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Module PE.PAS.U22.5 
Composite system reliability 

U22.1 Introduction 

We briefly introduced composite system reliability in module U17, 

(also known as HL-II or G&T adequacy analysis), where we 

identified two attributes that characterize most of the approaches 

developed to date. These attributes are: 

• Method of representing stochastic nature of the operating 

conditions: By “operating conditions,” we are referring to the 

basecase network configuration (topology and unit 

commitment) together with the loading and dispatch. The 

methods include nonsequential and sequential enumeration. 

• Method of representing stochastic nature of contingencies: The 

methods include contingency enumeration and Monte Carlo.  

These methods are summarized in Table U22.1a. 

Table U22.1a: HL-II Evaluation approaches 

Contingency 

selection 

Operating Conditions 

Non-sequential Sequential 

Enumeration Non-sequential, with 

contingency 

enumeration 

Sequential, with 

contingency 

enumeration 

Monte-Carlo Non-sequential, with 

Monte-Carlo 

contingency 

selection 

Sequential, with 

Monte-Carlo 

contingency 

selection 

GE-MARS simulates operating conditions sequentially; it selects 

contingencies via Monte Carlo (Table U21.1a lower right-hand cell). 

 

Updated: 2/27/2024 
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We also provided a generic algorithm for composite system 

reliability analysis that applies independent of the particular 

approach taken. We repeat this algorithm here, in Fig. U22.1. 

 

 

Use linear programming 

to obtain minimum gen 

redispatch cost, reactive 

support cost, or load 

curtailment. 

No 
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No 

Yes 
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SELECT OPERATING CONDITIONS 

SELECT CONTINGENCY 

SYSTEM PROBLEMS? 

SIMULATE REMEDIAL ACTIONS 

SYSTEM PROBLEMS? 

COMPUTE LOAD INTERRUPTION 

FORM RELIABILITY INDEX 

CONTINGENCIES DONE? 

OPERATING CONDITIONS DONE? 

ACCUMULATE: 

 RELIABILITY INDICES x LOAD PROBABILITIES 

Sequentially or 

nonsequentially 

State enumeration 

or Monte-Carlo 

 

Fig. U22.1: Generic HL-II Evaluation Algorithm 

In this module, we begin in Section U22.2 by introducing linear 

sensitivities which are useful in decreasing computations for 
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composite reliability analysis. In Section U22.3, we summarize the 

common contingency enumeration approaches. In Section U22.4, 

we describe a remedial action algorithm for simulating operator 

action for overload relief. Section U22.5 describes how to 

determine bounds on the reliability indices.  

The approaches are applicable independent of whether the 

operating conditions are represented sequentially or 

nonsequentially. All of the developments in this module focus on 

line overload problems. Similar algorithms may be developed for 

low voltage and voltage instability. 

U22.2 Linear sensitivities 

There are 2 basic linear sensitivities that we will use. Generation 

shift factors provide us with a fast method of computing changes to 

circuit flows for changes in real power bus injection. Line outage 

distribution factors provide a fast method of computing changes to 

circuit flows when circuits are removed from service. 

U22.2.1 DC power flow 

The so-called DC power flow is an approximation of the standard 

AC power flow equations based on the assumptions that circuit 

resistance is negligible, all bus voltages have magnitudes of 1.0 pu, 

and the angular separation across a circuit is small enough so that 

cosjk1, sinjkjk when jk is measured in radians. With these 

approximations, and assuming an N bus power system, it is 

possible to show that P=B’θ where P is the vector of real power 

injections at N-1 buses, θ is the vector of angles at N-1 buses, and 

B’ is the “B-prime” version of the bus admittance matrix for the 

network being analyzed. Thus, given the network topology 

(enabling formation of B’) and the bus injections (enabling 

formation of P), it is possible to compute the bus angles θ from one 

application of LU decomposition to the linear set of equations 

represented by P=B’θ. Dimensions of these are:  

for P, N-1×1; for θ, N-1×1; and for B’; N-1× N-1 
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The B’ matrix may be formed from the Y-bus in the following 

fashion. Note: For an inductive circuit, the susceptance b is 

positive based on a defined admittance expression of y=g-jb. 

1. Eliminate real part: Take the imaginary part of all elements in 

the Y-bus, i.e., for each element, set the real part to 0 and 

remove the “j” from the imaginary part. This results in matrix B. 

2. Remove shunt elements: Replace diagonal element Bkk with the 

sum of the non-diagonal elements in row k.  

3. Negate: Multiply all elements by -1. 

4. Remove slack bus: Remove row k and column k for any k. 

 

For example, below is the Y-bus and the B’ matrix for a network 

having no resistance and no shunt elements, where bus 1 is 

assumed as the slack bus. 
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Although the DC power flow equation P=B’θ provides the ability 

to compute the bus angles, it does not directly provide the line 

flows. A systematic method of computing the line flows is: 

= )( ADPB   

where: 

▪ PB is the vector of branch flows. It has dimension of M×1, 

where M is the number of branches in the network. Branches 

are ordered arbitrarily, but whatever order is chosen must also 

be used in D and A. 
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▪ θ is (as before) the vector of nodal phase angles for buses 

2,…N, where N is the number of buses in the network. 

▪ D is an M×M matrix having non-diagonal elements of zeros; the 

diagonal element in position row k, column k contains the 

negative of the susceptance of the kth branch. 

▪ A is the M×N-1 node-arc incidence matrix. It is also called the 

adjacency matrix, or the connection matrix. Its development 

requires a few comments. 

 

Development of the node-arc incidence matrix A: 

 

This matrix is well known in any discipline that has reason to 

structure its problems using a network of nodes and “arcs” (or 

branches or edges). Any type of transportation engineering is 

typical of such a discipline.  

 

The node-arc incidence matrix contains a number of rows equal to 

the number of arcs and a number of columns equal to the number 

of nodes.  

 

Element (k,j) of A is 1 if the kth branch begins at node j, -1 if the 

kth branch terminates at node j, and 0 otherwise. 

 

A branch is said to “begin” at node j if the power flowing across 

branch k is defined positive for a direction from node j to the other 

node. 

 

A branch is said to “terminate” at node j if the power flowing 

across branch k is defined positive for a direction to node j from 

the other node. Below is an illustration which is used in the LP-

OPF example given in Appendix 1. 
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 A   (5 rows because 5 branches; 4 columns because 4 buses.) 

 

Note that, for DC power flow calculations, i.e., when computing  

'BP =        

= )( ADPB ,     

matrix A is of dimension M×N-1, where M is number of branches 

and N is number of buses. Thus, it has only N-1 columns. This is 

because we do not form a column for the reference bus, in order to 

conform to the vector θ, which is of dimension (N-1)×1. This 

works because the angle being excluded, θ1, is zero.  

 

A comprehensive example in Appendix 1 illustrates how to 

develop PB, D, and A for the LP-OPF (in which case we use an 

M×N dimensional matrix A). 

U22.2.2 Generation shift factors 

The generation shift factor Ck,j provides the change in flow on 

circuit k for a unit change in injection at bus j, i.e.,  

Reallocation
Policy

k
k, j

j

ΔP
C =

ΔP
    (U22.1) 
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It is assumed that the change in injection at bus j is compensated 

by a defined “reallocation policy,” the simplest of which is to make 

an equal and opposite change in injection at a designated swing 

bus. An expression for obtaining the generation shift factors is 

derived in Appendix 2 (where Ck,j is denoted as tb,k). 

U22.2.3 Line outage distribution factors 

The line outage distribution factor dk,j, provides the change in flow 

on circuit k, denoted by fk, due to outage of circuit j having flow 
0

jf , and is given by 

0,

j

k

jk
f

f
d


=

    (U22.2) 

The development of the generation shift factor and the line outage 

distribution factor are based on the DC power flow approximation 

and are given in [1]. 

Reference [5] shows how to include ramp rates into the above 

sensitivity factors. 

An expression for obtaining line outage distribution factors is 

derived in Appendix 3. 

U22.3 Contingency enumeration 

The simplest approach to contingency selection is to assess all 

contingencies; in this approach, one needs only to develop an 

appropriate scheme to enumerate them so that none are missed. 

This approach is, however, computationally expensive, except for 

small systems.  

A second approach is to simply limit the contingencies. Here, one 

can think of the following methods: 

• Use a list: Provide a contingency list that prescribes exactly the 

contingencies of interest. This approach has merit in some cases 

where study objectives so dictate. 
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• Limit the order: For example, we may require analysis for all N-

1 contingencies, or we may go one deeper and require analysis 

for all N-1 and N-2 contingencies. The problem with this 

approach is that it may spend a great deal of computation on 

contingencies that have little effect on the resulting indices, or, 

on the other hand, it may miss some higher-order contingencies 

that do significantly contribute to the reliability indices. 

• Limit the probability: Here, one analyzes all contingencies for 

which their probability exceeds a certain threshold. This is 

slightly more refined than limiting the order, and it is subject to 

the same problems. 

• Based on severity: The principle here is to avoid analyzing 

contingencies that do not result in a problem. Some type of 

screening approach is normally involved, using either the DC 

load flow or the linear sensitivities. It is convenient to also 

associate with each contingency k screened a performance index 

PIk given by: 

n
N

j j

j

k

b

P

P
PI 

= 










=

1 max,
   (U22.3) 

where n is positive, even, and relatively large (e.g., n=10). This 

means that any individual term in the summation of (U22.3), 

[Pj/Pj,max]n, will be very small if Pj<Pj,max and very large if 

Pj>Pj,max. Thus, PIk is guaranteed to be at least 1.0 if there is 

even one overload following contingency k. More important, 

PIk is a very good metric for comparing the severity of one 

contingency against another. 

The so-called wind-chime scheme [2,3] combines one of the first 

three approaches with the last approach. In the wind-chime 

scheme, two sets of contingencies are selected – the primary set 

and the secondary set. These two sets need not be different and in 

fact, most often, they are the same. For purposes of generality, 
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however, we will assume in our analysis that they are different. 

Any of the first three contingency selection methods may be used 

to make these selections. 

Then, each set of contingencies is screened, and the performance 

indicator PIk is computed for each contingency in each set. Then 

the contingencies are ranked from most severe to least severe. 

• Denote the primary contingencies as P1, P2, …, with P1 more 

severe than P2. 

• Denote the secondary contingencies as S1, S2, …, with S1 more 

severe than S2. 

Then N-2 contingencies (P1, S) S=S1, …, are analyzed until we 

find three consecutive contingencies with no violation.  

Then N-2 contingencies (P2, S), S=S1, …, are analyzed until we 

find three consecutive contingencies with no violation. 

And we continue analyzing each set of N-2 contingencies (P,S), 

with primary contingency P and secondary contingency S=S1,…, 

until we have three consecutive sets of contingencies            

(PN,S), (PN+1,S), (PN+2,S), S=S1, S2, S3, with no violation. The 

algorithm stops at this point.  

Fig. U22.2 illustrates the windchime algorithm [4]; we observe that  

• for P3, we stop testing secondary contingencies after S8; 

• for P4, we stop testing secondary contingencies after S8; 

• for P5, we stop testing secondary contingencies after S4; 

• for P6, we stop testing secondary contingencies after S5; 

• for P7, we stop testing secondary contingencies after S3; 

• for P8, we stop testing secondary contingencies after S3; 

• for P9, we stop testing secondary contingencies after S3; 

• Because we had three consecutive no-violation primary 

contingencies in a row (P7, P8, P9), we are done. 

The identified violating contingencies are the ones of concern. In 

Fig U22.2, it is the lavender colored ones; we performed 56 tests 

(green & lavender) out of a possible 132 tests to find 24 violations. 
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Fig. U22.2: Illustration of the windchime algorithm [4] 

It is reasonable to use this algorithm for purposes of N-3 

contingency screening as well, where in addition to primary and 

secondary contingency sets, one would also identify a tertiary 

contingency set ranked in order of decreasing severity T1, T2, 

T3,…, where,  

• for T1, one repeats the above N-2 contingency approach; 

• for T2, one repeats the above N-2 contingency approach; 

• … 

until one performs three sets of TN contingencies without seeing a 

violation. This essentially establishes a 3-dimensional volume 

comprised of multiple slices each of which appear as Fig. U22.2. 

One could perform N-2 or N-3 contingency screening for planning 

or for on-line security assessment. This approach can be combined 

with the approach of N-k contingency selection based on 

probability, given in [6] and/or in [7].  
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One should realize that not all N-k  (k>2) have performance 

criteria associated with them, and so the windchime approach may 

find contingencies which result in flow violations, but (although 

they are “good to know”), because they are not specified according 

to the criteria of the North American Electric Corporation (NERC) 

[8], they do not motivate operational or planning action. From [8], 

summarized in Table U22.1b, N-k (k>2) contingencies that do 

motivate operational or planning actions are identified as: 

• P3 and P6, N-2 contingencies, but note that these require 

“system adjustment” between contingencies; 

• P4, N-k (k>2) contingencies, but note that these must occur as a 

result of a faulted component followed by a stuck breaker; 

• P5 N-k (k>2) contingencies, but note that these must occur as a 

result of a faulted component followed by a relay failure; 

• P7 N-k (k>2) contingencies, but note that these must occur as a 

result of a common structure failure. 

 

However, we will include these “out of criteria” events into our 

estimation of the resource adequacy indices.  
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Table U22.1b: Summary of Planning Events P0-P7 from NERC Standard TPL-001-5 [8] 
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U22.4 Remedial actions 

Corrective or remedial actions performed automatically should be 

built into the simulation of the contingency. Examples of such 

actions include direct or automatic load tripping, generation 

rejection, and turbine-governor response to load imbalance. For 

these actions, it is generally known what action will take place, for 

what conditions, and at what time. 

Corrective or remedial actions performed by the operator are quite 

uncertain, as they may depend on human decision-making and 

responsiveness. We can, however, make certain assumptions 

regarding operator action, and based on these assumptions, develop 

appropriate simulation algorithms.  

The fundamental assumptions we make regarding operator action 

are that the operator will make the minimum control effort in order 

to alleviate any overloads. (One may also formulate based on the 

assumption that the operator will make the least-cost control 

adjustments to alleviate any overloads; such an assumption can be 

accommodated in the formulation to follow.) 

The most comprehensive algorithm available for implementing 

remedial actions is the optimal power flow (OPF). The advantage 

of the OPF is that it provides the ability to simulate operator action 

for overload, low voltage, and voltage instability. However, it is 

computationally expensive, although computing power today via 

combination of high-end and parallel processing makes it quite 

practical, even for large systems. We provide a simpler approach 

which only allows remedial actions for overloads. One may 

consider it to be an approximation to the OPF. 

Define 
+

gi
P  and 

−
gi

P  to be an increase or decrease, respectively, 

in the generation at bus i, and 
dj

P  to be the load curtailment at 

bus j, where all three variables are always nonnegative.  
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Also define Ki and Kj to be weights associated with the bus i 

generation change and the bus j load curtailment, respectively.  

• The bus i generation change weight Ki should be chosen based 

on dispatchability (infinity, i.e., very large, if not dispatchable) 

and ramp rates (the higher the ramp rate, the smaller the Ki) for 

each plant, indicating that the faster the plant can move, the 

more we will rely on it to implement the desired remedial action 

as soon as possible. 

• The bus j load curtailment weight Kj should be chosen based on 

whatever contracts are in place with the loads. It is typical that 

Kj>>Ki indicating that load curtailment is typically much less 

desirable than generation redispatch. 

We can then write a linear program as follows: 

1 1 1

min
g g d

n n n

i gi i gi j dj

i i j

K P K P K P+ −

= = =

 +  +      (U22.4a) 

subject to: 

1 1 1

0
g g d

n n n

gi gi dj

i i j

P P P+ −

= = =

 −  +  =      (U22.4b) 

0 max

, , ,

1 1 1

  
g g d

n n n

k k i gi k i gi k i dj k

i i j

P C P C P C P P k+ −

= = =

+  −  +         (U22.4c) 

jPP
djdj

     0 0
      (U22.4d) 

iPPP
gigjgi

− +     0 0max
     (U22.4e) 

iPP
gigi

 −     0 0
      (U22.4f) 

where 
0

k
P  is the flow on circuit k after the contingency, and 

ik
C

,
 

is the generation shift factor giving the sensitivity of the circuit k 

flow to the bus j injection. 



Module PE.PAS.U22.5 Composite system reliability 15 

The formulation above will identify the load interruption necessary 

to relieve all overloads. Notice that the above formulation is not a 

security-constrained OPF, i.e.,  

• it operates on the post-contingency state to correct post-

contingency overloads,  

• whereas the security-constrained OPF operates on the       

pre-contingency state to prevent post-contingency overloads. 

An approach is provided in App. 1 that implements an LP-OPF. 

This approach minimizes redispatch cost rather than control effort. 

U22.5 Bounding the failure probability 

Given that we are capable of performing the contingency selection 

and then analyzing each contingency selected to determine whether 

it is a failure state or not, the remaining issue is to determine the 

reliability indices. Specifically, we desire to compute the LOLP. 

However, we face the basic problem that we know whether a state 

is a failure state or not for only the states that we have information. 

Based on the windchime contingency selection approach described 

previously, this consists of all N-1 and N-2 contingency states. 

(Actually, we only analyze a subset of N-2 contingency states, but 

the windchime approach enables one to conclude with high 

confidence that all unanalyzed N-2 contingency states are success 

states (i.e., no loss of load), and so we can say that we have 

information for all N-1 and N-2 states). 

However, we still must consider the N-k states for k>2. Although 

the probability of most of these states is quite small, the fact that 

there are so many of them suggests that they may comprise a 

significant percentage of the desired LOLP index. 

We may determine how close our LOLP estimate is to the actual 

LOLP by using a bounding approach. In this approach, we will 

determine a lower bound together with an upper bound on the 

failure probability. The width of the bounded interval provides an 

indication of how close our LOLP estimate is. 
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U22.5.1 The binary tree 

We illustrate the method based on understanding of a binary tree. 

We motivate the concept of a binary tree using a simple example. 

Consider the 3-component system of Fig. U22.3. 

 

1 

3 

2 

 

Fig. U22.3: 3 component system for illustrating bounding approach 

We denote the availability and the failure probability (FOR) of 

each component as pj and qj, respectively. Thus the total number of 

states of this system is 23=8. These states are summarized in Table 

U22.2. 

Table U22.2: Summary of states for example system 

State 

s 

Component In (1) or Out (0) Pr[s] 

1 2 3 

1 1 1 1 p1p2p3 

2 1 1 0 p1p2q3 

3 1 0 1 p1q2p3 

4 1 0 0 p1q2p3 

5 0 1 1 q1p2p3 

6 0 1 0 q1p2q3 

7 0 0 1 q1q2p3 

8 0 0 0 q1q2q3 
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The binary tree for this system represents the different states of 

Table U22.2 and is illustrated in Fig. U22.3. 

 
Terminal nodes (gives systems states) 

p1p2p3 

q3 q3 q3 q3 

q2 q2 p2 p2 

p3 p3 p3 p3 

Component 1 

Component 2 

Component 3 

p1 q1 

p1p2q3 p1q2p3 p1q2q3 q1p2p3 q1p2q3 q1q2p3 q1q2q3 

Fig. U22.3: Binary tree for illustrating system states 

Our goal is to identify which terminal nodes correspond to the 

failed states. If we can do that, then LOLP is computed simply as: 




=
esFailedStats

sLOLP ]Pr[
   (U22.5) 

The problem is, of course, that the tree can become very large. For 

example, if we have just 100 components, which would of course 

be a very small system, we would have 2100=1.271020 terminal 

nodes (or states). 

U22.5.2 Obtaining a lower bound 

We turn now to a general case corresponding to a system with N 

components; we assume that each one is modeled with 2 states. 

We define Prj[F] as the additional (and previously uncounted) 

failure probability we can add due to knowledge that contingency j 

fails (results in loss of load).  

Let’s assume that contingency j corresponds to loss of circuit k and 

that we know it is a failed contingency, i.e., it results in loss of load. 
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We assume a mapping between the contingency identification j and 

the outaged component k; this might not be necessary (i.e., we could 

assume contingency j implies loss of component j), but it maintaining 

this mapping may allow broader contingency definition; e.g., 

contingency j might be a P7, loss of multiple circuits on the same 

tower. Key is that each contingency j must have a specific 

probability couple (qk, pk) corresponding to outaged and not outaged. 

The state corresponding to all other ccts in (besides cct k) is the 

most probable state of those which stem from the node 

corresponding to qk. Then the additional failure probability due to 

knowledge that contingency j fails, Prj[F], can be expressed as 


N

j k i

i=1
i¹k

ΔPr [F]= q p + x
   (U22.6) 

where x is the probability of all other failed states stemming from 

the qk branch. Since each state probability in x will have at least 2 

terms in q (one for qk and at least one other one, since the state 

corresponding to all other terms in p is the first expression in 

U22.6), x should be rather small. 

Now represent cct k at the top of the tree, as shown in Fig. U22.4. 

 

q2 q2 

q1 q1 p1 p1 

p2 p2 

Component k 
pk qk 

The first term in 

U22.6 

Dashed arrows are the 

“x” in U22.6. 

F

ig. U22.4: Binary tree for illustrating system states with circuit k at 

the tree-top 
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If (U22.6) is true, then it must be true that the right-hand-side of 



 
N

j k i j
APP

i=1,
i k

ΔPr [F] q p = Δ Pr [F],
 (U22.7) 

denoted as j
APP
Δ Pr [F] (“APP” for “approximate”) is a lower bound 

on the actual ][Pr Fj . 

If we compute (U22.7) for all failed contingencies, then we may 

obtain a lower bound on the LOLP according to: 



  j
APP

j  Failed Contingencies

LOLP Δ Pr [F]
  (U22.8) 

U22.5.3 Obtaining an upper bound 

Obtaining a lower bound does us little good unless we can also 

obtain an upper bound. To do this, consider that we are able to 

identify contingency j, corresponding to loss of circuit k, is a 

success, i.e., no loss of load. We again represent circuit k at the top 

of the tree, as in Fig. U22.4.  

Here, we know that at least one of the terminal nodes will be a 

success – the one with all components in except for circuit k. 

Therefore we may write that: 



=

=
N

ki
i

j
APP

ikj SpqS
,1

][Pr][Pr
 (U22.9) 

This provides us with a lower bound on the probability of not 

losing load (in contrast to the lower bound on the probability of 

losing load which we obtained in (U22.8). However, we want an 

upper bound on the probability of losing load! 
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To get this, multiplying both sides of (U22.9) by -1 (and reversing 

the sense of the inequality), and then add 1 to both sides results in: 



=

−=−−
N

ki
i

j
APP

ikj SpqS
,1

][Pr11][Pr1
(U22.10) 

Now consider that 1-Prj[S] is actually the contingency j 

probability of failure. Thus, we see that the right-hand-side of 

(U22.10) provides an upper bound on the probability of failure for 

all contingency states stemming from qk. Thus, we have that  





States Success 

][Pr
j

j
APP

SLOLP
  (U22.11) 

U22.5.4 Algorithm for computing lower and upper LOLP bounds 

The following is an algorithm for computing the lower and upper 

bounds on LOLP for a given system, with N components. 

1. Pr[F]=0, Pr[S]=0 

2. For j=1, N 

a. If j=failed, then 

i. Compute failure probability approximation  



=

=
N

ki
i

ikj
APP

pqF
,1

][Pr
 

ii. Sum to total failure probability approximation: 

][Pr]Pr[]Pr[ FFF j
APP
+=

 

b. ElseIf j=success, then 
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i. Compute success probability approximation  



=

=
N

ki
i

ikj
APP

pqS
,1

][Pr
 

ii. Sum to total failure probability approximation: 

][Pr]Pr[]Pr[ SSS j
APP
+=

 

Then we have that the actual LOLP is bounded as illustrated in 

Fig. U22.5. 

 

Pr[F] 1-Pr[S] 

LOLP resides 

within this interval 

1.0 

Fig. U22.5: Illustration of bounds on LOLP 

 

 



Module PE.PAS.U22.5 Composite system reliability 22 

Appendix 1: LP-OPF Example 

This appendix provides an LP-OPF formulation which minimizes a linearized cost 

function subject to a set of equality constraints (DC load flow equations and line 

flow equations) and a set of inequality constraints (on generation limits and on 

branch flows). This appendix also illustrates how to form the PB vector and the D 

and A matrices. 

 

min 
= =

=
Ng

k

T
Mj

j

kjkj PsPs
1 1

 

 

s.t. 

 

minPPTPB D +=+   DC Power Flow Equation 

 

= )( ADP B    Line Flow Equation 

 

maxmin PPP     Generator Constraints 

 

maxmax BBB PPP −    Line Flow Constraints 

 

 −     Bus Angle Constraints 

 

D is an MxM matrix that will have its diagonal as the admittances of the lines. 

 M = number of branches 

A is an M x (N-1) node-arc incidence matrix that describe the flow from bus i to 

bus j. 

  N= number of busses 

B’ is the DC power flow matrix of dimension (N-1)x(N-1), where N is the 

number of buses in the network, obtained as follows: 

1. Replace diagonal element B’kk with the sum of the non-diagonal elements 

in row k. Alternatively, subtract bk (the shunt term) from Bkk, and multiply 

by -1. 

2. Multiply all off-diagonals by -1. 

θ is the vector of nodal phase angles for buses 2,…N 

PD is the Power demanded at each bus. 

 

We formulate the above into the following: 

Aeqx=beq is the equation that will be used to do this. 

 

Aeq matrix –  The number of columns is the sum of the number of generators, 

lines, and buses.  The number of rows is the sum of the number of 

lines and buses. 
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Example: 

 

This is the basic system that will be used for the example. 

 

y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1 

Pd3=1.1787pu 

Pd2=1pu 

1 2 

3 4 

Pg2 

Pg4 

 
This graph gives the basic representation of the cost curves division for a generator 

 
Pi,min    

Pi3 
Pi2 Pi1 

Ci 

$/hr    

Pi (MW) →    
 

We will use linearized representation, but to begin with, we assume quadratic 

representation for the three cost curves of the example.  

 

1.213669.1100533.0)( 1

2

111 ++= PPPC  

200333.1000889.0)( 2

2

222 ++= PPPC  

240833.1000741.0)( 3

2

333 ++= PPPC  

In the implementation, we expect to receive the curves in the form of break points. 
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Break points for PW linear approximation of cost curves given as MW, Cost 

 

Unit BP#1 

(unit min) 

BP#2 BP#3 BP#4 

(unit max) 

1 50.0, 809.9 100, 1433 160, 2217 200, 2760 

2 37.5, 5325 70, 9699 130, 1693 150, 1950 

3 45.0, 742.5 90, 1275 140, 1902 180, 2430 

 

The slope is then computed for each of the segments (1-2), (2-3), and (3-4) for each 

curve.  This is done by the following equation: 

 

kj

kj

kj
MWMW

CostCost
s

−

−
=   and substituting numbers: 46.12

50100

9.8091433
11 =

−

−
=s  

 

This process is done for each section and each generator.  The slopes of the piecewise 

linear approximations of the cost curves are shown below: 

 

Unit, i si1 si2 si3 

1 12.46 13.07 13.58 

2 11.29 12.11 12.82 

3 11.83 12.54 13.20 

 

131312121111min,111111111 )(),,( PsPsPsPCPPPK +++=  

232322222121min,222322212 )(),,( PsPsPsPCPPPK +++=  

434342424141min,334341413 )(),,( PsPsPsPCPPPK +++=  

 

The limits on generation for each section must be calculated.  This is given by: 

 

kjkj MWMWP −= ,  for example: MWP 505010011 =−=  

 

This process is done for each section of the curve for each generator.  Representing the 

vector of piecewise linear generation values as P’, we have: 
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4

2

1

43

42

41

23

22

21

13

12

11

Unit

Unit

Unit

P

P

P

P

P

P

P

P

P

P



























































=     →   







































































40.0

50.0

45.0

20.0

60.0

325.0

40.0

60.0

50.0

0

0

0

0

0

0

0

0

0

P  

 

In the above, the generation is represented in per-unit on 100 MVA base. 

 

Next, the T matrix must be built.  This is a matrix that operates on the piecewise linear 

generation vector P’ to obtain generation injections, i.e., it sums the generation variables 

for each unit to obtain the total generation at that unit. For this case, T will be 4 rows 

high, and 9 columns long.   

 



















=

111000000

000000000

000111000

000000111

T  























































=



















43

42

41

23

22

21

13

12

11

#

4

3

2

1

111000000

000000000

000111000

000000111

P

P

P

P

P

P

P

P

P

P

P

P

P

busesof

 

 

The next step is to get the respective parts for the DC Power Flow 

( minPPTPB D +=+ ).  We first obtain the B’ matrix. 
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Neglecting resistance, the Y-bus is: 

 



















=

44434241

34333231

24232221

14131211

BBBB

BBBB

BBBB

BBBB

jY  

 



















+++−−−

+++−−

−−+++−

−−−+++

=

4342414434241

3434323133231

2423242321221

1413121413121

bbbbbbb

bbbbbbb

bbbbbbb

bbbbbbb

j  

 

 

From the above, we obtain the B’ matrix from the Y-bus, as follows: 

5. Remove the “j” from the Y-bus. 

6. Replace diagonal element B’kk with the sum of the non-diagonal elements in row k. 

Alternatively, subtract bk (the shunt term) from Bkk, and multiply by -1. 

7. Multiply all off-diagonals by -1. 

Comparison of the numerical values of the Y-bus with the numerical values of the B’ 

matrix for our example will confirm the above procedure: 

 



















−

−

−

−

=

2010010

10301010

0102010

10101030

jY       



















−−

−−−

−−

−−−

=

2010010

10301010

0102010

10101030

'B  

 

Another way to remember the B’ matrix is to observe that since its non-diagonal elements 

are the negative of the Y-bus matrix, the B’ non-diagonal elements are susceptances.. 

 

Limits on bus angles are:  −  

 

PD is the vector of load values, in per unit: 
..

0

1787.1

1

0

4

3

2

1

up

P

P

P

P

P

D

D

D

D

D



















=



















=
 

 

Pmin is the minimum amount of power that each generator can produce. 

Pmax is the maximum amount of power that each generator can produce. 
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
maxmin

180.0

0
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200.0

45.0

0

375.0

50.0

4

3

2

1

P

g

g

g

g

P

P

P

P

P



























































 

We account for the lower limit in the DC power flow equation through Pmin. 

Expressing the DC Power Flow Equation ( minPPTPB D +=+ ).  

 



















+=



















+





































−−

−−−

−−

−−−

45.0

0

375.0

5.0

0

1787.1

0.1

0

2010010

10301010

0102010

10101030

4

3

2

1

PT







 

 

  

The Line Flow Equations are represented next. 

 

The D-matrix is formed by placing the admittances of each branch along the diagonal of 

an M x M matrix, where M=5. 

 























=

100000

010000

001000

000100

000010

D
 

 
The node-arc incidence matrix is found by first defining a direction of power flow in the 

system. 

 

5 
1 

4 

 3 

2 

1 2 

3 4 

 
A branch is said to “begin” at node j if the power flowing across branch k is defined 

positive for a direction from node j to the other node. 
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A branch is said to “terminate” at node j if the power flowing across branch k is defined 

positive for a direction to node j from the other node. 

 

With this definition, we can express the node-arc-incidence matrix as: 

 























−

−

−=

0101

1100

0110

001-1

1-001

 A   (Has four columns because there are four bus angles) 

 

 

We will next find DxA. 

 




















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−
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
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








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



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
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

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






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






=

010010

101000

010100

001010

100010
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1100

011

100000

010000

001000
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000010

0

001-1

1-001

AD  

 

Next, the line flow constraints will be stated. ( maxmax BBB PPP − ) 

 

To begin with, we will represent unconstrained transmission using very large limits. 















































−

−

−

−

−

500

500

500

500

500

500

500

500

500

500

BP  per-unit. 

 

Bus angle (theta) constraints are  –  to   (360 degrees) 

 

The Aeq matrix will now be exampled and built. 

 

In this example, we have 4 buses, 5 branches, and 9 generation sections.  So that sums up 

to 18, so that is the number of columns in the Aeq matrix.  For the number of rows, we 

have 5 branches and 4 buses, which sums up to 9 and is the number of rows in this 

matrix. 

• The last 4 columns on the first 5 rows is the DxA matrix. 

• The first 14 columns on the first 5 rows are the elements in the line flow equations 

that multiply the variables P11, P12, P13, P21, P22, P23, P41, P42, P43, PB1, PB2, PB3, PB4, 

and PB5.  P11, P12, P13, P21, P22, P23, P41, P42, P43 are set to zero because they are the 
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generations not the line flow.  PB1, PB2, PB3, PB4, and PB5 are set to -1 to say that there 

is a branch in a specific location. 

• The first 9 columns of the last 4 rows multiply with the generation variables P11, P12, 

P13, P21, P22, P23, P41, P42, P43,.  The demand (PD) will be given to us in the b matrix 

and Pgk-Pdk is in the b matrix. 

• The 10-14 columns of the last 4 rows correspond to the line flow variables, but these 

are zeros because they are not the DC power flow equation. 

• The last 4 columns of the last 4 rows correspond to the DC power flows that include 

all the angles. 

 

We can see that these elements will occupy the upper right hand corner of Aeq. So that 

will take care of the last 4 columns in the first 5 rows.  

 

What about the first 14 columns? These elements are the equations that are multiplied by 

the variables P11, P12, P13, P21, P22, P23, P41, P42, P43, PB1, PB2, PB3, PB4, and PB5.  Since we 

do not use the generation variables within the line flow equations, the first 9 columns of 

these top 5 rows will be zeros. The last 5 columns in these top 5 rows will also be zeros, 

except the one element in each of these rows that multiply the corresponding line flow 

variable, and that element will be -1.  

 

The right hand side equations will be set to zero 
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The B’ matrix deal with the bus angles.  This is inserted into the last 4 columns and the 

bottom 4 rows. The resulting matrix appears as: 
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Once again, we need to consider the first eight columns. Columns 4-8 correspond to the 

line flow variables, which do not appear in the DC power flow equations, so these will be 

zero. 

 

Given that the demand for Generator 2 = 1.0 per unit and Generator 3 = 1.178 per unit 

Pd1=0, Pd2=1.0, Pd3=1.1787, Pd4=0, Pg3=0 

Since these are constants, they can go to the right-hand side.  This means on the left-hand 

side, the injection, which is defined as Pgk-PDk should be negative.  That is, we should see 

on the left-hand-side –Pgk+PDk. But now we will take the load term onto the right-hand-

side by subtracting it from both sides.  

 

Thus, we see that the load term should show up on the right-hand-side as a negative 

number 
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Putting all of the constraints together, and converting the generator constraints to per 

unit, the following vector of constraints is given. 
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We then solve for these in Matlab using linear programming: 
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%Load is system load plus losses 

Load=2.1787; 

 

%Build objective function vector. 

c=[1246 1307 1358 1129 1211 1282 1183 1254 1320 0 0 0 0 0 0 0 0 0]'; 

 

%Build A matrix for inequality constraints Ax<b. 

A=[]; 

%Build b, the right-hand-side of inequality constraints. 

b=[]; 

 

%Build Aeq matrix for equality constraints.  

Aeq=[0 0 0 0 0 0 0 0 0 -1 0 0 0 0 10 0 0 -10; 

     0 0 0 0 0 0 0 0 0 0 -1 0 0 0 10 -10 0 0; 

     0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 10 -10 0; 

     0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -10 10; 

     0 0 0 0 0 0 0 0 0 0 0 0 0 -1 10 0 -10 0; 

    -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 30 -10 -10 -10; 

     0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 -10 20 -10 0; 

     0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 -10 30 -10; 

     0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 -10 0 -10 20;]; 

 

%Build right-hand side of equality constraint.  

beq=zeros(9,1); 

beq(7)=-1; 

beq(8)=-1.1787; 

 

%Build upper and lower bounds on decision variables. 

LB=[0 0 0 0 0 0 0 0 0 -5 -5 -5 -5 -5 -pi -pi -pi -pi]'; 

UB=[.5 .5 .4 .325 .6 .2 .45 .5 .4 5 5 5 5 5 pi pi pi pi]'; 

 [X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=LINPROG(c,A,b,Aeq,beq,LB,UB); 

 

 

The solution is then: 
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With the objective function of : 
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  We find that Z = 2629.7$/hr 

But we need to add to this solution for the following for each unit: 

∆Ck=C(Pgk,min)-skPgk,min    
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88.186)50(46.121.213)50(669.11)50(00533.0 2

1 =−++=C

36.143)60(11.12)5.32(29.11200)5.92(333.10)5.95(00889.0 2

2 =−−++=C

39.185)37.30(54.12)45(83.11240)37.75(833.10)37.75(00741.0 2

4 =−−++=C  

 

So the true objective function is:  

2629.7+186.88+143.36+185.39=3145.33 $/hr 
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Second case, there is a constraint on PB2 of 15 MW. 
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We then solve for these in Matlab using linear programming: 

 

%Load is system load plus losses 

Load=2.1787; 

 

%Build objective function vector. 

c=[1246 1307 1358 1129 1211 1282 1183 1254 1320 0 0 0 0 0 0 0 0 0]'; 

 

%Build A matrix for inequality constraints Ax<b. 

A=[]; 

%Build b, the right-hand-side of inequality constraints. 

b=[]; 

 

%Build Aeq matrix for equality constraints.  

Aeq=[0 0 0 0 0 0 0 0 0 -1 0 0 0 0 10 0 0 -10; 

     0 0 0 0 0 0 0 0 0 0 -1 0 0 0 10 -10 0 0; 

     0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 10 -10 0; 

     0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -10 10; 

     0 0 0 0 0 0 0 0 0 0 0 0 0 -1 10 0 -10 0; 

    -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 30 -10 -10 -10; 

     0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 -10 20 -10 0; 

     0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 -10 30 -10; 

     0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 -10 0 -10 20;]; 
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%Build right-hand side of equality constraint.  

beq=zeros(9,1); 

beq(7)=-1; 

beq(8)=-1.1787; 

 

%Build upper and lower bounds on decision variables. 

LB=[0 0 0 0 0 0 0 0 0 -5 -0.15 -5 -5 -5 -pi -pi -pi -pi]'; 

UB=[.5 .5 .4 .325 .6 .2 .45 .5 .4 5 0.15 5 5 5 pi pi pi pi]'; 

 [X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=LINPROG(c,A,b,Aeq,beq,LB,UB); 
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   We find that Z = 2635.2 

 

88.186)50(46.121.213)50(669.11)50(00533.0 2

1 =−++=C

06.235)9.10(82.12)60(11.12)5.32(29.11200)96.111(333.10)96.111(00889.0 2

2 =−−−++=C

6835.199)9.10(54.12)45(83.11240)9.55(833.10)9.55(00741.0 2

4 =−−++=C  

 

So the true objective function is:  

2635.2+186.88+235.06+199.68=3256.82 $/hr 

 

The most noticeable change in the system is how the generation shifted at each 

generator to account for the constraint on Bus 2. 
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The Change in the P vector that was solved for is: 

 

 

 

 

Summary algorithm for the steps above 

Using the above steps we determine the necessary variables to enter into a linear 

programming equation that produces the solution vector.  The variables required by the 

equation are:  

• Objective function vector  

• A matrix 

• RHS of inequality constraints 
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• A equivalent matrix 

• RHS equality constraints 

• Lower bounds 

• Upper bounds 

 

We find the objective function, lower bounds, and the upper bounds from the cost curve 

data.  The A matrix, RHS of inequality constraints, RHS of equality constraints, and the 

A equivalent matrix are found using MatLab code using data from PSSE.  
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Appendix 2: Derivation of Generation Shift Factors 
 

We desire to compute the generation shift factor, tb,k. 

 

We can obtain the flows on all circuits given the injections at all 

buses, as shown below: 

'BP =       (1) 

= )( ADPB     (2) 

 Inverting eq (1) yields: 

  PB
1

'
−

=      (3) 

Substitution of (3) into (2) yields:  

  PBADPB

1
')(
−

=    (4) 

 

Bus this is not what we want. What we want is the change in flow 

on circuit b given a change in injection at bus k. 

 

Here is a “change in injection vector,” ∆P: 
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   (5) 

The change in circuit flows can then be expressed as 
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   

  ( )
  PBAD       

PPBAD       

PBADPBAD        

PPP BBB

=

−=

−=

−=

−

−

−−

1

01

011

0

')(

')(

')(')(

 (6) 

Now let the ∆P vector be all zeros except for the element 

corresponding to the kth bus, and assign this bus an injection 

change of 1. 
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Question: Does the above equation imply the injection is changed 

at only one bus? Answer: No. There is an equal and opposite 

change to the injection at the swing bus, in this case, bus 1. 

 

Definition: The generation shift factor tb,k is defined as 
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Policy
onReallocati

,
k

Bb
kb

P

P
t




=

 

This is denoted as ali in the W&W (ref [1]) text (see eq. 11.1). 

Example 1: 

We consider an example used in Appendix 1, illustrated below. 

Compute the generation shift factors for all branches 

corresponding to an increase in bus 2 injection and a decrease in 

bus 3 injection. 

 

y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
Fig. 2: Four-bus network used in example 
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Note that the above generation shift factors are for a “double shift.”  

 

You can think of it like this. A generation shift factor for branch b, 

bus k would be tb,k and another generation shift factor for branch b, 

bus j would be tb,j. If we have an injection increase at bus k of ∆Pk 

and an injection increase at bus j of ∆Pj (negative), then  

jjbkkbb PtPtP += ,,    (9) 

 
Therefore, if ∆Pk=-∆Pj, then 

( ) kjbkbb PttP −= ,,    (10) 

Increase Pk,  

Decrease P1 

Decrease Pj,  

Increase P1 
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Note that once ∆Pb is obtained, then it must be added to the 

original flow on branch b to get the resulting total flow following 

the generation shift, i.e., 

bbb PPP += 0ˆ
 

The last equation is the same as eq. (11.2) in W&W text. 
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Appendix 3: Derivation of Line Outage Distribution Factors 

 

A significant problem with W&W’s method given in [1] of 

obtaining the LODFs is that it requires X=(B’)-1, and if the system 

is very large, then inverting the matrix can be a computationally 

intense problem. We provide another method in this section. Our 

treatment is adapted from [i]. 

 

Let’s reconsider our familiar 4-bus, 5-branch example problem. 

 

5 
1 

4 

 3 

2 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
The B’ matrix for this system is  
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−

=

20100
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'B  

What happens to B’ if we lose the circuit #3 (from bus 2 to bus 3)?  

 

We could re-develop the new B’ from the one-line diagram as we 

are accustomed to doing now. Another way is to discern how the 

circuit #3 affects the B’ matrix, in that it will affect exactly 4 

elements, as indicated with the underlines below, corresponding to 

elements in bus numbered positions (2,2), (2,3), (3,2), and (3,3). 
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Recalling that all branch admittances of our network are –j10, what 

would these four elements be if branch #3 (between buses 2 and 3) 

were not there? 
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Notice that the elements in ∆B’ are all multiples of B’23=-10, i.e.,  
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The above matrix can be expressed as  
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From this simple illustration, we can see a generalization, that 

whenever we remove a branch between buses i and j, with 

corresponding B’ matrix element B’ij, the B’ matrix will change as 

indicated below. 
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(22) 

where bij is the susceptance of branch i-j (and is a negative number 

for any standard circuit, which is inductive). We use bij instead of  

-B’ij in order to ensure we have a defined term even when i or j are 

the swing bus.  

 

The previous relation may be expressed as 
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If we define 

Caution: The designated 

positions in the row and 

column vectors 

correspond to buses i and 

j, i.e., they are not the ith 

and jth positions. 

Inconsistency: In Section 

6.0, we used (i,j) to 

indicate terminals of the 

circuit to be loaded (l) 

and (m,n) to indicate 

terminals of the circuit to 

be outaged (k). In the 

development of this 

section, the nomenclature 

on terminal number has 

been reversed, i.e., (i,j) 

becomes the terminals of 

the circuit to be outaged 

(k) and (m,n) becomes 

the terminals of the 

circuit to be loaded (l). 
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j

i

e ij

































−

=

0

1

1

0







     (24) 

then (23) becomes 

 
T
ijijij eebB = '      (25) 

 

Special case: If the branch to be outaged is connected to the swing 

bus (in our case, it is bus #1), then,  

      if i=1,       if j=1,  

j

e j































=

0

1

0

1









    

i

ei































−

=

0

1

0

1









 

 

From (22), and using (25), we have that 
T
ijijij

out eebBBB =−= '''     (26) 

Therefore the post-contingency B’ matrix can be expressed as 
T
ijijij

out eebBBBB +=+= ''''     (27) 

From (1), we recall the DC power flow relation as 

 'BP =       (1) 
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If, when we remove the branch connected between buses i and j, 

the angles change by ∆θ, then the new (post-contingency) angles 

will be θ+∆θ, and (1) becomes 

)('  += outBP     (28) 

(We are assessing the effects of only a lone outage, so the injection 

vector P does not change). Substituting (27) into (28), we obtain 

( ) )('  ++=
T
ijijij eebBP

  (29) 

We can solve for the new angles according to 

( ) PeebB
T
ijijij

1
'

−
+=+ 

  (30) 

We do not seem to have made much progress, because we still 

have to take an inverse… 

 

However, there is a significant benefit to writing the new matrix in 

the way that we have written it, and that benefit becomes apparent 

if we learn a certain matrix relation. This relation is generally 

referred to as a lemma.  

 

Matrix Inversion Lemma (MIL): Assume B’ is a nonsingular 

n×n matrix, and let c and d be n×M matrices with M<n. Then: 

( )   111)(111
''''' −−−−−−

+−=+ BdcBdIcBBdcB
TTMT

where I(M) is the M×M identity matrix. 

 

We neglect the proof but mention that it is proved in [i, p. 100] by 

simply multiplying the right-hand-side of MIL by the expression 

inside the brackets of the left-hand-side, and showing that the 

product is the n×n identity matrix. 

 

We also mention that MIL is derived in [ii, pp. 138-140]. 
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It may not be very obvious at this point that MIL will help us, 

since we see 4 different inverses on the right-hand-side of MIL. 

Let’s apply MIL to the inverted term of (30) to see what happens. 

 

Observing that we can define 

T
ij

T

ijij

ed

ebc

=

=

    (31) 

we can apply MIL according to 

( )

  111)(11

1

''''

'

−−−−−

−

+−

=+

BeebBeIebBB

eebB

T
ijijij

T
ij

M
ijij

T
ijijij

  (32) 

One of the inverses on the right-hand-side can be addressed right 

away, however, by identifying the dimensionality of the expression 

inside the right-hand-side brackets, [I(M)+dTB’-1c]. Observing from 

the MIL that M is the number of columns in c and d, and noting 

from (31) that in our case, c and d have only M=1 column, we see 

that what is inside the right-hand-side brackets is a scalar quantity! 

So that inverse we can take, and accordingly, we express (32) as: 

( )
ijij

T
ij

T
ijijijT

ijijij
ebBe

BeebB
BeebB

1

11
11

'1

''
''

−

−−
−−

+
−=+

 (33) 

Pulling out the scalar multiplier bij from where it appears in both 

the numerator and denominator, we have 

( )
ij

T
ijij

T
ijijijT

ijijij
eBeb

BeeBb
BeebB

1

11
11

'1

''
''

−

−−
−−

+
−=+

 (34) 

Now we can isolate bij to only one appearance in the expression by 

dividing top and bottom by it, resulting in: 
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( )
ij

T
ij

ij

T
ijijT

ijijij

eBe
b

BeeB
BeebB

1

11
11

'
1

''
''

−

−−
−−

+

−=+
 (35) 

What we have just expressed in (35) is the inverted term on the 

right-hand-side of (30), repeated below for convenience:  

( ) PeebB
T
ijijij

1
'

−
+=+ 

  (30) 

Substituting (35) into (30), we obtain: 

P

eBe
b

BeeB
B

ij
T
ij

ij

T
ijij



















+

−=+
−

−−
−

1

11
1

'
1

''
'

  (36) 

Distributing the injection vector P results in 

ij
T
ij

ij

T
ijij

eBe
b

PBeeB
PB

1

11
1

'
1

''
'

−

−−
−

+

−=+ 
  (37) 

But θ=B’-1P, and therefore we can replace the corresponding 

expressions in both right-hand-side terms to obtain: 

ij
T
ij

ij

T
ijij

eBe
b

eeB

1

1

'
1

'

−

−

+

−=+



  (38) 

We can simplify a little more by investigating eij
Tθ in the 

numerator. This would be: 
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ji

n

j

i

ji

T
ije 









 −=













































−=

+



1

2

0110









 (39) 

Substituting (39) into (38) results in: 

ij
T
ij

ij

jiij

eBe
b

eB

1

1

'
1

)('

−

−

+

−
−=+




  (40) 

 

Now we have only two inverses left. Interestingly, they both pre-

multiply eij. That is, we observe that both inverses appear in        

B’-1eij, an n×1 vector. 

 

Question: Besides inverting B’-1, how might we evaluate this 

term? 

 

Advice: When you don’t know how to evaluate something, just 

name it. Then, if things don’t get better right away, you can at least 

move on with a sort of indicator of where your problem lies.  

 

So let’s name this n×1 vector as gij, i.e.,  

ij
ij

eBg 1'−=      (41) 

Not sure if that helps much but it does indicate that 
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ij
ij

egB ='      (42) 

Equation (42) should stimulate a very good idea within your mind. 

Since we very well know B’ and eij, we can obtain gij through LU 

factorization. Doing so will give us everything we need to evaluate 

(40), which, when we substitute gij for B’-1eij, becomes: 

ij

ijT
ij

ij

ji
g

ge
b

+

−
−=+

1

)( 


  (43) 

One last small change should be made to (43), and that is to 

recognize that the term in the denominator eij
Tgij can be expressed 

as 

 

ij
j

ij
i

ij
n

ij
j

ij
i

ij

ji

ijT
ij gg

g

g

g

g

ge −=













































−=

+



1

2

0110








 (44) 

Therefore, (43) becomes 

ij

ij
j

ij
i

ij

ji
g

gg
b

)(
1

)(

−+

−
−=+




   (45) 

 

Now what is the LODF? Recall the definition of the LODF is 

dℓ,k = Δfℓ  / fk0     (16) 

where we recall that  
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• k designates the outaged circuit, terminated by buses i and j;  

• ℓ designates the circuit for which we want to compute the new 

flow, terminated by buses m and n.  

First, let’s express the denominator of (16) fk0, which is 

 T
ijijjiijk ebbf −=−−= )(0    (46) 

Now let’s express the numerator of (16) Δfℓ, which is  

 −=−−=
T
mnmnnmmn ebbf )(l   (47) 

Caution: The ordering of m,n must be consistent with the direction 

of positive flow as defined by the node-arc incidence matrix. 

But note that ∆θ in (47) can be expressed using the second term of 

(45), i.e.,  

ij

ij
j

ij
i

ij

ji
g

gg
b

)(
1

)(

−+

−
−=




   (48) 

Substituting (48) into (47) results in 

ij

ij
j

ij
i

ij

jiT
mnmn g

gg
b

ebf

)(
1

)(

−+

−
=


l

  (49) 

It is helpful at this point to rearrange (49) according to 

ijT
mnij

j
ij
iij

jiij
mn ge

ggb

b
bf

)(1

)(

−+

−
=


l

  (50) 

We recognize in (50) that 

)(0 jiijk bf  −−=     (51) 

 

and  

Inconsistency: 

Recall the note 

on p. 22, which 

indicates an 

inconsistency 

in 

nomenclature 

with Sec 6.0. 
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ij
n

ij
m

ijT
mn ggge −=     (52) 

Substituting (51) and (52) into (50) results in 

)(1

)(0
ij
j

ij
iij

ij
n

ij
mk

mn
ggb

ggf
bf

−+

−
−= l

   (53) 

So (53) can be used to obtain the change in flow on circuit ℓ 

(terminated by buses m and n) due to outage of circuit k 

(terminated by buses i and j).  

 

To get the LODF, we divide (53) by fk0, resulting in 

)(1

)(
ij
j

ij
iij

ij
n

ij
m

mn
ggb

gg
b

f

f
d

−+

−
−=


=
k0

l
kl,

   (54) 

The approach, then, to using (54), is to factorize B’ into the L and 

U factors once. Then, for each contingency k=1,…,NC, (per (42)), 

we use forward and backwards substation to obtain the vector gij. 

The LODFs for every branch ℓ (terminated by buses m and n), are 

then computed from (54).  

 

Example 5:  

Consider our 4-bus, 5-branch example problem again. Compute gij
 

for a line 2-3 outage. Then use it to compute the post-contingency 

flow on circuit 3-4. 

 

Solution: 

Recall (42): 

ij
ij

egB ='  

where B’ is given by: 
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















−

−−

−

=

20100

103010

01020

B  

and e23 is given by 

3

2

0

1

1

23 =

=

















−= j

i

e  

And so our equation is:  

















−=

































−

−−

−

0

1

1

20100

103010

01020

23

4

23

3

23

2

g

g

g

 

Performing LU decomposition, we obtain 

















−

−=

16100

02510

0020

L  
















−

−

=

100

4.010

05.01

U  

Notice that the above factors need be computed only one time; 

they may subsequently be applied to obtain the g-vector for outage 

of any circuit. In this case, we are interested in outage of the line 

from bus 2 to bus 3, therefore we write 

















−

−=



































−=

































−

−=

0125.0

02.0

05.0

0

1

1

16100

02510

0020

3

2

1

3

2

1

23

w

w

w

w

w

w

ewL  

















−

−=



































−

−=

































−

−

=

0125.0

025.0

0375.0

0125.0

02.0

05.0

100

4.010

05.01

23

4

23

3

23

2

23

4

23

3

23

2

23

g

g

g

g

g

g

wgU  

Then we can compute the LODF for the circuit 3-4 after outage of 

circuit 2-3. First, however, note that the direction of positive flow 

on circuit 3-4 is defined by the node-arc incidence matrix as being 

from bus 4 to bus 3 (see below right-hand figure).  
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y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 

5 
1 

4 

 3 

2 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 
 

Therefore we need to designate m=4 and n=3. Then: 

3333333.0
375.0

0125.0
10

)025.00375.0(101

)025.00125.0(
10

)(1

)(

)(1

)(

23

3

23

223

23

3

23

4
43

==

−−−+

−−−
=

−+

−
−=

−+

−
−=


=

ggb

gg
b

ggb

gg
b

f

f
d

ij

j

ij

iij

ij

n

ij

m
mn

k0

l
kl,

 

If circuit 2-3 has flow of 1.25, then the change in flow on circuit  

4-3, following outage of circuit 2-3 becomes 

4167.025.1*3333333.0 === k0kl,l fdf  

If the pre-contingency flow on circuit 3-4 was 1.25, then then new 

flow, following outage of circuit 2-3, will be 

 

6667.14167.025.1 =+=+= l

0

l

out

l fff  

 

Now let’s check our result with the DC power flow. 

 

With all lines in we obtain 
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  PBADPB

1
')(
−

=  

















−

















−

−−

−













































=























1

4

1
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P
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P

P
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





















=























5.1

25.1

25.1

25.0

25.0

5

4

3

2

1

B

B

B

B

B

P

P

P

P

P

 

Observe that the flow on circuit 3-4 is 1.25 pu. 

With circuit 2-3 out, we obtain: 

















−

















−

−



















−

−

−

−



















=























1

4
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y13 =-j10 
y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

 

5 
1 
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 3 
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Pg1=2pu 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 
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

















−
=



















3333.2

6667.1

0.1

6667.0

5

4

3

1

B

B

B

B

P

P

P

P

 

Therefore the change in flows due to outage of circuit 2 (connected 

between buses 2 and 3) is 























−

−

=























−























−=−=

8333.0

4167.0

25.2

25.0

4167.0

5.1

25.1

25.1

25.0

25.0

3333.2

6667.1

0.1

0
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where we observe that ΔPb4=0.4167, as indicated in the calculation 

of Δfl on pg. 33. 

…Also should use W&W’s method here. 

 

Example 6:  

For outage of branch connected to swing. 

Do it three ways as in Example 6: 

a. Use the above “fast” method 

b. Use DC flow with and without outage; 

c. Use W&W’s method. 

 

References 

[1] A. Wood and B. Wollenberg, “Power generation, operation, and control,” Second edition, John Wiley & Sons, 1996. 
[2] “Transmission system reliability methods,” project 1530-1, prepared by Power Technologies Incorporated (PTI), 

EPRI report EL-2526, 1982. 
[3] Feng Xia; Meliopoulos, A.P.S, “A methodology for probabilistic simultaneous transfer capability analysis”.; 

Power Systems, IEEE Transactions on, Volume 11,  Issue 3,  Aug. 1996 Page(s):1269 – 1278. 
[4] N. Dag Reppen, presentation slides given at EPRI Workshop on Reliability Analysis, San Diego, California, Feb 27, 

2001. 



Module PE.PAS.U22.5 Composite system reliability 60 

[5] R. A. Leon Candela, “Sensor network design for a secure electric energy infrastructure,” M.S., thesis, Iowa State 
University, April 2005. 

[6] Q. Chen and J. McCalley, “Identifying High-Risk N-k Contingencies for On-line Security Assessment,” IEEE 
Transactions on Power Systems, 2005. 

[7] Y. Jiang, A. Kalair, J. McCalley, P. Mitra, A. Gaikwad, D. Pratt, and J. Norris, "Contingency probability estimation for 
risk-based planning studies using NERC's outage data and Standard TPL-001-4," Proc. of the North American 
Power Symposium, 2021.  

[8] NERC Standard TPL-001-5, “Transmission system planning performance requirements,” 2020, 
www.nerc.com/pa/Stand/Reliability%20Standards/TPL-001-5.pdf. 

 

[i] A. Debs, “Modern Power Systems Control and Operation,” Kluwer, 1988.  

[ii] A. Monticelli, “State estimation in electric power systems, a generalized 

approach,” Kluwer, 1999.  

http://www.nerc.com/pa/Stand/Reliability%20Standards/TPL-001-5.pdf

