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Intro to Linear Programming 

 

1.0 Introduction 

 

The problem that we desire to address in this course 

is loosely stated below. 

 

Given 

 a number of generators make price-quantity offers 

to sell (each provides their individual supply 

function) 

 a number of loads make price-quantity bids to buy 

(each provides their individual demand function) 

 there is an electric network that imposes physical 

restrictions, including: 

o sum of generation=sum of demand 

o flows on circuits<maximum flow for circuit 

we want to maximize the social surplus  

U(P)-C(P) 

where U(P) is the composite utility function for 

consumers, C(P) is the composite cost function for 

suppliers, and P is the real power injection vector of 

the network nodes (positive for generation, negative 

for load). 

 

It is sometimes convenient to recognize a couple of 

things about the form of optimization problems.  
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1. Maximization of a function is equivalent to 

minimization of the negated function, that is 

max f(x) is the same as min (-f(x)) 

2. An inequality constraint may be equivalently 

written as  

g(x)>b       or       -g(x)<b 

 

And so we can say that in general, we want to solve a 

problem like this: 
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We have already seen how to do this when f(x), h(x), 

and g(x) are nonlinear but convex (form Lagrangian, 

take KKT conditions, solve for variables).  

 

We now want to consider what happens when f, h, 

and g are all linear functions in x.  

 

When this is the case, the optimization problem of 

(1), generally called a mathematical program, 

becomes a special type of mathematical program 

called a linear program. 

 

We will motivate our interest with an example. 
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2.0 Example 1  
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Let’s apply our standard procedure to this problem. 

 

Form Lagrangian (ignoring inequality constraint): 

)16x(3),( 2121  xxxxF   

Apply first-order conditions: 
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The first two equations result in a contradiction, and 

the three equations taken together do not provide a 

solution for x1 and x2. Our procedure failed. What 

happened? 

 

Let’s see if we can graphically inspect the situation. 

Fig. 1 illustrates the contours of increasing objective 

function together with the equality constraint. 
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Fig. 1: Sample problem 

 

In considering Fig. 1, we see that we can push f as far 

negative as we please (causing the contours to move 

down and to the left), minimizing it more and more, 

and there will always be an intersection point with 

the equality constraint. This shows that there is no 

solution to our problem. We might say that the 

solution is unbounded. This can happen with linear 

programs. 

 

However, recall that we are considering only the 

equality constraint, i.e., the problem we considered 

for which there is no solution is: 
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But let’s consider our original, full problem, with the 

inequality constraint as well, repeated here for 

convenience. 
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Form Lagrangian (this time with inequality 

constraint): 

)4()16(3),( 21221  xxxxxxxF 1   

Observe, in contrast to our previous work where we 

had an inequality constraint expressed as g(x)> b and 

we subtracted the term corresponding to the 

inequality, now we have an inequality constraint 

expressed as g(x)<b and we add the term 

corresponding to it. 

 

The KKT conditions then become: 
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The left-hand set of equations is a set of linear 

equations we can solve as: 
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We plot it in Figure 2. 

 
Fig. 2: With inequality constraint 
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The feasible region associated with the inequality 

constraint is below the dotted line. 

 

The feasible region for the problem is below the 

dotted line and on the thick one (the equality 

constraint). So we see that the feasible region for the 

problem includes everything on the thick line to the 

right of the intersection point. 

 

Now, recall that we are maximizing the objective. 

Therefore we want to choose a solution that has the 

largest possible value of f but is in the feasible region. 

This means, in terms of Fig. 3, we want to choose the 

contour that is highest (most upwards to the right) but 

feasible. 

 

The location of the solution to the problem is 

immediate: x1=6, x2=10. The contour which passes 

through this point is not obvious from Fig. 3, but it is 

between f=20 and f=30, probably about f=28. We 

can get it exactly by evaluating f at the solution: 

2810)6(33)( 21  xxxf  

which agrees exactly with our estimate. 

 

We will call any constraint comprising the feasible 

region boundary an active constraint. 
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One important observation for this problem: the 

solution occurred at a point where two active 

constraints intersect. 

 

Let’s do another example. This time, we will work on 

a maximization problem. 

 

3.0 Example 2 [1] 

Resource allocation is a kind of problem where one 

desires to optimize some objective subject to 

constraints on a set of resources. It is a very common 

kind of problem in many different industries, 

including the electric power industry. 

 

Consider a manufacturer of materials X and Y. Each 

materials produced requires a certain amount of time 

from three different people, and each person can 

allocate their time to producing item X or item Y or 

some combination of the two. A unit of material 

requires contributions from all three people, i.e., no 

individual can make either material on their own. The 

following table time contributions for each person to 

make each type of material. 

 

Material 

Person 

1 2 3 

X 40 min 24 min 20 min 

Y 30 min 32 min 24 min 
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Each person works a standard 8 hour day, and so has 

a maximum amount of time per day of 8×60=480 

minutes. The profit per unit of item X and Y is $5 and 

$8, respectively. We desire to maximize daily profits. 

 

Let x and y denote the number of each item produced 

in a day. The problem will be, then, as follows: 

yxyxf 85),(max   

Subject to 

4803040  yx  (person 1) 

4803224  yx  (person 2) 

4802420  yx  (person 3) 

0

0





y

x

 

The first three constraints are due to the limit on the 

resource (time) for each person. The 4th and 5th 

constraints are due to the fact that we cannot produce 

a negative number of items. 

 

There are many possible solutions to this problem. 

Consider, for example, if we limit ourselves to 

producing only item X or item Y, but not both. 
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Produce only item X. In this case, y=0 and the 

constraints become: 

1248040  xx  (person 1) 

2048024  xx  (person 2) 

2448020  xx  (person 3) 

 

To maximize the objective function, we want to 

produce the maximum amount of items we can. And 

so the solution is clearly x=12 (and y=0). The 

objective then, becomes 5(12)=$60. 

 

Produce only item Y. In this case, x=0 and the 

constraints become: 

1648030  yy  (person 1) 

1548032  yy  (person 2) 

2048024  yy  (person 3) 

Again, to maximize the objective function, we want 

to produce the maximum amount of items we can. 

And so the solution is clearly y=15 (and x=0). The 

objective then, becomes 8(15)=$120. 

 

Conclusion: Producing only Y is better than 

producing only X, and if we have only these two 

options, we will produce only Y. 
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However, is it possible that we might make an even 

higher profit by producing some of each? 

 

Fig. 3 plots the inequality constraints. We can 

identify the feasible region.  

 
Fig. 3: Constraints for Example 2 

 

It is now interesting to plot the contours of increasing 

objective function, that is, we will plot the function 

yxyxf 85),(   

for increasing values of f.  
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We have plotted the contours for values of f=10, 20, 

…, 170. 

 
Fig. 4: Constraints with contours for Example 2 

 

From Fig. 4, we observe that the f=120 contour 

appears to be the contour of maximum f which 

contains a point in the feasible region.  

 

One should observe from Fig. 4 that the optimal point 

must occur at either the point (0,15) or the point of 
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intersection between the two active constraints, 

which is (1.7143, 13.7143).  

 

 

Because the slope of our contours are less than the 

slope of the constraint boundary 24x+32y=480, if a 

contour crosses the 24x+32y=480 constraint 

boundary within the feasible region, then there will 

necessarily be another point to the left of the crossing 

which will be interior (feasible, but not on a 

boundary) to the feasible region. This means it will 

be possible to move to a contour of higher f which 

still has at least one point in the feasible region.  

 

By this argument, then, if a contour passes through 

the intersection point (1.7143, 13.7143), then it is 

possible to move to a contour of higher f which still 

has one point in the feasible region.  

 

Because the optimal point must occur at either (0, 15) 

or (1.7143, 13.7143), we know now that it must occur 

at (0, 15).  

 

Again, we notice: the solution occurred at a point 

where two active constraints intersect. 

 

4.0 Example 3 
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Let’s try a slightly different problem, as follows: 

 

 

 

yxyxf 89),(max   

Subject to 

4803040  yx  (person 1) 

4803224  yx  (person 2) 

4802420  yx  (person 3) 

0
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x

 

Figure 6 shows the feasible region together with 

contours of increasing f.  
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Fig. 6: Constraints with contours for Example 3 

 

From Fig. 6, we see that the point (1.7143, 13.7143) 

must be the optimal point, and the maximum value of 

f will be about f=125 (evaluation of the above point 

yields f=125.14). 

 

Again, we notice: the solution occurred at a point 

where two active constraints intersect. 

 

5.0 Example 4 

 

Let’s again change our problem slightly, as follows: 
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yxyxf 815),(max   
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Figure 7 shows the feasible region together with 

contours of increasing f.  

 
Fig. 7: Constraints with contours for Example 3 
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From Fig. 7, we see that the point (12, 0) must be the 

optimal point, and the maximum value of f will be 

f=180. 

 

Again, as in all previous cases, we notice: the 

solution occurred at a point where two active 

constraints intersect. 

 

This last observation is no coincidence. It always 

happens in a LP. That is:  

The solution to an LP is always at a point where 

active constraints intersect. 

We will call such intersection points corner points. 

Therefore we see that our solution will always be at a 

corner point. This provides us with a basis for 

solution to LPs: Search the corner points! 

 

 
                                                 

[1] W. Claycombe and W. Sullivan, “Foundations of Mathematical Programming,” 

Reston Publishing Company, Reston Virginia.  


