Typical Generation Costs

1.Introduction

New generation must be continuously planned and built to keep pace with load growth and the retirement of old facilities. However, the concern over greenhouse gases has motivated an extremely strong public interest in finding ways to reduce CO_2 emissions, and electric utilities are responding to this interest in various ways.

A few generation technologies promising in reducing carbon emissions are summarized below, in approximate increasing order of LCOE shown in Fig. 1a from 2021 [1], and in Fig. 1b from 2023 [2]. These figures were already seen in "Engineering Economics" notes, pg. 43).

- 1. Wind
- 2. Solar PV, utility scale
- 3. Natural gas combined cycle (NGCC)
- 4. Geothermal
- 5. Canadian hydro
- 6. Nuclear
- 7. Integrated gasification combined cycle (IGCC) with CCS
- 8. Pulverized coal (PC) with CCS
- 9. Concentrated solar (solar thermal tower with storage)

Very important issues for each of these technologies is the capital and operational costs, well quantified by the LCOE. Although Lazard's provides LCOE, it does not publish the capital and O&M costs behind LCOE. There are two main sources used for obtaining this information. These are

- 1. The US Energy Information Administration (EIA).
- 2. The NREL Annual Technology Database (ATB).

Levelized Cost of Energy Comparison—Unsubsidized Analysis

Source Lazard estimates

Lazard esamates. Here and throughout this presentation, unless otherwise indicated, the analysis assumes 60% debt at 8% interest rate and 40% equity at 12% cost. Please see page titled "Levelized Cost of Energy Comparison—Sensitivity to Cost of Capital" for cost of capital sensitivities. These results are not intended to represent any particular geography. Please see page titled "Solar PV versus Gas Peaking and Wind versus CCGT—Global Markets" for regional sensitivities to selected technologies. Unless otherwise indicated herein, the low case represents a single-axis tracking system and the high case represents a fixed-till system. Represents the estimated implied midpoint of the LCOE of offshore wind, assuming a capital cost range of approximately \$2,000 – \$3,675kW. Note:

(1)(2)(3)(4)(5)

The fuel cost assumption for Lazard's global, unsubsidized analysis for gas-fired generation resources is \$3.45/MMBTU.

Unless otherwise indicated, the analysis herein does not reflect decommissioning costs, ongoing maintenance-related capital expenditures or the potential economic impacts of federal loan guarantees or other subsidies. Represents the midpoint of the marginal cost of operating fully depreciated gas combined cycle, coal and nuclear facilities, inclusive of decommissioning costs for nuclear facilities. Analysis assumes that the salvage value for a decommissioned gas combined

represents the includent of the insignant Cost of provide the control is of the cost of the cost of the insignant Cost of the insignant Cost of the cost of the insignant Cost of the cost (6) (7)

Represents the LCOE of the observed high case gas combined cycle inputs using a 20% blend of "Blue" hydrogen, (i.e., hydrogen produced from a steam-methane reformer, using natural gas as a feedstock, and sequestering the resulting CO₂ in a nearby

Represents the LCOE of the observed high cases gas contained cycle inputs using a 20% biller dama to the corresponding fue cost is \$2.00%MMBTU. Represents the LCOE of the observed high case gas contained cycle inputs using a 20% biller dama to the corresponding fue cost is \$2.00%MMBTU. (8)

Fig. 1a: Lazard's LCOE Assessment for Generation Technologies, 2020 [1]

Levelized Cost of Energy Comparison—Unsubsidized Analysis

Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances

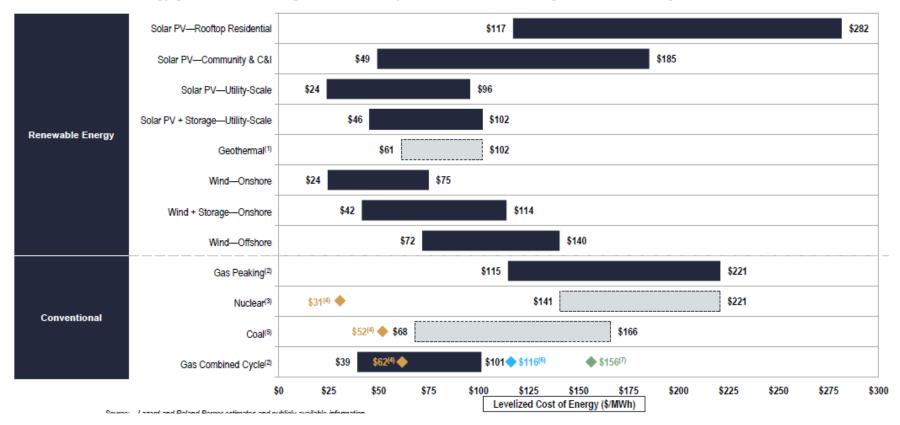


Fig. 1b: Lazard's LCOE Assessment for Generation Technologies, 2023 []

2. EIA data

The DOE EIA provides comprehensive generation capital and O&M data and have been doing so for a number of years. These data are obtained via consulting agencies directly contracted by EIA to develop it. I have included data from 2008 [3], 2010 [4], 2013 [5], 2015 [6], 2020 [7].

Technology	Online Year ¹	Size (mW)	Leadtime (Years)	Base Overnight Cost in 2007 (\$2006/kW)	Contingency Project Contingency Factor ²	Technological	Total Overnight Cost in 2007 ⁴ (2006 \$/kW)	Variable O&M ⁵ (\$2006 mills/kWh)	Fixed O&M ⁵ (\$2006/kW)	Heatrate ⁶ in 2007 (Btu/kWhr)	Heatrate nth-of- a-kind (Btu/kWr)
Scrubbed Coal New ⁷	2011	600	4	1,434	1.07	1.00	1,534	4.46	26.79	9,200	8,740
Integrated Coal-Gasification Combined Cycle (IGCC) ⁷	2011	550	4	1,657	1.07	1.00	1,773	2.84	37.62	8,765	7,450
IGCC with Carbon Sequestration	2011	380	4	2,302	1.07	1.03	2,537	4.32	44.27	10,781	8,307
Conv Gas/Oil Comb Cycle	2010	250	3	683	1.05	1.00	717	2.01	12.14	7,196	6,800
Adv Gas/Oil Comb Cycle (CC)	2010	400	3	654	1.08	1.00	706	1.95	11.38	6,752	6,333
ADV CC with Carbon Sequestration	2010	400	3	1,254	1.08	1.04	1,409	2.86	19.36	8,613	7,493
Conv Combustion Turbine ⁸	2009	160	2	476	1.05	1.00	500	3.47	11.78	10,833	10,450
Adv Combustion Turbine	2009	230	2	450	1.05	1.00	473	3.08	10.24	9,289	8,550
Fuel Cells	2010	10	3	4,653	1.05	1.10	5,374	46.62	5.50	7,930	6,960
Advanced Nuclear	2016	1350	6	2,143	1.10	1.05	2,475	0.48	66.05	10,400	10,400
Distributed Generation -Base	2009	5	2	972	1.05	1.00	1,021	6.93	15.59	9,200	8,900
Distributed Generation -Peak	2010	2	3	1,168	1.05	1.00	1,227	6.93	15.59	10,257	9,880
Biomass	2011	80	4	2,490	1.07	1.05	2,809	6.53	62.70	8,911	8,911
MSW - Landfill Gas	2010	30	3	1,773	1.07	1.00	1,897	0.01	111.15	13,648	13,648
Geothermal 7,9	2011	50	4	1,057	1.05	1.00	1,110	0.00	160.18	35,376	33,729
Conventional Hydropower ⁹	2011	500	4	1,410	1.10	1.00	1,551	3.41	13.59	10,022	10,022
Wind	2010	50	3	1,340	1.07	1.00	1,434	0.00	29.48	10,022	10,022
Wind Offshore	2011	100	4	2,547	1.10	1.03	2,872	0.00	87.05	10,022	10,022
Solar Thermal ⁷	2010	100	3	3,499	1.07	1.00	3,744	0.00	55.24	10,022	10,022
Photovoltaic7	2009	5	2	5,380	1.05	1.00	5,649	0.00	11.37	10,022	10,022

Table 1: 2008 Cost of new generation technologies

¹Online year represents the first year that a new unit could be completed, given an order date of 2007.

²A contingency allowance is defined by the American Association of Cost Engineers as the "specific provision for unforeseeable elements if costs within a defined project scope; particularly important where previous experience has shown that unforeseeable events which will increase costs are likely to occur."

³The technological optimism factor is applied to the first four units of a new, unproven design. It reflects the demonstrated tendency to underestimate actual costs for a first-of-a-kind unit.

⁴Overnight capital cost including contingency factors, excluding regional multipliers and learning effects. Interest charges are also excluded. These represent costs of new projects initiated in 2007.

⁵O&M = Operations and maintenance.

⁶For hydro, wind, and solar technologies, the heatrate shown represents the average heatrate for conventional thermal generation as of 2006. This is used for purposes of calculating primary energy consumption displaced for these resources, and does not imply an estimate of their actual energy conversion efficiency.

⁷Capital costs are shown before investment tax credits are applied.

⁸Combustion turbine units can be built by the model prior to 2009 if necessary to meet a given region's reserve margin.

⁹Because geothermal and hydro cost and performance characteristics are specific for each site, the table entries represent the cost of the least expensive plant that could be built in the Northwest Power Pool region, where most of the proposed sites are located.

Sources: The values shown in this table are developed by the Energy Information Administration, Office of Integrated Analysis and Forecasting, from analysis of reports and discussions with various sources from industry, government, and the Department of Energy Fuel Offices and National Laboratories. They are not based on any specific technology model, but rather, are meant to represent the cost and performance of typical plants under normal operating conditions for each plant type. Key sources reviewed are listed in the 'Notes and Sources' section at the end of the chapter.

Table 2: 2010 Cost of new generation technologies

				Base	Contingency Factors		Total				
Technology	Online Year	Size (mW)	Leadtime (Years)	Overnight Cost in 2009 (\$2008/kW)	Project T Contingency Factor ²	echnological Optimism Factor ²	Overnight Cost in 2009 ⁴ (2008 \$/kW)	Variable O&M ² (\$2008 mills/kWh)	Fixed O&M ³ (\$2008/kW)	Heatrate [®] In 2009 (Btu/kWhr)	Heatrate nth-of- a-kind (Btu/kWr)
Scrubbed Coal New ²	2013	600	4	2,078	1.07	1.00	2,223	4.60	28.15	9,200	8,740
Integrated Coal-Gasification Combined Cycle (IGCC) ⁷	2013	550	4	2,401	1.07	1.00	2,569	2.99	39.53	8,765	7,450
IGCC with Carbon Sequestration	2016	380	4	3,427	1.07	1.03	3,776	4.54	47.15	10,781	8,307
Conv Gas/Oll Comb Cycle	2012	250	3	937	1.05	1.00	984	2.11	12.76	7,196	6,800
Adv Gas/OI Comb Cycle (CC)	2012	400	3	897	1.08	1.00	968	2.04	11.96	6,752	6,333
ADVCC with Carbon Sequestion	2016	400	3	1,720	1.08	1.04	1,932	3.01	20.35	8,613	7,493
Conv Combustion Turbine ⁸	2011	160	2	653	1.05	1.00	685	3.65	12.38	10,788	10,450
Adv Combustion Turbine	2011	230	2	617	1.05	1.00	648	3.24	10.77	9,289	8,550
Fuel Cells	2012	10	3	4,744	1.05	1.10	5,478	49.00	5.78	7,930	6,960
Advanced Nuclear	2016	1350	6	3,308	1.10	1.05	3,820	0.51	92.04	10,488	10,488
Distributed Generation -Base	2012	2	3	1,334	1.05	1.00	1,400	7.28	16.39	9,050	8,900
Distributed Generation -Peak	2011	1	2	1,601	1.05	1.00	1,681	7.28	16.39	10,059	9,880
Biomass	2013	80	4	3,414	1.07	1.05	3,849	6.86	65.89	9,451	7,765
Geothermal 7,8	2010	50	4	1,666	1.05	1.00	1,749	0.00	168.33	32,969	30,326
MSW - Landfill Gas	2010	30	3	2,430	1.07	1.00	2,599	0.01	116.80	13,648	13,648
Conventional Hydropower*	2013	500	4	2,084	1.10	1.00	2,291	2.49	13.93	9,884	9,884
Wind	2009	50	3	1,837	1.07	1.00	1,966	0.00	30.98	9,884	9,884
Wind Offshore	2013	100	4	3,492	1.10	1.02	3,937	0.00	86.92	9,884	9,884
Solar Thermal ⁷	2012	100	3	4,798	1.07	1.00	5,132	0.00	58.05	9,884	9,884
Photovoltaic ⁷	2011	5	2	5,879	1.05	1.00	6,171	0.00	11.94	9,884	9,884

¹Online year represents the first year that a new unit could be completed, given an order date of 2009. For wind, geothermal and landfill gas, the online year was moved earlier to acknowledge the significant market activity already occuring in anticipation of the expiration of the Production Tax Credit.

²A contingency allowance is defined by the American Association of Cost Engineers as the "specific provision for unforeseeable elements if costs within a defined project scope; particularly important where previous experience has shown that unforeseeable events which will increase costs are likely to occur."

³The technological optimism factor is applied to the first four units of a new, unproven design. It reflects the demonstrated tendency to underestimate actual costs for a first-of-a-kind unit.

⁴Ovemight capital cost including contingency factors, excluding regional multipliers and learning effects. Interest charges are also excluded. These represent costs of new projects initiated in 2009.

⁵O&M = Operations and maintenance.

⁶For hydro, wind, and solar technologies, the heatrate shown represents the average heatrate for conventional thermal generation as of 2008. This is used for purposes of calculating primary energy consumption displaced for these resources, and does not imply an estimate of their actual energy conversion efficiency.

⁷Capital costs are shown before investment tax credits are applied.

⁸Combustion turbine units can be built by the model prior to 2011 if necessary to meet a given region's reserve margin.

⁹Because geothermal and hydro cost and performance characteristics are specific for each site, the table entries represent the cost of the least expensive plant that could be built in the Northwest Power Pool region, where most of the proposed sites are located.

Sources: The values shown in this table are developed by the Energy Information Administration, Office of Integrated Analysis and Forecasting, from analysis of reports and discussions with various sources from industry, government, and the Department of Energy Fuel Offices and National Laboratories. They are not based on any specific technology model, but rather, are meant to represent the cost and performance of typical plants under normal operating conditions for each plant type. Key sources reviewed are listed in the 'Notes and Sources' section at the end of the chapter.

Table 3: 2013 Cost of new generation technologies

	Plant Cha	racteristics	Plant Costs (2012\$)						
	Nominal Capacity (MW)	Heat Rate (Btu/kWh)	Overnight Capital Cost (\$/kW)	Fixed O&M Cost (\$/kW-yr)	Variable O&M Cost (\$/MWh)	NEMS Input			
Coal									
Single Unit Advanced PC	650	8,800	\$3,246	\$37.80	\$4.47	N			
Dual Unit Advanced PC	1,300	8,800	\$2,934	\$31.18	\$4.47	Y			
Single Unit Advanced PC with CCS	650	12,000	\$5,227	\$80.53	\$9.51	Y			
Dual Unit Advanced PC with CCS	1,300	12,000	\$4,724	\$66.43	\$9.51	N			
Single Unit IGCC	600	8,700	\$4,400	\$62.25	\$7.22	N			
Dual Unit IGCC	1,200	8,700	\$3,784	\$51.39	\$7.22	Y			
Single Unit IGCC with CCS	520	10,700	\$6,599	\$72.83	\$8.45	N			
Natural Gas									
Conventional CC	620	7,050	\$917	\$13.17	\$3.60	Y			
Advanced CC	400	6,430	\$1,023	\$15.37	\$3.27	Y			
Advanced CC with CCS	340	7,525	\$2,095	\$31.79	\$6.78	Y			
Conventional CT	85	10,850	\$973	\$7.34	\$15.45	Y			
Advanced CT	210	9,750	\$676	\$7.04	\$10.37	Y			
Fuel Cells	10	9,500	\$7,108	\$0.00	\$43.00	Y			
Uranium									
Dual Unit Nuclear	2,234	N/A	\$5,530	\$93.28	\$2.14	Y			
Biomass									
Biomass CC	20	12,350	\$8,180	\$356.07	\$17.49	N			
Biomass BFB	50	13,500	\$4,114	\$105.63	\$5.26	Y			
Wind									
Onshore Wind	100	N/A	\$2,213	\$39.55	\$0.00	Y			
Offshore Wind	400	N/A	\$6,230	\$74.00	\$0.00	Y			
Solar									
Solar Thermal	100	N/A	\$5,067	\$67.26	\$0.00	Y			
Photovoltaic	20	N/A	\$4,183	\$27.75	\$0.00	N			
Photovoltaic	150	N/A	\$3,873	\$24.69	\$0.00	Y			
Geothermal									
Geothermal – Dual Flash	50	N/A	\$6,243	\$132.00	\$0.00	N			
Geothermal – Binary	50	N/A	\$4,362	\$100.00	\$0.00	N			
Municipal Solid Waste									
Municipal Solid Waste	50	18,000	\$8,312	\$392.82	\$8.75	N			
Hydroelectric			-						
Conventional Hydroelectric	500	N/A	\$2,936	\$14.13	\$0.00	N			
Pumped Storage	250	N/A	\$5,288	\$18.00	\$0.00	N			

Table 4: 2015 Cost of new gase	generation technologies
--------------------------------	-------------------------

Technology	Online Year ¹	Size (MW)	Lead time (years)	Overnight Cost in 2014 (2013 \$/kW)	Project Contin- gency Factor ²	Techno- logical Optimism Factor ³	Total Overnight Cost in 2014 ⁴ (2013 \$/kW)	Variable O&M⁵ (2013 \$/mWh)	Fixed O&M (2013 \$/ kW/yr.)	Heatrate ⁶ in 2014 (Btu/ kWh)
Scrubbed Coal New	2018	1300	4	2,726	1.07	1.00	2,917	4.47	31.16	8,800
Coal-Gasification Integrated Comb Cycle (IGCC)	2018	1200	4	3,483	1.07	1.00	3,727	7.22	51.37	8,700
IGCC with Carbon sequestion	2018	520	4	5,891	1.07	1.03	6,492	8.44	72.80	10,700
Conv Gas/Oil Comb Cvcle	2017	620	3	869	1.05	1.00	912	3.60	13.16	7.050
Adv Gas/Oil Comb Cycle (CC)	2017	400	3	942	1.08	1.00	1,017	3.27	15.36	6,430
Adv CC with Carbon sequestration	2017	340	3	1,845	1.08	1.04	2,072	6.78	31.77	7,525
Conv Comb Turbine ⁸	2016	85	2	922	1.05	1.00	968	15.44	7.34	10,783
Adv Comb Turbine	2016	210	2	639	1.05	1.00	671	10.37	7.04	9,750
Fuel Cells	2017	10	3	6,042	1.05	1.10	6,978	42.97	0.00	9,500
Adv Nuclear	2022	2234	6	4.646	1.10	1.05	5.366	2.14	93.23	10.479
Distributed Generation-Base	2017	2	3	1,407	1.05	1.00	1,477	7.75	17.44	9,015
Distributed Generation - Peak	2016	1	2	1,689	1.05	1.00	1,774	7.75	17.44	10,015
Biomass	2018	50	4	3,399	1.07	1.01	3,659	5.26	105.58	13,500
Geothermal ^{7,9}	2018	50	4	2,331	1.05	1.00	2,448	0.00	112.85	9,516
Municipal Solid Waste Conventional	2017	50	3	7,730	1.07	1.00	8,271	8.74	392.60	14,878
Hydropower ⁹	2018	500	4	2,410	1.10	1.00	2,651	5.76	15.15	9,516
Wind	2017	100	3	1,850	1.07	1.00	1,980	0.00	39.53	9,516
Wind Offshore	2018	400	4	4,476	1.10	1.25	6,154	0.00	73.96	9,516
Solar Thermal ⁷	2017	100	3	3,787	1.07	1.00	4,052	0.00	67.23	9,516
Photovoltaic ^{7,10}	2016	150	2	3,123	1.05	1.00	3,279	0.00	24.68	9,516

Table 5: 2020 Cost of new generation technologies

				Base	Techno-	Total			
	First		Lead	overnight	logical	overnight	Variable	Fixed O&M	
	available	Size	time	cost ²	optimism	cost ^{4,5}	O&M ⁶ (2020	(2020\$/	Heat rate?
Technology	year1	(MW)	(years)	(2020 \$/kW)	factor ^a	(2020 \$/kW)	\$/MWh)	kW-yr)	(Btu/kWh)
Ultra-supercritical coal (USC)	2024	650	4	3,672	1.00	3,672	4.52	40.79	8,638
USC with 30% carbon capture and sequestration (CCS)	2024	650	4	4,550	1.01	4,595	7.11	54.57	9,751
USC with 90% CCS	2024	650	4	5,861	1.02	5,978	11.03	59.85	12,507
Combined-cycle—single shaft	2023	418	3	1,082	1.00	1,082	2.56	14.17	6,431
Combined-cycle-multi shaft	2023	1,083	3	957	1.00	957	1.88	12.26	6,370
Combined-cycle with 90% CCS	2023	377	3	2,471	1.04	2,570	5.87	27.74	7,124
Internal combustion engine	2022	21	2	1,813	1.00	1,813	5.72	35.34	8,295
Combustion turbine— aeroderivative ⁸	2022	105	2	1,169	1.00	1,169	4.72	16.38	9,124
Combustion turbine-industrial	2022	237	2	709	1.00	709	4.52	7.04	9,905
frame									
Fuel cells	2023	10	3	6,277	1.09	6,866	0.59	30.94	6,469
Nuclear—light water reactor	2026	2,156	6	6,034	1.05	6,336	2.38	122.26	10,455
Nuclear-small modular reactor	2028	600	6	6,183	1.10	6,802	3.02	95.48	10,455
Distributed generation—base	2023	2	3	1,560	1.00	1,560	8.65	19.46	8,935
Distributed generation—peak	2022	1	2	1,874	1.00	1,874	8.65	19.46	9,921
Battery storage	2021	50	1	1,165	1.00	1,165	0.00	24.93	NA
Biomass	2024	50	4	4,077	1.00	4,078	4.85	126.36	13,500
Geothermal ^{9,10}	2024	50	4	2,772	1.00	2,772	1.17	137.50	8,946
Municipal solid waste—landfill	2023	36	3	1,566	1.00	1,566	6.23	20.20	8,513
gas									
Conventional hydropower ¹⁰	2024	100	4	2,769	1.00	2,769	1.40	42.01	NA
Wind ⁵	2023	200	3	1,846	1.00	1,846	0.00	26.47	NA
Wind offshore ⁹	2024	400	4	4,362	1.25	5,453	0.00	110.56	NA
Solar thermal ⁹	2023	115	3	7,116	1.00	7,116	0.00	85.82	NA
Solar photovoltaic (PV) with tracking ^{5,9,11}	2022	150	2	1,248	1.00	1,248	0.00	15.33	NA
Solar PV with storage ^{9,11}	2022	150	2	1,612	1.00	1,612	0.00	32.33	NA

¹ Represents the first year that a new unit could become operational.

hep-security duration of the security of the s

* Overnight capital cost includes contingency factors and excludes regional multipliers (except as noted for wind and solar PV) and learning effects. Interest charges are also

Ore implicitly a control to be contingency records and exclude regional variation in 2021. ⁵ Total overnight capital cost for plants that would come online in 2021. ⁵ Total overnight cost for ind and solar PV technologies in the table are the average input value across all 25 electricity market regions, as weighted by the respective capacity of that type installed during 2019 in each region to account for the substantial regional variation in wind and solar costs (as shown in Table 4). The input value used for onshore wind in AEOD21 was 51,268 per knownt (kW), and for solar PV with tracking it was 51,322/kW, which represents the cost of building a plant excluding regional factors. Region-specific factors contributing to the substantial regional variation in cost include differences in typical project size across regions, accessibility of resources, and variation in labor and other construction costs throughout the country.

O&M = Operations and maintenance.

* OBM = Operations and maintenance.
* OBM = Operations and maintenance.
* The nuclear workspectual exercises the structure of the structure of

for rossil-lue generation in each year to report primary energy consumption displaces for these resources. ⁴ Compution furthine servicehrwistive units can be built by the model before 2022, if necessary, to meet a region's reserve margin. ⁴ Capital costs are shown before investment tax credits are applied. ¹⁴ Because geothermal and hydropower cost and performance characteristics are specific for each site, the table entries show the cost of the least expensive plant that could be built in the Northwest region for hydro and Great Basin region for geothermal, where most of the proposed sites are located.

¹¹ Costs and capacities are expressed in terms of net AC (alternating current) power available to the grid for the installed capacity. Sources: Input costs are primarily based on a report provided by external consultants: Sargent & Lundy, December 2019. Hydropower site costs for non-powered dams were most recently updated for AE02018 using data from Oak Ridge National Lab

Table 6: 2023 Cost of new generation technologies

Technology	First available yearª	Size (MW)	Lead time (years)	overnight cost ^b (2022\$/ kW)	Techno- logical optimism factor ^c	Total overnight cost ^{d,e} (2022\$/kW)	Variable O&M ^f (2022\$/ MWh)	Fixed O&M (2022\$/ kWy)	Heat rate¤ (Btu/kWh)
Ultra-supercritical coal (USC)	2026	650	4	\$4,507	1.00	\$4,507	\$5.06	\$45.68	8,638
USC with 30% carbon capture and sequestration (CCS)	2026	650	4	\$5,577	1.01	\$5,633	\$7.97	\$61.11	9,751
USC with 90% CCS	2026	650	4	\$7,176	1.02	\$7,319	\$12.35	\$67.02	12,507
Combined-cycle—single-shaft	2025	418	3	\$1,330	1.00	\$1,330	\$2.87	\$15.87	6,431
Combined-cycle—multi-shaft	2025	1,083	3	\$1,176	1.00	\$1,176	\$2.10	\$13.73	6,370
Combined-cycle with 90% CCS	2025	377	3	\$3,019	1.04	\$3,140	\$6.57	\$31.06	7,124
Internal combustion engine	2024	21	2	\$2,240	1.00	\$2,240	\$6.40	\$39.57	8,295
Combustion turbine—aeroderivative ^h	2024	105	2	\$1,428	1.00	\$1,428	\$5.29	\$18.35	9,124
Combustion turbine—industrial frame	2024	237	2	\$867	1.00	\$867	\$5.06	\$7.88	9,905
Fuel cells	2025	10	3	\$6,771	1.08	\$7,291	\$0.66	\$34.65	6,469
Nuclear—light water reactor	2028	2,156	6	\$7,406	1.05	\$7,777	\$2.67	\$136.91	10,447
Nuclear—small modular reactor	2028	600	6	\$7,590	1.10	\$8,349	\$3.38	\$106.92	10,447
Distributed generation—base	2025	2	3	\$1,915	1.00	\$1,915	\$9.69	\$21.79	8,912
Distributed generation—peak	2024	1	2	\$2,300	1.00	\$2,300	\$9.69	\$21.79	9,894
Battery storage	2023	50	1	\$1,270	1.00	\$1,270	\$0.00	\$45.76	NA
Biomass	2026	50	4	\$4,996	1.00	\$4,998	\$5.44	\$141.50	13,500
Geothermal ^{i, j}	2026	50	4	\$3,403	1.00	\$3,403	\$1.31	\$153.98	8,881
Conventional hydropower ^J	2026	100	4	\$3,421	1.00	\$3,421	\$1.57	\$47.06	NA
Wind ^e	2025	200	3	\$2,098	1.00	\$2,098	\$0.00	\$29.64	NA
Wind offshore ⁱ	2026	400	4	\$5,338	1.25	\$6,672	\$0.00	\$123.81	NA
Solar thermal ⁱ	2025	115	3	\$8,732	1.00	\$8,732	\$0.00	\$96.10	NA
Solar photovoltaic (PV) with tracking ^{e, i, k}	2024	150	2	\$1,448	1.00	\$1,448	\$0.00	\$17.16	NA
Solar PV with storage ^{1, k}	2024	150	2	\$1,808	1.00	\$1,808	\$0.00	\$32.42	NA

The overnight cost data of Tables 1-6 have been summarized in Table 7.

		Base Overnight	t Cost \$/kW)			
Technology	2008 (2006\$)	2010 (2008\$)	2013 (2012\$)	2015 (2013\$)	2020 (2020\$)	2023 (2023\$)
Ultra-critical coal	1434	2078	2934	2726	3672	4507
IGCC	1657	2461	3784	3483		
IGCC with CCS	2302	3427	6599	5891		
Conv Gas Oil CC (multishaft)	683	937	917	869	957	
Adv Gas/Oil CC	654	897	1023	942		
Adv CC with CCS	1254	1720	2095	1845		3140
Conv CT - aeroderivative	476	653	973	922	1169	1428
Adv CT - industrial frame	450	617	676	639	709	867
Nuclear -small modular reactor						8349
Adv Nuclear - lite watr reactor	2143	3308	5530	4646	6336	7777
Geothermal	1057	1666	4362	2331	2772	3403
Wind onshore	1340	1837	2213	1850	1268	2098
Wind offshore	2547	3492	6230	4476	5453	6672
Solar thermal	3499	4798	5067	3787	7116	8732
Solar PV with tracking	5380	5879	3873	3123	1248	1448

Table 7: Summary of data in Tables 1-6

Fig. 2 illustrates these data. Some caveats:

- The first bar is 2008 report, the second is 2010 report, the third is 2013 report, the fourth is 2015 report, the fifth is 2020 report. The sixth is 2023 report.
- The data are in current (nominal) dollars in the given year and so reflect the effect of inflation (particularly salient when comparing 2023 figures to those of previous years).
- It is clear that
 - o solar thermal, advanced nuclear, small modular reactors, and IGCC with CCS have the highest overnight costs;
 - combined cycle technologies, followed by combustion turbines, then onshore wind, and more recently, solar PV (utility scale), have the lowest overnight costs.

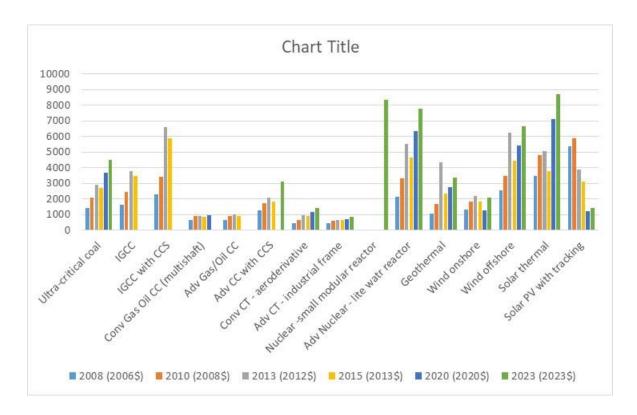


Fig. 2: Summary of EIA generation overnight cost data 2008-2023

3.NREL Annual Technology Baseline (ATB)

The NREL ATB database [8] is heavily used by people from all over the world. The Mid-Continent Independent System Operator (MISO) uses it in their planning studies; see, for example, Appendix E of the MTEP 2020 [9], and also MISO's 2023 Futures Report [10], where, on p. 109, the text and figure of Fig. 3a is presented. MISO used the 2022 National Renewable Energy Laboratory (NREL) Annual Technology Baseline (ATB).⁴⁷ to calculate the capital costs for all resources except for oil, ⁴⁸ compressed air energy storage (CAES), ⁴⁹ and internal combustion (IC) renewable.⁵⁰ costs. MISO utilized moderate cost values within the 2022 ATB, which are in 2020 dollars. These values were converted to 2022 dollars and projected into the 20-year study period to create cost trajectories. For Hybrid unit costs, 2022 ATB Solar PV + Battery costs are included.

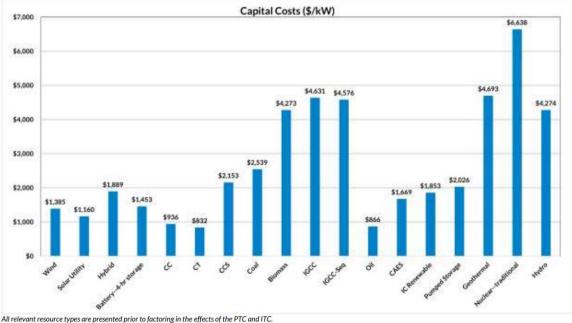
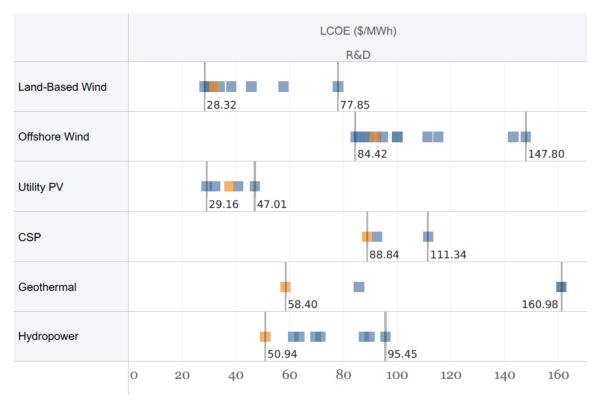


Fig 3a: ATB overnight cost data presented in MISO report [10]

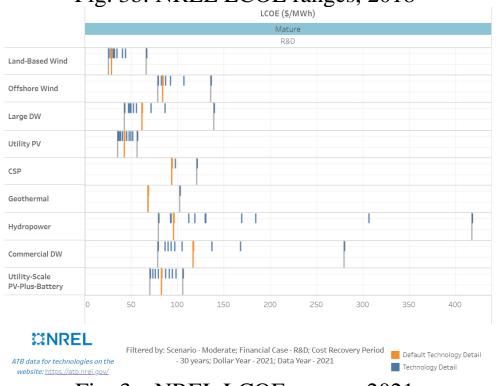

There is some overlap between NREL ATB and the EIA data mentioned in Section 2, but this overlap is mainly confined to the fossil, nuclear, and biopower cost estimates. Cost estimates for renewables are developed by the ATB team at NREL; sources used in this development effort can be found at https://atb.nrel.gov/electricity/2023/approach_&_methodology.

The NREL ATB data can be accessed at

https://atb.nrel.gov/electricity/2023/index

in any of several forms.

 <u>LCOE data</u>: LCOE ranges may be obtained, similar to that of what Lazards (see Fig. 1) provides, as indicated in Fig. 3b (for 2018) and Fig. 3c (for 2021).



Filtered by: Scenario - Moderate; Financial Case - R&D; Cost Recovery Period -30 years; Dollar Year - 2018; Data Year - 2018

Default Technology Det.. Technology Detail

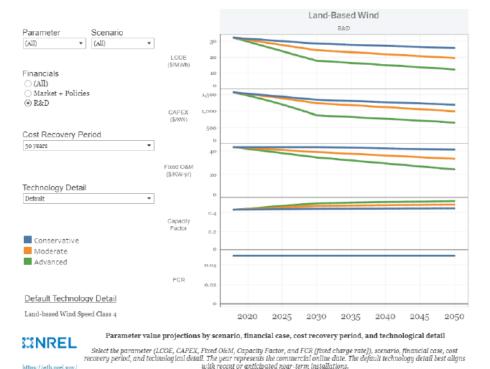

https://atb.nrel.gov/

Fig. 3b: NREL LCOE ranges, 2018

Fig. 3c: NREL LCOE ranges, 2021

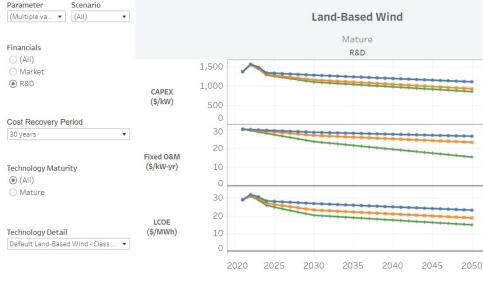
2. <u>Report-like form</u>: A textual report-like treatment of data for each technology may be obtained, see <u>https://atb.nrel.gov/electricity/2023/land-based_wind</u>. For example, when we click to see the "Land-based wind," several pages of descriptive text, plots, and tables become available. I have copied into Fig. 4a below a portion of this report-like material for "Land-based wind" data retrieved in 2021, and I have copied into Fig. 4b below a portion of this report-like material for "Land-based wind" data retrieved in 2021, and I have copied into Fig. 4b below a portion of this report-like material for "Land-based wind" data retrieved in 2021.

Land-Based Wind

ATB data for land-based wind are shown above. These projections use bottom-up engineering models in combination with defined 2030 turbine and plant technologies. The future technology pathways are based on predicted technology advancements from continued and rapid scaling of modern wind turbine nameplate ratings and increased rotor sizes. These gains in turbine scaling and technology advancements enable economies of scale, balance-of-plant efficiencies, and more-efficient energy extraction for turbines in various resource regimes at greater heights above the ground.

In general, there is substantial focus throughout the global wind industry on driving down costs and increasing performance as a result of fierce competition from within as well as among several power generation technologies, including solar PV and natural gas-fired generation.

The three scenarios for technology innovation are:


- Conservative Technology Innovation Scenario (Conservative Scenario): wind technology scale increasing in the near term but leveling off soon afterward, with limited advancement in turbine controls and science-based modeling to inform the next generation of wind technology
- Moderate Technology Innovation Scenario (Moderate Scenario): scale continuing to increase rapidly
 with innovations overcoming transportation challenges, advancements occurring in turbine controls, and
 science-based modeling informing the next generation of wind technology
- Advanced Technology Innovation Scenario (Advanced Scenario): enabling large-scale increases in turbine technology size and scope new transportation solutions, fully integrated wind plant advanced control systems, and high-fidelity science-based modeling to inform multiple aspects of turbine design.

Resource Categorization

In the 2020 ATB, the cost and performance data for wind technologies are specified for different resource categories that are consistent with those used to represent the full wind resource in the NREL Regional Energy Deployment System (ReEDS) model (Brown et al., 2020). In prior editions of the ATB, these classes were referred to as techno-resource groups (TRGs) and were designed based on site-specific levelized cost of energy by considering, in combination, the wind resource quality (e.g., wind speed) and turbine configuration (e.g., specific power). The TRG methodology is described in Appendix H of the Wind Vision study (DOE & NREL, 2015). In the 2020 ATB, the TRG-based classification is replaced with a simpler set of resource "wind speed classes" that are defined based on only annual mean wind speed.

Fig. 4a: Report-like information for land-based wind (retrieved in 2021)

Land-Based Wind

data updated: 07/15/2023 v8.0

ATB data for technologies on the website: https://atb.nrel.gov/ Parameter value projections by scenario, financial case, cost recovery period, and technological detail Select the parameter (LCDE, CAPEX, Fixed O&M, Capacity Fastor, and FCR (Fixed charge rate), OCC, CFC, GCC, scenario, financial case, cost recovery period, and technological detail. The year represents the commercial online date. The default technology detail best aligns with recent or anticipated near-term installations.

2023 ATB data for land-based wind are shown above. These projections use bottom-up engineering models in combination with representative 2030 wind turbine and plant technologies. The predicted future technology pathways are based on a series of innovations to overcome transportation challenges, advance wind turbine controls, and apply science-based modeling for next-generation wind turbines. These technology advancements enable economies of scale, balance-of-plant efficiencies, and more-efficient energy extraction for various turbine configurations in different wind resource regimes. Details on the representative 2030 wind turbines characteristics are presented in the Representative Technology section of this page.

Scenario Descriptions

The 2023 ATB scenarios are different from the methods used in previous editions of the ATB. In prior editions, each scenario for land-based wind assumed one wind turbine technology characterization and projected innovations to overcome transportation challenges, advance wind turbine controls, and increase adoption of science-based modeling. In the 2023 ATB, multiple wind turbine technology configurations are developed separately, which allows for different technologies to be used within each scenario.

The scenarios now consider four different technology configurations (see the Representative Technology section of this page for details) each with three cost and performance projections:

- Conservative Cost and Performance Scenario (Conservative Scenario): Cost and performance trajectories for each technology are based on conservative historical learning rates. Learning rates for capital expenditures vary by technology based on the Moderate Scenario's bottom-up engineering-based cost modeling of each technology in 2030.
- Moderate Cost and Performance Scenario (Moderate Scenario): From 2021 to 2030, cost and performance trajectories for each technology are based on bottom-up scaling relationships and process-based balance-ofsystem and turbine component cost models for each technology in 2021 and 2030. From 2030 to 2050, cost and performance trajectories for each technology are based on moderate historical learning rates.
- Advanced Cost and Performance Scenario (Advanced Scenario): Cost and performance trajectories for each technology are based on aggressive historical learning rates. Learning rates for capital expenditures vary by technology based on the Moderate Scenario's bottom-up engineering-based cost modeling of each technology in 2030.

Fig. 4b: Report-like information for land-based wind (retrieved in 2024)

- 3. <u>Spread-sheet form</u>: All technology data is available within a ~5MB Excel file containing 25 separate worksheets. The names of these worksheets are:
 - i. Preface and contents
 - ii. Financial definitions
 - iii. Financial and CRP inputs
 - iv. Land-based wind
 - v. Offshore wind
 - vi. Distributed wind
 - vii. Solar Utility PV
 - viii. Solar PV Distributed Commercial
 - ix. Solar PV Distributed Residential
 - x. Solar CSP
 - xi. Geothermal
 - xii. Hydropower
 - xiii. Coal_FE
 - xiv. Natural gas_FE
 - xv. Natural Gas Fuel Cell_FE
 - xvi. Coal retrofits
 - xvii. Natural gas retrofits
- xviii. Utility scale battery storage
 - xix. Commercial battery storage
 - xx. Residential battery storage
 - xxi. Utility scale PV-plus battery
- xxii. Pumped storage hydropower
- xxiii. WACC Calculation
- xxiv. Tax credits
- xxv. Summary
- xxvi. Summary CAPEX
- xxvii. Summary Capacity Factor
- xxviii. Summary FCR
 - xxix. Summary LCOE
 - xxx. Summary FOM
- xxxi. Summary VOM
- xxxii. Summary Fuel
- xxxiii. LCOE Range

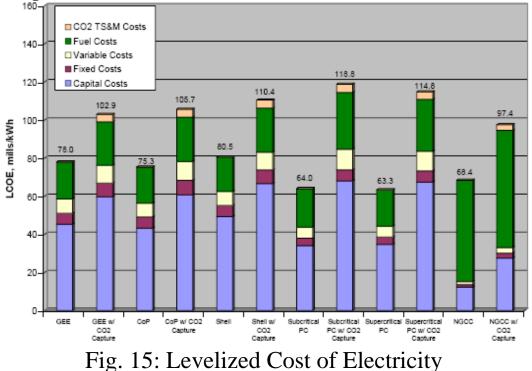
4. Last comments

4.1. Last comments - generation technologies

A useful document on costs of new fossil-fired generation technologies, developed using the modeling software Aspen [11], and published in 2007, can be found at [12]. A summary table from this document is given below as Table 10. Though dated, there are two points to this data that are still relevant today:

- 1. CCS is expensive. Comparing columns 1 and 2 data, 3 and 4 data, and so on, provides insight into the impact of CCS. Although CCS significantly reduces CO₂ emissions for all plant types, it requires (i) reduction in net power output (capacity); (ii) reduction in efficiency (increase in heatrate); (iii) increase in water usage; (iv) increase in LCOE; (v) increase in "total plant cost" (this is the capital cost).
- 2. Modeling software (Aspen in this case) for technoeconomic modeling of this nature is very available, although it requires significant power plant knowledge and start-up time to learn it. Its power is that it provides ability to perform rigorous cost analysis before actually investing in that technology.

		Integrat	ed Gasificat	ion Combine	ed Cycle			Pulverized	Coal Boiler	r	NGCC		
	G	EE	C	oP	Sh	ell	PC Su	ocritical	PC Sup	ercritical	Advance	Advanced F Class	
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	
CO₂ Capture	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	
Gross Power Output (kW _e)	770,350	744,960	742,510	693,840	748,020	693,555	583,315	679,923	580,260	663,445	570,200	520,090	
Auxiliary Power Requirement (kW.)	130,100	189,285	119,140	175,600	112,170	176,420	32,870	130,310	30,110	117,450	9,840	38,200	
Net Power Output (kW _e)	640,250	555,675	623,370	518,240	635,850	517,135	550,445	549,613	550,150	545,995	560,360	481,890	
Coal Flowrate (lb/hr)	489,634	500,379	463,889	477,855	452,620	473,176	437,699	646,589	411,282	586,627	N/A	N/A	
Natural Gas Flowrate (lb/hr)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	165,182	165,182	
HHV Thermal Input (kW _{th})	1,674,044	1,710,780	1,586,023	1,633,771	1,547,493	1,617,772	1,496,479	2,210,668	1,406,161	2,005,660	1,103,363	1,103,363	
Net Plant HHV Efficiency (%)	38.2%	32.5%	39.3%	31.7%	41.1%	32.0%	36.8%	24.9%	39.1%	27.2%	50.8%	43.7%	
Net Plant HHV Heat Rate (Btu/kW-hr)	8,922	10,505	8,681	10,757	8,304	10,674	9,276	13,724	8,721	12,534	6,719	7,813	
Raw Water Usage, gpm Total Plant Cost (\$ x 1,000)	4,003	4,579	3,757	4.135 1.259.883	3.792 1,256,810	4,563	6.212	12,187	5.441	10 444	2.511	3 901 564,628	
Total Plant Cost (\$ x 1,000)	1,160,919 1,813	1,328,209 2,390	1,080,166 1,733	2,431	1,250,010	1,379,524 2,668	852,612 1,549	1,591,277 2,895	866,391 1,575	1,567,073 2,870	310,710 554	1,172	
LCOE (mills/kWh) ¹	78.0	2,390	75.3	105.7	80.5	2,000	64.0	2,055	63.3	2,670	68.4	97.4	
CO ₂ Emissions (lb/hr)	1,123,781	102.9	1,078,144	131,328	1,054,221	103,041	1,038,110	152,975	975,370	138,681	446,339	97.4 44,634	
CO ₂ Emissions (tons/year) @ CF ¹	3,937,728	401,124	3,777,815	460,175	3,693,990	361,056	3,864,884	569,524	3,631,301	516,310	1,661,720	166,172	
CO ₂ Emissions (tonnes/year) @ CF ¹	3,572,267	363,896	3,427,196	417,466	3,351,151	327,546	3,506,185	516,667	3,294,280	468,392	1,507,496	150,750	
CO ₂ Emissions (Ib/MMBtu)	197	19.6	199	23.6	200	18.7	203	20.3	203	20.3	119	11.9	
CO. Emissions (lb/MWb) ²	1 459	154	1.452	189	1 409	149	1 780	225	1.681	209	783	85.8	
CO, Emissions (lb/MWh) ³	1.755	206	1.730	253	1.658	199	1.886	278	1.773	254	797	93	
SO ₂ Emissions (lb/hr)	73	56	68	48	55	58	433	Negligible	407	Negligible		Negligible	
SO ₂ Emissions (tons/year) @ CF ¹	254	196	237	167	194	204	1,613	Negligible	1,514	Negligible	Negligible	Negligible	
SO ₂ Emissions (tonnes/year) @ CF ¹	231	178	215	151	176	185	1,463	Negligible	1,373	Negligible	Negligible	Negligible	
SO ₂ Emissions (Ib/MMBtu)	0.0127	0.0096	0.0125	0.0085	0.0105	0.0105	0.0848	Negligible	0.0847	Negligible	Negligible	Negligible	
SO ₂ Emissions (Ib/MWh) ²	0.0942	0.0751	0.0909	0.0686	0.0739	0.0837	0.7426	Negligible	0.7007	Negligible	Negligible	Negligible	
NOx Emissions (lb/hr)	313	273	321	277	309	269	357	528	336	479	34	34	
NOx Emissions (tons/year) @ CF ¹	1,096	955	1,126	972	1,082	944	1,331	1,966	1,250	1,784	127	127	
NOx Emissions (tonnes/year) @ CF ¹	994	867	1,021	882	982	856	1,207	1,783	1,134	1,618	115	115	
NOx Emissions (lb/MMBtu)	0.055	0.047	0.059	0.050	0.058	0.049	0.070	0.070	0.070	0.070	0.009	0.009	
NOx Emissions (lb/MWh) ²	0.406	0.366	0.433	0.400	0.413	0.388	0.613	0.777	0.579	0.722	0.060	0.066	
PM Emissions (lb/hr)	41	41	38	40	37	39	66	98	62	89		Negligible	
PM Emissions (tons/year) @ CF ¹	142	145	135	139	131	137	247	365	232	331	Negligible	Negligible	
PM Emissions (tonnes/year) @ CF ¹	129	132	122	126	119	125	224	331	211	300	Negligible	Negligible	
PM Emissions (Ib/MMBtu)	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0130	0.0130	0.0130	0.0130		Negligible	
PM Emissions (Ib/MWh) ²	0.053	0.056	0.052	0.057	0.050	0.057	0.114	0.144	0.107	0.134		Negligible	
Hg Emissions (lb/hr)	0.0033	0.0033	0.0031	0.0032	0.0030	0.0032	0.0058	0.0086	0.0055	0.0078		Negligible	
Hg Emissions (tons/year) @ CF ¹	0.011	0.012	0.011	0.011	0.011	0.011	0.022	0.032	0.020	0.029	Negligible	Negligible	
Hg Emissions (tonnes/year) @ CF1	0.010	0.011	0.010	0.010	0.010	0.010	0.020	0.029	0.019	0.026		Negligible	
Hg Emissions (Ib/TBtu)	0.571	0.571	0.571	0.571	0.571	0.571	1.14	1.14	1.14	1.14	Negligible	Negligible	
Hg Emissions (lb/MWh) ²	4.24E-06	4.48E-06	4.16E-06	4.59E-06	4.03E-06	4.55E-06	1.00E-05	1.27E-05	9.45E-06	1.18E-05	Negligible	Negligible	


Table 10: Cost, Performance, and Environmental Summary

¹ Capacity factor is 80% for IGCC cases and 85% for PC and NGCC cases

² Value is based on gross output

³ Value is based on net output

A more visual representation of these data is seen in Fig. 15. Here, TS&M costs represents the transport, storage, and monitoring cost of the carbon sequestration process, and the vertical axis units, mills/kWhr, (where a mill=\$0.001), is the same as \$/MWhr. Comparing bars 1 and 2, bars 3 and 4, etc., enables one to observe that CCS causes all costs to increase except fixed costs. The largest cost increase is in the capital costs.

4.2. Last comments - trans technologies

We have said nothing about transmission costs in this document because our focus in this document has been on generation costs. For now, I simply refer you to the best transmission cost resource document of which I know, the MISO Transmission Cost Estimation Guide [13]. We will have more to say about transmission cost later in the course.

References:

Lazard's LCOE, Nov., 2020, <u>https://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-of-storage-2020/</u>.
 Laxard's LCOE, Oct., 2023, <u>www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/</u>.

[3] DOE EIA Report #:DOE/EIA-0554, June 2008 on "Generation Technologies Cost," available from www.eia.doe.gov/fuelelectric.html, or www.eia.doe.gov/oiaf/aeo/assumption/pdf/electricity.pdf#page=3.
[4] DOE EIA Report #:DOE/EIA-0554, April 2010 on "Generation Technologies Cost," available from http://www.eia.doe.gov/oiaf/aeo/assumption/pdf/electricity.pdf#page=3.

[5]April 2013, http://www.eia.gov/forecasts/capitalcost/pdf/updated_capcost.pdf

[6] http://www.eia.gov/forecasts/aeo/assumptions/pdf/table_8.2.pdf

[7] US EIA Website on generation overnight costs, www.eia.gov/forecasts/aeo/assumptions/pdf/table 8.2.pdf

[8] NREL (National Renewable Energy Laboratory). 2020. "2020 Annual Technology Baseline." Golden, CO: National Renewable Energy Laboratory. <u>https://atb.nrel.gov/</u>.

[9] MTEP 2020, MISO, Appendix E, <u>https://cdn.misoenergy.org//MTEP20%20Appendix%20E%20-%20Futures%20Assumptions485668.pdf</u>.

[10] Midcontinent Independent System Operator, "MISO Futures Report, Series 1A," Nov. 1, 2023.
Accessed 2/6/2024. Available: <u>https://cdn.misoenergy.org/Series1A Futures Report630735.pdf</u>.
[11] Home page for Aspen Technologies, <u>http://www.aspentech.com/</u>.

[12] "Cost and Performance Baseline for Fossil Energy Plants," Volume 1: Bituminous Coal and Natural Gas to Electricity Final Report, DOE/NETL-2007/1281, August 2007, available at www.netl.doe.gov/energy-analyses/pubs/Bituminous%20Baseline_Final%20Report.pdf.

[13] Midcontinent Independent System Operator (MISO), "MISO Transmission Cost Estimation Guide,"May5,2023.AccessedFeb.6,2024.Available:https://cdn.misoenergy.org/MISO%20Transmission%20Cost%20Estimation%20Guide%20for%20MTEP23337433.pdf