal) power flow, then the solution of an
unconstrained optimal power flow, and finally the introduction
of inequality constraints, first on control parameters and then on
dependent variables. Matrices and vectors are distinguished
from scalars by using brackets; vectors with the superscript T
(for transpose) are rows; without T they are columns.
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II. FEASIBLE POWER FLOW SOLUTION

The power flow in a system of N nodes obeys N complex nodal
equations:

N

Vke -kk (Gkm + jBk.)V eg'm = PNETk - .QNETk,
m=1

k =1, ,N (1)

where

Vk voltage magnitude at node k
0k voltage angle at node k

Gkm + jBkm element of nodal admittance matrix
PNETk, QNETk net real and reactive power entering node k.

Using the notation Pk(V, 0) - JQk(V, 0) for the left-hand side, (1)
can be written as 2N real equations:

P(V, 0) - PNETk = 0, k = 1, N (2)
Qk (V, 0)- QNETk = 0, k = 1,, N. (3)

Each node is characterized by four variables, PNETk, QNETk, Vk,
0k, of which two are specified and the other two must be found.
Depending upon which variables are specified (note that control
parameters are regarded as specified in the power flow solution),
the nodes can be divided into three types:

1) slack node with V, 0 specified and PNET, QNET unknown (for
convenience this shall always be node 1, also 01 = 0 as reference),

2) P, Q-nodes with PNET, QNET specified and V, 0 unknown,
3) P, V-nodes with PNET, V specified and QNET, 0 unknown.

Unknown values PNET, QNET are found directly from (2) and (3).
Therefore, the basic problem is to find the unknown voltage mag-
nitudes V and angles 0. Let [x ] be the vector of all unknown V and
0, and [y ] the vector of all specified variables,

V )on each Vii on

=job, Q-node] i slack node
[x] =IO, -od Y= PNET} on each .(4)

on each QNET P, Q-node .(4

0 P, V-node PNET on eaeh
[x] ~~~~j[g = NE onodeah

Newton's method (polar form) is used to find [x]. The al-
gorithm is as follows [1]: first select a number of equations from
(2) and (3) equal to the number of unknowns in [x] to form the
vector [g].

eq. (2) for each

[g(x, y) I eq.(3) j P, Q-node (5)

Ieq (2)lfor each
JP, V-nodej

Successive improvements for [x],
[X(h+l)] = [X(h)] + [AX]

are then found by solving the set of linear equations
g (x(h), y)]AX = g (X(h), y)] (6)

where [bg/bx] is the Jacobian matrix. It is square with the ith
row being the partial derivatives of the ith equation in (5) with
respect to all unknowns in [x ]. The iteration starts with an initial

guess [x(°)]. Newton's method has been developed into a very
fast algorithm by exploiting the sparsity of the Jacobian matrix
through optimally ordered elimination and compressed storage
schemes [1].

III. OPTIMAL POWER FLOW WITHOUT INEQUALITY CONSTRAINTS

When real or reactive power is controllable, the values PNET,
QNET entering the power flow solution must be separated:

PNETI = PGA - PLk, QNETA = QGk- QLk
where

PGF, QGk controllable part of real and reactive power entering
node k (sign positive when entering, because this part
is usually generation)

PLk, QLk fixed part of real and reactive power leaving node k
(sign positive when leaving, because this part is usually
load).

The objective function f to be minimized, subject to the equality
constraints (5), can now be defined.'

f = Z Ki(PGi)
(sum over all controllable power sources) in the case of optimal
real and reactive power flow, where Ki is the production cost for
the power PGi. The slack node must be included in the sum with
PG1-= P(V, 0) + PLI (if no costs were associated with the power
at the slack node, the minimization process would try to assign
all power to the slack node).

f = PF(V, 0)
in the case of optimal reactive power flow. Sinee PNET2, **,
PNETN are fixed in this case, minimizing the real power P, is
identical with minimizing total system losses.

f = any other objective function which one may
wish to define.

Assume for the moment that some of the independelnt variables
in [y] can be varied disregarding inequality constraints. These
adjustable variables are called control parameters. Vector [y] can
then be partitioned into a vector [u] of control parameters and a
vector [p] of fixed parameters,

[y] Lul

Control parameters may be voltage magnitudes on P, V-nodes,
transformer tap ratios, real power PG available for economic
dispatch, etc. Fig. 1(b) shows the effect of control parameters V,
and V2 on the objective function (f = total system losses) for the
simple network of Fig. l(a) (two generators feeding one load).
The plotted contours are the locus of constantf; thus V1 = 0.915,
V2 = 0.95 produces the same losses of 20MW as VI = 1.14, V2 =
1.05. In the optimal power flow we seek that set of control param-
eters for which f takes on its minimum value. (Fig. 1 (b) has no
minimum for unconstrained control parameters.)
Using the classical optimization method of Lagrangian multi-

pliers [17], the minimum of the function f, with [u] as indepen-
dent variables,

min f(x, u)
[X]

(7)

I Since (5) does not include the equality constraints for the slack
node, the real power at the slack node must be treated as a function
P,(V, 0).
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Fig. 1. (a) Three-node system (VI, V2 are control parameters).

(b) Power flow solutions in V1, V2 space (contours = total system
losses in MW; V1, V2 in per unit).

subject to equality constraints (5),

[g(x, u, p)J = 0 (8)
is found by introducing as many auxiliary variables Xi as there are
equality constraints in (8) and minimizing the unconstrained
Lagrangian function

£(x, u, p) = f(x, u) + [X]I. [g(x, u, p)]. (9)

The Xi in [X] are called Lagrangian multipliers. From (9) follows
the set of necessary conditions for a minimum:

T

+ [XI = ° (10)

[o] [u + [aj IX]I = ° I1

[8aX]=[g(x,u,P)] 0

which is again (8). Note that (10) contains the transpose of the
Jacobian matrix of the power flow solution (6) by Newton's
method. For any feasible, but not yet optimal, power flow solu-
tion, (8) is satisfied and [X] can be obtained from (10). Then only
[a2/au] # 0 in (11). This vector has an important meaning;
it is the gradient vector [Vf], which is orthogonal to the contours
of constant values of objective function (see Fig. 1(b) and Ap-
pendix I).

Equations (10), (11), and (8) are nonlinear and can only be
solved by iteration. The simplest iteration scheme is the method
of steepest descent (also called gradient method). The basic idea
[18] is to move from one feasible solution point fin the direction
of steepest descent (negative gradient) to a new feasible solution
point with a lower value for the objective function (move to 1 in
Fig. 1(b) starting from VI = 0.95, V2 = 0.95). By repeating
these moves in the direction of the negative gradient, the mini-
mum will eventually be reached [moves to 2, 3, 4, * * * in Fig. 1 (b) ].
The solution algorithm for the gradient method is as follows.

1) Assume a set of control parameters [u].
2) Find a feasible power flow solution by Newton's method.

This yields the Jacobian matrix for the solution point in factored
form (upper and lower triangular matrices), which is computa-
tionally equivalent to the inverse or transposed inverse [19].

3) Solve (10) for [X],

I[A] = - [-] . F8f (12)

This only amounts to one repeat solution of a linear system, for
which the factored inverse is already available from step 2).

4) Insert [X] from (12) into (11) and compute the gradient

[Vf] = [au1 + [aU] *[xI (13)

The gradient [Vf] measures the sensitivity of the objective func-
tion with respect to changes in [u], suLbject to the equality con-
straints (8). Note that [bf/bu] by itself does not give any helpful
information because it ignores the equality constraints (8) of the
power flow.

5) If [Vf] is sufficiently small, the minimum has been reached.
6) Otherwise find a new set of control parameters from

[fnew] = [uold ] + [Au] with [Au] = - c [Vf] (14)
and return to step 2).

Steps 1) through 5) are straightforward and pose no computa-
tional problems. In the power flow solution [step 2) ] one factor-
ization of the Jacobian matrix can be saved when returning from
step 6) by using the old Jacobian matrix from the previous adjust-
ment cycle. This is justified when [zAu] is not very large. After a
few cycles, one repeat solution with the old Jacobian matrix
plus one complete solution with a new Jacobian matrix are suffi-
cient to give a new solution point.
The critical part of the algorithm is step 6). Equation (14) is

one of several possible correction formulas (see Section VI).
When (14) is used, much depends on the choice of the factor c.
Too small a value assures convergence but causes too many ad-
justment cycles; too high a value causes oscillations around the
minimum. In the so-called optimum gradient method the adjust-
ment move is made to the lowest possible value of f along the
given direction of the negative gradient (c variable in each cycle).
The moves to 1, 2, 3, 4, ... in Fig. 1 (b) are those of the optimum
gradient method.
The foregoing algorithm is based on the solution of the power

flow by Newton's method. This choice was made because New-
ton's method has proven to be very efficient [1 ]; similar investi-
gations in the U.S.S.R. [14], [16] seem to confirm this choice.
However, the gradient can also be computed when the power
flow is solved by other methods [11].

IV. INEQUALITY CONSTRAINTS ON CONTROL PARAMETERS

In Section III it was assumed that the control parameters [u]
can assume any value. Actually the permissible values are con-
strained:

[U in] < [u] < [Uax ] (15)

(e.g., Vmin < V < Vmax on a P, V-node). These inequality con-
straints on control parameters can easily be handled by assuring
that the adjustment algorithm in (14) does not send any param-
eter beyond its permissible limits. If the correction Aui from (14)
would cause us to exceed one of its limits, u1 is set to the corre-
sponding limit,

1868

Authorized licensed use limited to: Iowa State University. Downloaded on October 23, 2009 at 06:53 from IEEE Xplore.  Restrictions apply. 



DOMMEL AND TINNEY: OPTIMAL POWER FLOW SOLUTIONS

(imax if ujold+ Auj >Umax
new = imin ~ old +U< min (6

Ui < I, if UZ°1 + AUj < U mi (16)
uiold + Au,, otherwise.

Even when a control parameter has reached its limit, its com-
ponent in the gradient vector must still be computed in the fol-
lowing cycles because it might eventually back off from the limit.

In Fig. 1(b) the limit on V2 is reached after the ninth cycle.
In the tenth cycle the adjustment algorithm moves along
the edge V2 = V2rmax into the minimum at V, = 1.163, V2 =
1.200. When the limit of a parameter has been reached, the next
move proceeds along the projection of the negative gradient onto
the constraining equation u, = u,,a, or ui = uimin; it is, there-
fore, called gradient projection technique. Since the projection
is directly known in this case, its application is very simple (this
is not the case for functional inequality constraints).
At the minimum the components (8f/bu1) of [Vf] will be

-f - 0, if ujmin < Ui < U,max
buj

- < 0, if u: = umax (17)

2f> 0, if uj = ulmin
6u1

The Kuhn-Tucker theorem proves that the conditions of (17)
are necessary for a minimum, provided the functions involved are
convex (see [10] and Appendix II).
The ability to handle parameter inequality constraints changes

the usual role of the slack node. By making the voltage magnitude
of the slack node a control parameter varying between Vmin and
Vmax (normally with voltage magnitudes of some other nodes
participating as control parameters) the slack no longer deter-
mines the voltage level throughout the system. Its only role is to
take up that power balance which cannot be scheduled a priori
because of unknown system losses.

Previously it has been shown [10], [20] that the Lagrangian
multipliers and nonzero gradient components have a significant
meaning at the optimum. The Lagrangian multipliers measure
the sensitivity of the objective function with respect to consump-
tion PL, QL or generation PG, QG and hence provide a rational
basis for tariffication. The nonzero gradient components of con-
trol parameters at their limits measure the sensitivity of the
objective function with respect to the limits ?imax or uirrn and
consequently show the price being paid for imposing the limits
or the savings obtainable by relaxing them.

V. FUNCTIONAL INEQUALITY CONSTRAINTS

Besides parameter inequality constraints on [u] there can also
be functional inequality constraints

h(x, u) < 0. (18a)

Upper and lower limits on the dependent variables [x] are a
frequent case of functional constraints,

[Xmin] < [x ] < [Xmax] (18b)

where [x] is a function of [u] (e.g., Vmin < V < Vmax on a P, Q-
node). Fig. 2 shows the functional inequality constraint V3 . 1.0
for the problem of Fig. 1. The end point 5 of the fifth move, from
Fig. 1(b), already lies in the unfeasible region. If the functional
constraints were accounted for by simply terminating the
gradient moves at the constraint boundary, the process would

Fig. 2. Functional constraints.

PENALTY

RIGID LIMIT
I1/11
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XI.xlN X
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Fig. 3. Penalty function.

end at point A. However, the true minimum is at point B (here
the difference in losses between A and B happens to be small;
had point D been reached, the process would stop in D and the
losses would be 20 MW compared with 12.9 MW in B).

Functional constraints are difficult to handle; the method can
become very time consuming or practically impossible [21].
Basically a new direction, different from the negative gradient,
must be found when confronting a functional constraint. It was
proposed elsewhere [101 to linearize the problem when encounter-
ing such a boundary and to use linear programming techniques to
find the new feasible direction. Another possibility is to transform
the problem formulation, so that the difficult functional con-
straints become parameter constraints [21]; this approach is
used in [16] by exchanging variables from [xl into [u] and vice
versa. Another promising approach is the multiple gradient
summation technique [27]. All three methods need the sensi-
tivity matrix (Appendix I), or at least its dominant elements as
an approximation, to relate changes in [u] to changes in [x].
Another approach is the penalty method [211- [231 in which the

objective function is augmented by penalties for functional con-
straint violations. This forces the solution back sufficiently close
to the constraint. The penalty method was chosen for three
reasons.

1) Functional constraints are seldom rigid limits in the strict
mathematical sense but are, rather, soft limits (for instance, V <
1.0 on a P, Q-node really means V should not exceed 1.0 by too
much, and V = 1.01 may still be permissible; the penalty method
produces just such soft limits).

2) The penalty method adds very little to the algorithm, as it
simply amounts to adding terms to [bf/lx] (and also to [af/6u]
if the functional constraint is also a function of [u]).

3) It produces feasible power flow solutions, with the penalties
signaling the trouble spots, where poorly chosen rigid limits would
exclude solutions (e.g., a long unloaded line with PNET2 =-QNET2
= 0 at the receiving end and voltage V1 at the sending end con-
trollable might have V2 > V2m"', even at the lowest setting VI =
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V1min. A rigid limit on V2 excludes a solution, whereas the penalty
method yields a feasible solution).
With the penalty method the objective function f must be re-

placed by

(19)

where a penalty wj is introduced for each violated functional con-

straint. On constraints (18b) the penalty functions used were

{sj(xj -X aX)2 whenever xj > xj ax

WI =

sxj- X3min)2, wheniever xj X,n

(20)

Fig. 3 shows this penalty function, which replaces the rigid limit
by a soft limit. The steeper the penalty function (the higher the
sj) the closer the solution will stay within the rigid limit, but the
worse the convergence will be. An effective method is to start
with a low value for sj and increase it during the optimization
process if the solution exceeds a certain tolerance on the limit.
The introduction of penalties into the objective function closes
the contours (dashed lines in Fig. 2) and the minimum is then
located in an unconstrained space. In the example of Figs. 1 and
2 with V3 < 1.0, a penalty factor S3 = 7.5 leads to point C (V13 =
1.016) and raising the factor to S3 = 75.0 leads to a point prac-

tically identical with B (V3 = 1.0015).
On nodes with reactive power control, often two inequality

constraints must be observed simultaneously,

Vmin < V < Vmax

Qmin < QG < Qmax

(21)

(22)

one of which is a parameter constraint and the other a functional
constraint, depending on whether V or QG is chosen as control
parameter. V was chosen as control parameter (with Q limits
becoming functional constraints) for the following reasons.

1) In the power flow solution by Newton's method (polar
form), only one equation enters for P, V-nodes (V = control
parameter) versus two equations for P, Q-nodes (QG = control
parameter).

2) The limits on V are more severe and thus more important,
because they are physical limitations which cannot be expanded
by technical means (the limits on QG can be expanded by in-
stalling additional reactive or capacitive equipment). As indicated
in the first reason, the choice is influenced by the algorithm used;
in [11] QG was used as control parameter. With V as control
parameter, a violation of constraint (22) is best handled by intro-
ducing a penalty function. Another possibility is a change of the
node type from P, V-node to P, Q-node, with QG becoming a

control parameter; this transformation of the problem formula-
tion is used in [16].

VI. TESTS OF GRADIENT ADJUSTMENT ALGORITHMS

Test programs for the optimal power flow were written by mod-
ifying BPA's existing 500-node power flow program. A final ver-

sion for production purposes is being programmed. Fig. 4 shows
the simplified flow chart and Appendix III gives some computa-
tional details for the program. Various approaches for the critical
adjustment algorithm were tested. The goal was to develop a

method that would reach an acceptable near-optimum as fast as

possible, rather than a method with extremely high accuracy at
the expense of computer time. There is no need to determine the
control parameters more accurately than they can be adjusted
and measured in the actual system. Basically four versions were

tested.

Fig. 4. Simplified flow chart.

1) Second-Order Method Neglecting Interaction

Approximate the objective function (19) by a quadratic func-
tion of [u]. Then the necessary conditions (first derivatives) be-
come a set of linear equations, which can be solved directly for
[Au],

[Au] = - [a ]1 [Vf
-bUi6Uk-

(23)

where [52f/6Ui8UkI is the Hessian matrix of second derivatives. If
f were truly quadratic, (23) would give the final solution; other-
wise, iterations are necessary. Finding the Hessian matrix and
solving the set of linear equation (23) results in considerably more
computer time per cycle than first-order gradient methods based
on (14). It can also fail to converge if the Hessian matrix is not
positive definite [18], where a first-order method might still con-

verge. An approximate second-order method [101 neglects the
off-diagonal elements in the Hessian matrix; this is justified when
the control parameters have no (or little) interaction. In it the
diagonal elements are found from a small exploratory displace-
ment in [u],

b2f ;:change in (3f/8uj)
6u,2 change in ui

(24)

If any element 62f/3u,2 is negative, then the respective control
parameter is left unchanged in that cycle, otherwise,

vu~= __y A __f A
\6Ui2 \buij

(25)

and u,ne, from (16). An example used by Smith and Tong [61
is well suited to illustrate the interaction problem; it is a loop

FROM INPUT
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05 0I;

Fig. 5. Partan with three control parameters; (1) and
(2) are optimum gradient moves, (3) is a tangent
move, (4) is a solution point.
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Fig. 6. Decrease in objective function.

system with the loop assumed open. When the loop is closed, the
method is very successful; the two voltage adjustments seem to
cause two mutually independent effects in the loop, with the total
effect resulting from superposition. The method failed with the
loop open; then the two voltages seem to interact considerably.
The dashed line in Fig. l(b) shows the performance of this
method.

2) Gradient and Optimum Gradient Method

A solution can always be obtained by carefully choosing the
factor c in (14). In the optimum gradient method, the factor c is
chosen so that the minimum along the given direction is located
(see Appendix III and Fig. 1(b)).

3) Method of Parallel Tangents
The gradient moves in Fig. l(b) suggest that a considerable

improvement can be made by moving in the direction of the tan-
gent 0-2 after the first two gradient moves. This method has
been generalized for the n-dimensional case under the name of
Partan [24] (parallel tangents). The particular version best
suited here is called steepest descent Partan in [24]. It performs
well if there are not too many control parameters and if the con-

tours are not too much distorted through the introduction of
penalty functions. Fig. 5 shows the efficient performance of
Partan for a five-node example taken from [11 ] with three control
parameters (optimal reactive power flow with all five voltages as

control parameters, of which two stay at the upper limit Vmax =

1.05, which was used as initial estimate). The first tangent move
would end already close enough to the solution for practical
purposes. It performed equally well on the open-loop system,
Smith and Tong [6], where method 1) failed.

4) illixed ll'ethod
A combination of methods 1) and 2) was finally adopted.

Basically it uses the gradient method with the factor c chosen for
the optimum gradient method or from simpler criteria (experi-
ments are being made to find a satisfactory c without exploratory
moves to save computer time). Whenever a gradient component
changes sign from cycle (h-i) to (h), its parameter is assumed to
be close to the solution and (24) is used with

f Bf >(h-1) { f >(h

buj (26)

provided 62f/bu,2 is positive. All examples used in the tests could
be solved with this method.

Fig. 6 shows the decrease in the objective function for a realistic
system with 328 nodes and 493 branches (80 parameters con-
trollable). Note that most savings are realized in the first few
cycles, which is highly desirable. Terminating the process after
the fourth cycle resulted in a solution time of approximately four
minutes (FORTRAN iv on IBM 7040); the Jacobian matrix was
factored nine times and required 8400 words for its storage. With
better programming the computer time could be reduced at least
50 percent.

VII. FUTURE IMPROVEMENTS

Undoubtedly the methods outlined here can be further im-
proved. Experiments to find the factor c faster in method 4) are
being carried out. So far penalty functions have been used suc-
cessfully to hold voltages V down close to Vmax on P, Q-nodes
and to hold tie line voltage angles close to specified values. More
tests are planned for functional inequality constraints (22) and
others.

Further improvements are possible, but very difficult to im-
plement, through better scaling. A peculiarity of first-order gra-
dient methods is that they are not invariant to scaling [25]. As
an example assume that the contours of f are circles around the
origin,

f (Ul, u2) = U12 + U22

in which case the direction of steepest descent always points to
the origin. If u2 is scaled differently with fZ2 = a - u2, the contours
for the new variables ul, ft2 become ellipses and the direction of
steepest descent generally does not point to the origin anymore.
Fortunately, the scaling problem has not been very serious in the
cases run; the use of per unit quantities seems to establish reason-
able scaling. In this context the second-order method (23) can
be viewed as a gradient method with optimal scaling and rotation
transformation.
Going from first-order to second-order methods (without

neglecting interaction) could improve the convergence, but at a
high price for additional computations. Therefore, it is doubtful
whether the overall computer time would be cut down. If second-
order methods are used, the inverse Hessian matrix could either
be built up iteratively [26] or computed approximately by mak-
ing small exploratory displacements Au1 individually for each
control parameter. In the latter case, it might be possible to use
the same Hessian matrix through all cycles (if f were quadratic,
the Hessian matrix would be constant). Second-order methods
might be useful for on-line control, if the Hessian matrix is almost
constant; it could then be precalculated and used unchanged as
long as no major changes occur in the system.

LOSSES ONLY
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VIII. CONCLUSIONS
It has been shown that Newton's method of power flow solution

can be extended to yield an optimal power flow solution that is
feasible with respect to all relevant inequality constraints. The
main features of the method are a gradient procedure for finding
the optimum and the use of penalty functions to handle func-
tional inequality constraints. A test program that accommodates
problems of 500 nodes has been written for the IBM 7040. De-
pending on the number of control variables, an optimal solution
usually requires from 10 to 20 computations of the Jacobian
matrix. The method is of importance for system planning and
operation. Further improvements are expected.

APPENDIX I

RELATIONSHIP BETWEEN LAGRANGIAN MULTIPLIERS AND
SENSITIVITY MATRIX

An alternate approach in computing the gradient uses a sensi-
tivity matrix instead of Lagrangian multipliers as intermediate
information. By definition the scalar total differential is

df = [Vf] [du] (27)

or with f = f (x, u)

df = [af] [du] + [Ofj [dx] (28)

The dependent vector [dx] in (28) can be expressed as a function
of [du] by expanding (8) into a Taylor series (with first-order
terms only):

[g] [d]x + [a] [du] = 0

or

[dx] = [S] [du]
where

APPENDIX II

KUHN-TUCKER FORMULATION
The optimization problem with inequality constraints for the

control parameters can be stated as

min f(x, u)
[al

subject to equality constraints

[g(x, u, p) I = 0

and subject to inequality constraints

[u ] - [umax I < 0

[Umi] - [u] < 0.

(33)

(34)

(35)
(36)

The Kuhn-Tucker theorem gives the necessary conditions (but
no solution algorithm) for the minimum, assuming convexity for
the functions (33)-(36), as

[Vk] = 0 (gradient with respect to u, x, X) (37)
and

[Amax ] T([U ] - [Umax ]) = 0(exclusion
[min]T'([Umin] _ [u]) = 0 equations).
[,max] > 0, [,min j > 0

(38)

S is the Lagrangian function of (9) with additional terms , to
account for the inequality constraints:

= f(x, u) + [XIT[g(x, u, p)]
+ [Armax]T([U] - [umax]) + [,min]T([Umin] _ [U]) (39)

where [Emax ] and [Amin I are the dual variables associated with the
upper and lower limits; they are auxiliary variables similar to the
Lagrangian multipliers for the equality constraints. If ui reaches
a limit, it will either be uima1 or uimj" and not both (otherwise uj
would be fixed and should be included in [p]); therefore, either
inequality constraint (35) or (36) is active, that is, either Armax or
min exists, but never both. Equation (37) becomes

[S] = [a] (30)

[S] is the sensitivity matrix. By inserting (29) into (28) and com-
paring it with (27), the gradient becomes

[VfI = [a11 + [S]T [.f]. (31)

The amount of work involved in computing [Vf] from (13) and
(31) is basically the same; it is quite different, however, for find-
ing the intermediate information. Computing the Lagrangian
multipliers in (12) amounts to only one repeat solution of a sys-
tem of linear equations, compared withM repeat solutions for the
sensitivity matrix in (30). (M = number of control parameters.)
Therefore, it is better to use the Lagrangian multipliers, provided
the sensitivity matrix is not needed for other purposes (see
Section V).

- To show that [62/buu] in (11) is the gradient [Vf] when
(8) and (10) are satisfied, insert (30) into (31):

[Vf]-=[8af] [ T-1 (32)

This is identical with the expression in (11) after inserting [X]
from (12), so that [6C/au] = [Vf].

[X] [ajJ±[]+ XI=

[a] = [(I] + [a] [X]+ L] = 0

(40)

(41)

where

A,
ii ma if O> 0

IA i AiMin if ltj < O

[x]j 3 [g(X, u,P) ] = 0. (42)

The only difference with the necessary conditions for the un-
constrained minimum of (10), (11), and (8) lies in the additional
[,g] in (41). Comparing (41) with (13) shows that [,iu, computed
from (41) at any feasible (nonoptimal) power flow solution, with
[A] from (40), is identical with the negative gradient. At the
optimum, [sm] must also fulfill the exclusion equations (38), which
say that

= 0, if u,min < u, < u max

P = g max > 0 if uj = uimax
Mi = _,sMin < o if uj = u1min

which is identical with (17) considering that [,u =-[Vf].

1872

Authorized licensed use limited to: Iowa State University. Downloaded on October 23, 2009 at 06:53 from IEEE Xplore.  Restrictions apply. 



DOMMEL AND TINNEY: OPTIMAL POWER FLOW SOLUTIONS1

APPENDIX III

OUTLINE OF THE COMPUTER PROGRAM

The sequence of computations is outlined in the simplified
flow chart of Fig. 4. The part which essentially determines com-
puter time and storage requirements is labeled "compute and
factorize Jacobian matrix." It uses the algorithm from BPA's
power flowprogram [1 ] and differs mainly in the additional storage
of the lower triangular matrix (note that this involves no addi-
tional operations). The nonzero elements of the upper and trans-
posed lower triangular matrices are stored in an interlocked array
(element k-m of upper is followed by element m-k of lower tri-
angular matrix); thus a shift in the starting address by L 1
switches the algorithm from upper to lower triangular matrix
or vice versa. This makes it easy to solve the system of linear
equations either for the Jacobian matrix (in the power flow solu-
tion) or its transpose (in the X computation). This shift is in-
dicated by the switch S.

Power Flow Solution
The set of linear equationls being solved in the power flow loop

(S = 1)is

[H][N I -[--A]] [AP]
Wli I I LV

A I

where [AO], [AV/V] are the vectors of voltage angle and relative
voltage magnitude corrections, and [AP], [AQ] are the vectors of
power residuals with the components

APk = PNETk - Pk(V, 0), AQk = QNETk - Qk(V, 0)

and [H], [N], [J], and [L] are submatrices of the Jacobian
matrix with the elements

aPe(V, 6)
Hkm -

=

(OHtmm
bQk(V, 6)

Jkmn =

-)Om

Nkm - tPk(V, ) Vm
ZdVm

L=Qk(V, 0) Vm.Ltsm = VmT zn

(44)

(43)

Gradient Vector
After (45) has been solved, the gradient with respect to all

control parameters is computed. Its components are as follows.
1) For voltage control:

bf 1 N/
_Vj V± ( m = all nodes

adjacent to and
including i

XpmNmi +
m = P,Q-nodes
adjacent to i

+ E Owi(vi)
c-Vi

2) For power source control:

af aK + E dw(pl
bPGl aPG aPG1

X )Ki +6Wj(PG0)
aPGi 6PGi ZPGi

XQmLmt)

(46)

(47)

3) For transformer tap control:

bf 1Xi = - (a NIVf + biHlk + akNkl + bkHki)
btik tik

-)Wj(tik)+ 2Vk2(bkBik - akGik) + E (48)
C)k

where

Jz, if i = 1 (slack node)
a

Xpi otherwise
J=XQi, if i is a P, Q-node
I0, otherwise

analogous for ak, bk

Gik + jBik = -ti yik

tik transformer turns ratio.

In (48) the transformer is assumed to enter the nodal admittance
matrix with

Lagrangian Multipliers
Once the power flow is accurate enough, S = 2 switches the

algorithm over to the solution of

rbW.?(0)[HI~N T1[p1 - Li~i- [ 6

[ [J][l][ [XQ] [N j]] (45)----

The penalty terms wj in (45) and hereafter enter only if the ob-
jective function has been augmented with penalty functions
which depend on the variables indicated by the partial derivative.
[XpI and [XQI are subvectors of the Lagrangian multipliers asso-
ciated with real and reactive power equality constraints, respec-
tively, and

[Hi] - [ WP1(VF 0)] [N11= [P(v )V6

6K, in the case of optimal real
bPc,, and reactive power flow

1.0 in the case of optimal reactive
power flow.

ith
column

ith rowY[
kth rowL-tRYw

kth
column
-titYg]
t,k2y,t

where Yi is constant (if Yi is taken as a function of ti, then (48)
must be modified). Changing transformer tap settings poses no
problem since the Jacobian matrix is recalculated anyhow. A
gradient component for phase shifting transformer control
could be computed similarly.

Feasible Direction
With the gradient components from (46), (47), (48) or any

other type of control parameter, the feasible direction of steepest
descent [r] is formed with

t0, if f< 0 and u, = utax
if-
uadj= ii

- if bf > O and uo = uwmin

f otherwise.
au;

(49)
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Is fo
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c II

CM,N CI

Fig. 7. Objective function along given direction.

Then the adjustments in this direction follow from

Au1= c-ri. (50)

Optimum Gradient Method

The objective function f of (19) becomes a function of the
scalar c only when the control parameters are moved in the direc-
tion of [r]. Let f = f(c) be approximated by a parabola (Fig. 7).
Then cmi,, for the minimum of f can be found from three values.
One value fo is already known and a second value bf/bc at c = 0
is readily calculated. Since by definition

Af = f(c)-fo = f Auj

bf/bc at c = 0 becomes

(b)c=o= Eri. (51)

A third value fi is found from an exploratory move with a guessed
c = ci (only power flow loop with S = 1 is involved). The final
move is then made from ci to cmin, where the, gradient will be cal-
culated anew for the next adjustment cycle. Some precautions are
necessary because the actual curve differs from a parabola.

Instead of locating the minimum by an exploratory move, one
could also construct the parabola solely from the information at
the specific solution point (c = 0). Here one minimizes 2 with re-
spect to the scalar c

62 6f FbqlgT
- =- + - [= 0. (52)bec bc Lbci

This is an equation for cmin whose value can be found by inserting
[uflew] = [uold] + c[r]. If f(c) is assumed to be a parabola,
the second and higher order termrs for cmin are neglected in
evaluating (52). This theoretical parabola was found to be less
satisfactory than the experimental parabola.
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Discussion

A.M. Sasson (Imperial College of Science and Technology, London
England): The authors have presented an important contribution
in the application of nonlinear optimization techniques to the load
flow problem. The possibility of extending the techniques to other
fields certainly should be of importance to a wide number of current
investigators.

Manuscript received February 15, 1968.
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The problem solved by the authors is the minimization of f(x, u)
subject to equality constraints, g(x, u, p) 0= , and inequality param-
eter and functional constraints. The recommended process is to
satisfy the equality constraints by Newton's method, followed by
-the direct calculation of the Lagrangian multipliers and the min-
imization of the penalized objective function with respect to the
control parameters. As the new values of the control parameters
violate the equality constraints, the process has to be repeated
until no further improvements are obtained. The comments of the
authors are sought on the advantages or disadvantages of adding the
equality constraints as penalty terms to the objective function.
If this is done, the process would be reduced to the initial satisfaction
of equality constraints by Newton's method to obtain a feasible
nonoptimal starting point, followed by a nminimization process
which would require several steps, but which will always be approx-
imately feasible. The gradient vector wouldi have more terms as
both x and u variables would be present.
Would the authors please clarify if the slack node is kept as voltage

angle reference when its magnitude is a control parameter?

J. Peschon, J. C. Kaltenbach, and L. Hajdu (Stanford Research
Institute, Menlo Park, Calif.): We are pleased to discuss this paper,
since we were cooperating with the Bonneville Power Administration
during the early phases of problem definition and search for practical
computational methods. Being thus aware of the numerous and
difficult problems the authors had to face before they accomplished
their main goal-a reliable and efficient computer program capable
of solving very high-dimensional power flow optimizations-we
would like to congratulate them most heartily for their effort and to
emphasize some other notable contributions contained in their
paper.
They have introduced the notation

g(X, u) = 0

to describe the power flow equations, and they have identified the
dependent variables x and the independent or control variables u.
We are confident that this efficient notation will be retained by
power system engineers, since it points out known facts that would
be difficult to recognize with the conventional power flow notation.
A good illustration of this statement is contained in (10), from

which it becomes clear that the computation of X requires an in-
version of the transposed Jacobian matrix. Since the inversion of the
Jacobian matrix has already been performed in the power flow
solution, this computation is trivial.
The authors give a detailed account, substantiated by experi-

mental results of several gradient algorithms: second order without
interaction, optimum gradient, and parallel tangents. Recognizing
the fact that efficient gradient algorithms remain an art rather than
a science, to be applied individually to each optimization.problem,
they have rendered a considerable service to the industry by demon-
strating that the mixed method of second-order gradients and
optimum gradients provides a good balance between speed of con-
vergence and reliability of convergence.

Finally, they have shown that the penalty function method to
account for inequality constraints on the dependent variables works
well for the problem of power flow optimization. This again repre-
sents a considerable service to the industry, since penalty function
methods sometimes work and sometimes do not. This fact can only
be established experimentally, sometimes after months of program-
ming agony.
To summarize these main points, we state that the authors have

developed an efficient optimization method that can be implemented
fairly readily once a good power flow program exists. They have
shown, by experimentation and successive elimination of alternate
gradient methods, that theirs represents the best compromise.
For the problem stated, all of the technical and economic factors
are taken into account, including the presence of variable ratio
transformers.

Vf (o)tA(

1.00

0.90

t f

Fig. 8. Variation of the gradient Vf with changes Au
in the vicinity of the original point.

Some may argue at this point that the power flow optimization
problem stated is incomplete in the sense that certain important
economical and technical factors are omitted, notably system reli-
ability and vulnerability, cost of producing power in a mixed hydro-
thermal system or a system containing pumped storage, cost of
thermal plant start up, and others. Their argument is correct but
incomplete because the solution of a well-defined partial problem
helps greatly toward the solution of an ill-defined or presently un-
solvable global problem. A specific illustration of this statement is
the economic optimization of mixed hydrothermal systems; once
the value Xi(t) of power at the various nodes i of the system is known
at various times t, the scheduling of hydroelectric production can
be stated as a mathematical optimization problem, and solution
methods can be developed. This fact was pointed out on the basis
of intuitive considerations [28], it has also been demonstrated
rigorously in the field of decomposition theory [291 where it is shown
that the Lagrangian variables X are interface variables capable of
leading to a global problem solution by a sequence of subproblem
optimizations, of which power flow optimization is one.

After these general comments, we would like to make a few specific
remarks concerning the optimization procedure discussed.
The Hessian matrix [32f/bui bUj] in (23) can be expressed exp'icitly

in terms of the model equationsf and g as follows [30]:

]j = 2uu + ST£xxS + 2ST£Xubuj bUj (53)

where the matrices 2u, rxz, and 2x, are the second partials of the
function £ in (9), and where the sensitivity matrix S is defined
in (29). We wonder if the authors could comment on the difficulties
of computing the elements of this matrix rather than obtaining its
diagonal terms by exploration. Knowledge of this (and related
second derivatives) is not only required by the theory of second-order
gradients but is also highly desirable for determining the sensitivity
properties of the cost function f with respect to sensing, telemetry,
computation, and network model inaccuracies [30].
A closed-form algorithm for the optimum gradient may usefully

supplement the experimental approaches summarized in (51) and
(52). It proceeds as follows [31].
Let

Af = A Au + 1/2 AuTB Au (54)
be the variation of cost with respect to changes Au in the vicinity
of the nominal point under discussion. The row vector A, of course,
is the gradient Vf of (13), and the symmetric matrix B is the Hessian
matrix of (23). From (54), the gradient Vf(Au) can be expressed
(see Fig. 8) in terms of Au as

Vf(Au) = A + AUTB. (55)

Since the direction Au is chosen along the original gradient Vf(O) =

A as

Au = -cAT (56)

it follows that

Vf(c) = A - cAB. (57)
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The gradient directions Vf(0) and Vf(c) become perpendicular for
Cmin when the scalar product

Vf(c)Vf(O) = 0 (58)

that is, when

AAT'
c = Cmin-ABA (59)

In Fig. 8, the optimum gradient method moves along the original
gradient until the new gradient Vf(cmin) and the original gradient are
perpendicular, at which point no further cost reduction can be
obtained along the original gradient direction.

Unlike the second-order adjustment, (23), the closed-form applica-
tion of the optimum gradient method does not require an inversion
of the Hessian matrix B. This development was given for the case
of no constraints in control u: if a constraint of the type ui < Uimax
or ui > Uimin has been encountered, the corresponding component
of the gradient vector A is made zero, as is done in (49).
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H. W. Dommel and W. F. Tinney: The authors are grateful for the
excellent discussions which supplement the paper and raise questions
which should stimulate further work in this direction.
Mr. Sasson asks about advantages or disadvantages in treating

the power flow equality constraints as additional penalty terms
rather than solving them directly. Since BPA's power flow program
is very fast (about 11 seconds per Newton iteration for a 500-node
problem on the IBM 7040) there was little incentive in this direction.
After the first feasible solution in about three Newton iterations,
one or two iterations usually suffice for another feasible solution
with readjusted control parameters. Our experience with penalty
terms for functional inequality constraints indicates that penalty
terms usually distort the hypercontours in the state space and thus
slow down the convergence. This has been particularly true with the
method of parallel tangents. Therefore, it appears that one should
use penalty terms only where absolutely necessary. However, this
is not conclusive and Mr. Sasson's idea of treating the power flow
equations as penalty terms is interesting enough to warrant further
investigation. It might be a good approach in applications where not
too much accuracy is needed for the power flow. Mr. Sasson is

Manuscript received March 14, 1968.

correct in assuming that the slack node is kept as voltage angle
reference when its magnitude is a control parameter.
The authors fully agree with Messrs. Peschon, Kaltenbach, and

Hajdu that the solution of a well-defined partial problem, here
static optimization, is a prerequisite for attempts to solve global
problems and welcome their comments about the significance of the
values Xi(t) as interface variables.
The Hessian matrix in (53) is extremely difficult to compute for

high-dimensional problems. In the first place, the derivatives
SCuu, 2xx, 2xu involve three-dimensional arrays, e.g., in

wxx [/2x + [X] T [0'
where [, 2gqX2 Iis a three-dimensional matrix. This in itself is not
the main obstacle, however, since these three-dimensional matrices
are very sparse. This sparsity could probably be increased by
rewriting the power flow equations in the form

N PNETk - jQNETk 0
Z: (Gkm + jBkm)VmeJOm - V=eOk

and applying Newton's method to its real and imaginary part,
with rectangular, instead of polar, coordinates. Then most of the
first derivatives would be constants [1] and, thus, the respective
second derivatives would vanish. The computational difficulty lies in
the sensitivity matrix [S]. To see the implications for the realistic
system of Fig. 6 with 328 nodes, let 50 of the 80 control parameters
be voltage magnitudes, and 30 be transformer tap settings. Then the
sensitivity matrix would have 48 400 entries [605 X 80, where 605
reflects 327 P-equations (2) and 328 - 50 Q-equations (3)], which is
far beyond the capability of our present computer. Aside from the
severe storage requirements, which could be eased by storing and
using dominant elements only, 80 repeat solutions would have to be
performed (Appendix I). The computer time for this calculation
would roughly be equivalent to ten adjustment cycles in the present
method. Since about five cycles were enough for a satisfactory
solution of this problem, the criterion of total computer time speaks
for the present method. These difficulties in computing the Hessian
matrix also make the closed-form algorithm derived in (54)-(59)
impractical in spite of its theoretical elegance.
An alternate second-order method has been proposed by W. S.

Meyer [32]. In his suggested approach, Newton's method is applied
to the necessary conditions, (10), (11), and (8), with [x], [u] and
[X] being simultaneous variables. The convergence behavior would
be quadratic, and sparsity could be exploited. No moves from one to
another feasible solution would have to be made since the power
flow would not be solved until the very end of the entire optimization
process.
The authors believe that their method has been proved to be

practical for realistically large power systems. Improvements can
be expected, of course, as more workers become interested in the
optimal power flow problem, which embraces the entire constrained
static optimization of all controllable power system parameters
whether the application be economic dispatch, system planning, or
something else.
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