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Solving Linear Programs 

 

1.0 Basic form 

 

We go back to the form of the basic optimization 

problem we have considered, which is 
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We recall that a linear program (LP) requires all 

functions f, h, and g to be linear in the variables x.  

 

We make four comments regarding (1). 

1. Equality constraints: The equality constraints may 

be converted into two inequality constraints via the 

following approach: 
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and we may then reverse the sign of the second 

inequality, resulting in: 
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This means we may include all of our equality 

constraints h(x)=c from our general form (1) in our 

inequality constraints g(x)< b, so that the general 

form of our problem becomes: 
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2. Nonnegativity constraints: The form given in (4) 

places no restriction on the sign of the decision 

variables in x. Most problems require all decision 

variables to be nonnegative. For example, 

generation offers and demand bids are typically 

this way. This is convenient, because the algorithm 

we will present to solve LPs requires 

nonnegativity on the decision variables. It is the 

case, however, that some problems need to allow 

negativity for some or all decision variables. For 

example, we might like to develop a generation 

dispatch function that computes changes in 

generation rather than generation. For such cases, 

it is possible to convert one decision variable 

without the nonnegativity constraint into one, or 

two decision variables with nonnegativity 

constraints. We will not go into that here, but 

suffice it to say there are many references that 

describe how to do this, including [1, pg. 83-86]. 

Given this, we pose our general form of the 

optimization as  
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3. No lower bounds on g(x):  It is possible that a 

problem has constraints like cl<g(x)<ch. In this 

case, the right hand side g(x)<ch is already in the 

correct form, but the left hand side cl<g(x) is not. 

In this case, we can multiply both sides by -1, 

resulting in  

g(x)<-cl     (6) 

The negative right-hand-side is addressed in the 

next bullet-point. 

4. Negative right-hand-sides: We also require that all 

elements of b be nonnegative. This may seem to 

contradict the step we took in eq. (3) and (6) 

above. However, we will see at the end of these 

notes that it is possible to convert inequalities like 

these, with a negative right-hand-side, to the 

desirable form. 

 

2.0 A simple solution approach 

 

We concluded our last set of notes (IntroLP) with the 

statement 
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“We will call such intersection points corner 

points. Therefore we see that our solution will 

always be at a corner point. This provides us 

with a basis for solution to LPs: Search the 

corner points!” 

This is an effective approach, and if you take it, you 

will always find the right answer. However, you may 

also be doing a great deal of work. In our second 

example (Section 3.0) of our previous notes 

(IntroLP), we considered following LP: 

yxyxf 85),(max   

Subject to 

4803040  yx  (person 1) 

4803224  yx  (person 2) 

4802420  yx  (person 3) 

0,0  yx  

and the constraints are visualized in Fig. 1. 
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Fig. 1: Constraints for example problem 

 

Here we see there are four corner points to search: 

(0,0), (12,0), (1.7143, 13.7143), and (0,15). However, 

we must make an important distinction here. These 

are feasible corner points. Because we know the 

solution must be feasible, these are the right points to 

search. Yet there are other infeasible corner points. 

For example, (0,16), (0,20), (20,0), and (24,0) are 

four such infeasible corner points. And there are two 

more that are outside the plane that we have plotted 

in Fig. 1. Counting them up, we see there are a total 

of 10 corner points, one for every pair of constraints. 
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This number of corner points is a combinatorial 

problem, characterized by 5 distinct things 

(constraints) taken 2 at a time, i.e.,  
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We can easily distinguish feasible and infeasible 

corner points from Fig. 1. However, it will not be so 

easy for larger problems, especially when there are 

many decision variables and we cannot easily 

visualize the constraints in 2-D as we are doing here. 

One could perhaps devise a means to check them all, 

but it would be highly computational. For example, 

consider having just 40 constraints, there would be 

780 corner points to check. Some problems have 

millions of constraints. 

 

3.0 A better solution approach 

 

So we need to develop a more effective strategy. To 

do so, let’s consider a graphical portrayal of some 

LP, as shown in Fig. 2. 

 

In Fig. 2, the dashed lines are the constraint 

boundaries, and the thick solid blue lines enclose the 

feasible region. The thin solid lines show the 

contours of constant objective function.  
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Fig. 2: Feasible region and contours for some LP 

 

It is easy to see in Fig. 2 that if we are minimizing, 

the solution is corner point 1, and the minimum value 

is 5.  

 

Likewise, if we are maximizing, the solution is 

corner point 5, and the maximum value is 100.  

 

We consider a strategy for solving this problem. This 

strategy depends on the following two definitions:  

 Adjacent corner points are connected by a single 

line segment on the boundary of the feasible region.  

 One corner point is better than another if it has a 

higher value of the objective function f.  
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Our strategy is as follows: 

1. Pick a corner point at random.  

2. Move to an adjacent corner point that is better.  

a. If there are two that are better, move to the one 

that is best. 

b. If there are no better adjacent corner points, 

the current corner point is the solution to the 

problem. 

Let’s apply this strategy to the problem of Fig. 2, 

assuming we are maximizing the function. We also 

assume that we initially choose corner point 1. 

 

From corner point 1, we can either move to corner 

point 2 or 11. But the objective function value at 

corner point 2, f2=20, whereas the objective function 

value at corner point 11 is only f11=10. Although both 

are better than f1=5, we choose to move to corner 

point 2 since it is better.  

From corner point 2, f2=20, we can move to corner 

point 1, f1=5 or corner point 3, f3=60. Corner point 1 

is not an option since it does not get better. But 

corner point 3 is better, with f3=60, so we move there.  

 

In like fashion, we move to corner point 4, f4=95, and 

then to corner point 5, f5=100.  
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At corner point 5, there are two options: corner point 

4, with f4=95, or corner point 6, with f6=97. Both of 

these are worse than corner point 5. So we are done, 

and corner point 5 is the solution with f5=100 as the 

maximum value of the problem. 

 

From this example, we may conjecture a condition 

for optimality: 

If a corner point feasible solution is equal to or 

better than all its adjacent corner point feasible 

solutions, then it is equal to or better than all 

other corner point feasible solutions, i.e., it is 

optimal.  

Formal proofs of this optimality condition are 

available in some texts; here, we simply state the 

essence of such proofs, which is contained in the 

following two points. 

1. If the objective function monotonically increases 

(decreases) in some direction within the decision-

vector space, then each adjacent corner point will 

become progressively better in the direction of 

objective function increase (decrease) such that the 

last corner point must have two adjacent corner 

points that are worse.   

2. The monotonicity of objective function increase 

(decrease) is guaranteed by its linearity. 
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With the above optimality condition in place, we may 

outline the algorithm that we are going to study for 

solving linear programs. It is called the Simplex 

Method, and at a high level, is like this [1]: 

1. Initialization: Start at a corner point solution. 

2. Iterative step: Move to a better adjacent corner 

point feasible solution.  

3. Optimality test: Determine if the current feasible 

corner point is optimal using our optimality test (if 

none of its adjacent feasible corner points are 

better, then the current feasible corner point is 

optimal).  

a. If the current feasible corner point is 

optimal, the solution has been found, and the 

method terminates. 

b. If the current feasible corner point is not 

optimal, then go to 2. 

 

4.0 A word about the simplex method 

 

The simplex method was developed in 1947 by 

George Dantzig (1914-2005) who worked for the US 

Air Force in the Pentegon to find better ways to plan 

the Air Force activities. He was trained as a 

mathematician but had significant experience in 

developing the plans that the air force required.  
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It is hard to conceptualize now, but at that time, there 

was no notion of an objective function. Neither was 

there any understanding that physical constraints on 

resources could be represented by linear inequalities. 

Dantzig recognized both of these; in addition, he 

developed the simplex method we are about to study.  

 

The simplex method almost immediately 

revolutionized many fields, among which were 

planning, production, and economics.  

 

It is interesting to note what brought this 

development to fruition: 

 A war (and the needs of the Air Force) 

 A person trained in mathematics and with 

significant practical experience in solving the 

problems at hand who, it seems, needed a job. 

 

I have posted on our website a short and very 

readable summary paper written by George Dantzig 

in 2002 on how the simplex method came to be.  

 

 

http://www-history.mcs.st-and.ac.uk/PictDisplay/Dantzig_George.html
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5.0 Setting up the simplex Method 

 

The material of this section is adapted from [1].  

 

The simplex method is comprised of a number of 

algebraic manipulations. These manipulations are 

made much easier if we first convert the inequality 

constraints into equality constraints by introducing 

slack variables.  

 

We use another simple example to explain this idea. 

The example is as follows: 
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Consider the first constraint x1<4. The slack variable 

for this constraint is  

x3=4-x1      (6) 

which represents the “slack” between the two sides of 

the inequality x1<4. If the “slack” is 0, then the 

inequality is satisfied with equality, and there is 

really “no slack.” This variable cannot be negative, 

otherwise, x1>4.  
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Therefore, the first inequality, x1<4, may be replaced 

with  

0        ,4  331  xxx     (7) 

We may similarly introduce slack variables into the 

other constraints, so that our original LP is converted 

to the following equivalent LP.  
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We need a few definitions: 

 Equality form: In contrast to the original inequality 

form, the equality form of the problem has all 

inequality constraints converted to equality 

constraints via introduction of slack variables. 

 Augmented solution: A solution to the LP that 

includes appropriate values of the slack variables (in 

addition to the values of the decision variables). For 

example, a solution to the original LP may be stated 

as (x1,x2)=(3,2) whereas an augmented solution would 

be stated as (x1,x2, x3, x4, x5)=(3,2,1,8,5). 
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 Basic solution: An augmented corner-point solution. 

For example, consider the corner point infeasible 

solution (4,6) in the example. Augmenting it with the 

slack variable values x3=0, x4=0, and x5=-6 yields the 

corresponding basic solution (4,6,0,0,-6). This basic 

solution is infeasible, as indicated by the presence of 

the negative slack variable x5. This point is illustrated 

by the ‘O’ in Fig. 3. 

 Basic feasible solution: A feasible augmented 

corner-point solution. For example, consider the 

corner point feasible solution (0,6) in the example. 

Augmenting it with the slack variables x3=4, x4=0, 

and x5=6 yields the corresponding basic feasible 

solution (0,6,4,0,6). This basic solution is feasible. 

This point is illustrated by the ‘X’ in Fig. 3. 
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Fig. 3: Illustration  

 

6.0 Final comment on general form of problem 

 

Recall our general LP form: 
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We mentioned in Section 1.0 of these notes, under 

point 3, that we required all elements of b to be 

nonnegative. Yet, in our point #1, we indicated we 

could handle equality constraints via the following 

transformation: 
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This results in a negative right-hand-side; 

assuming elements of c are all positive, then the 

second equation above would have all negative 

right-hand sides.  

 

The way to handle this is to first convert the 

problem into equality form via introduction of 

slack variables. Then another slack variable can be 

added for all equations having negative right-hand-

sides. An example will clarify. 

 

Let’s assume that our last statement of our 

example problems has one of the constraints with a 

negative right-hand-side, per below (the last 

equation, with -18 as the negative right-hand-side). 
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Let’s extract the one equation with the negative 

right-hand-side: 

1823 521  xxx     (9) 

Now we multiply by -1 to get 

1823 521  xxx     (10) 

Although this creates the positive right-hand-side 

that we need, we will see later on that our 

initialization procedure to find a feasible solution 

will fail here, because it will result in x5=-18 and 

therefore violates variable nonnegativity. As a 

result, we must add another slack variable here, 

resulting in 

1823 6521  xxxx    (10) 

Now we have that the right-hand-side is positive 

and our initialization procedure will result in 

x6=18, satisfying decision variable nonnegativity 

and nonnegativity on the element in b.  

 
                                                 

[1] F. Hillier and G. Lieberman, “Introduction to Operations Research,” 4th edition, 

Holden-Day, Oakland California, 1986.  


