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Duality #1 

 

1.0 Second iteration for HW problem 

 

Recall our LP example problem we have been 

working on, in equality form, is given below. 
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which, when written in a slightly different form, is 
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Recall that we performed the first iteration of the 

simplex method for it, which resulted in the 

following Tableau: 

 

 

 



 2 

Tableau 1 
        

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 -3 0 0 2.5 0 30 

x3 1 0 1 0 1 0 0 4 

x2 2 0 0 1 0 0.5 0 6 

x5 3 0 3 0 0 -1 1 6 

Add 5 × 

pivot row 

Add -2 × 

pivot row 

 

Then when we tested for optimality, we discovered 

that we must do another iteration because the 

coefficient of x1 is negative in the above tableau. I 

asked you to do this for homework. I will do it here, 

to provide you with the solution to the homework.  

 

So our only choice for the entering variable is x1. To 

determine the leaving variable, we identify the 

constraints that most limit the increase in x1, as 

shown in Tableau 2 below. 

Tableau 2 
        

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 -3 0 0 2.5 0 30 

x3 1 0 1 0 1 0 0 4 

x2 2 0 0 1 0 0.5 0 6 

x5 3 0 3 0 0 -1 1 6 2
3

6
  

4
1

4
  

 

And so the constraint identifying the leaving variable 

is the last one, since its ratio is smallest (2<4).  
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The leaving variable is therefore x5, since it is the 

variable in the last constraint which gets pushed to 0 

as x1 increases. And so the tableau is shown below 

with the pivot row, pivot column, and pivot element 

identified. We have also modified the last basic 

variable (column 1) to be x1. 

Tableau 3 
        

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 -3 0 0 2.5 0 30 

x3 1 0 1 0 1 0 0 4 

x2 2 0 0 1 0 0.5 0 6 

x1 3 0 3 0 0 -1 1 6 
 

 

Dividing the last equation by 3, we obtain: 

Tableau 4 
        

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 -3 0 0 2.5 0 30 

x3 1 0 1 0 1 0 0 4 

x2 2 0 0 1 0 0.5 0 6 

x1 3 0 1 0 0 -0.333 0.333 2 
 

 

Using the last equation to eliminate the -3 in the top 

equation, we get: 

Tableau 5 
 

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 0 0 0 1.5 1 36 

x3 1 0 1 0 1 0 0 4 

x2 2 0 0 1 0 0.5 0 6 

x1 3 0 1 0 0 -0.333 0.333 2 
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Using the last equation to eliminate the 1 from the 

second equation, we get: 

Tableau 6 
 

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 0 0 0 1.5 1 36 

x3 1 0 0 0 1 0.333 -0.333 2 

x2 2 0 0 1 0 0.5 0 6 

x1 3 0 1 0 0 -0.333 0.333 2 
 

The solution above is optimal because all coefficients 

in the objective function expression are positive. 

 

2.0 Introduction to duality 

 

Let’s consider that our linear programming problem 

is actually a resource allocation problem where the 

various constraints are actually constraints on our 

resources. Recalling the original form of the problem, 

and giving it the name “Problem P”: 
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    (1) 

we see that our new interpretation indicates that 4, 

12, and 18 represent the maximum amount of each 

kind of resource that we have.  



 5 

 

Now the question could very well arise: how might 

we gain the most, in terms of the value of our 

optimized objective function, by increasing one 

resource or another? 

 

In order to provide a basis of comparison, let’s allow 

each resource to increase by 1 unit. What will be the 

effect on the objective function? 

 

To answer this question, I first solved the original LP, 

(1), in CPLEX. As we would expect, I got the answer 

F1*=36, consistent with Tableau 6 above. (The 

subscript on F, which is “1” in this case, indicates it 

is the solution to the LP defined by (1) above). 

 

Then I used CPLEX to solve LP (2).  
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where the only difference, relative to (1), is that the 

upper bound on the first constraint was increased 

from 4 to 5. CPLEX provides the answer F2*=36. 

Apparently, increasing resources on this constraint 

has no effect.  
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Then I used CPLEX to solve LP (3): 
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where the only difference, relative to (1), is that the 

upper bound on the second constraint was increased 

from 12 to 13. CPLEX provides the answer 

F3*=37.5. Here, increasing the second resource by 1 

unit provides that the objective function improves by 

an amount equal to 1.5. 

 

Finally, I used CPLEX to solve LP (4): 
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where the only difference, relative to (1), is that the 

upper bound on the third constraint was increased 

from 18 to 19. CPLEX provides the answer F4*=37. 

Here, increasing the third resource by 1 unit provides 

that the objective function improves by an amount 

equal to 1. 
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And so increasing the resources, i.e., the right hand 

sides of the first, second, and third constraints, by 1 

unit, improve the optimal value of the objective 

function by 0, 1.5, and 1, respectively. In other 

words,  

1
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5.1
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     (5) 

This is quite useful information, in that it could guide 

our future allocation (or reallocation) or resources. In 

other words, assume F* represents my optimal 

profits, and I find I have a little extra money to spend. 

Then (5) tells me it is better to spend that money to 

increase resource 2 than to increase resource 3, and 

that it will do me no good at all to increase resource 

1. It is of interest to inspect Tableau 6 at this point. 

Tableau 6 
 

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 0 0 0 1.5 1 36 

x3 1 0 0 0 1 0.333 -0.333 2 

x2 2 0 0 1 0 0.5 0 6 

x1 3 0 1 0 0 -0.333 0.333 2 
 

Notice one very interesting thing: 
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The coefficients of the slack variables in this final 

tableau are exactly the same as the right-hand-sides 

of (5): 0, 1.5, and 1. These values are circled in 

Tableau 6.  

 

This is no coincidence. In fact, it will always happen. 

That is: 

The coefficients of the slack variables in the 

objective function expression of the final tableau 

give the improvement in the objective for a unit 

increase in the right-hand-sides of the 

corresponding constraints. 

It is of interest to examine the units of these 

coefficients, an exercise most effectively 

accomplished by returning to (5) where we can see 

that they have units of (units of F)/(units of b). For 

example, if F is measured in dollars, and b is 

measured in, say, pipe fittings, then these coefficients 

would have units of $/pipe fitting. 

 

These slack variable coefficients have names. They 

are called the dual variables. We will see why they 

are called dual variables later. They are also called 

shadow prices. For now, let’s give them the 

nomenclature λi corresponding to the ith constraint.  
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One note of caution, here. Recalling that λ3=1 in our 

problem, we understand that if we increase b3 by 1, 

from 18 to 19, we will improve our objective 

function value (at the optimum) by 1, from 36 to 37, 

and that is indeed the case.  

 

But what if we increase b3 by 6, making it 24? Will 

we see an increase in F* to 42? Use of CPLEX 

indicates this does turn out to be the case.  

 

However, if we increase b3 to 26, we still obtain 

F*=42, a result which suggests that somewhere 

between b3=24 and b3=26, the third constraint 

became no longer binding (it was no longer one of 

the two constraints that defined the corner point).  

 

This is a result of the fact that whenever one has 

multiple resources, each of which is constrained, it 

will be the case that only a subset of the resources 

actually limit the objective. For example, you may 

have labor hours, trucks, & pipe fittings as your 

resources, each of which are individually constrained. 

You have a large truck fleet and a whole warehouse 

of pipe fittings, but you don’t have enough labor. 

And so you increase labor until you hit your limit on 

pipe fitting inventory. You then begin increasing pipe 

fitting inventory, but soon you hit the limit on trucks. 
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3.0 Motivating the dual problem 

 

Consider again our original problem.  
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Let’s express linear combinations of multiples of the 

constraints, where the multipliers on the constraints 

are denoted λi on the ith constraint. The below 

problem illustrates (the λi must be nonnegative): 
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The last relation can be rewritten as follows: 
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“COMPOSITE 

INEQUALITY” 
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The left-hand-side of the composite inequality, being 

a linear combination of our original inequalities, 

must hold at any feasible solution (x1,x2), and in 

particular, at the optimal solution ),( *
2

*
1 xx . That is, it 

is a necessary condition for satisfying the inequalities 

from which it came1.  

 

Write the objective function expression together with 

the composite inequality: 
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Let’s develop criteria for selecting λ1, λ2,  λ3.  

  

Consider the following 5 concepts…watch closely: 

Concept 1: Make sure that our choices of λ1, λ2,  λ3 are 

such that each coefficient of xi in the composite 

inequality is at least as great as the corresponding 

coefficient in the objective function expression, i.e.,  

522

33
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31
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    (10) 

This guarantees that any solution (x1,x2) results in a 

value F which is less than or equal to the left-hand-

side of the composite inequality.  

                                                 
1
 Although necessary, it is not sufficient. A simple example will show this. Choose λ1= λ2= λ3=1, and the 

combined inequality is then 4x1+4x2≤34. All values of (x1, x2) that satisfy the original inequalities must 

satisfy this one, but there will be some that satisfy this one that do not satisfy one or more of the original 

inequalities, for example, (4,4) results here in 32≤34, but the third inequality of the original ones results in 

3(4)+2(4)=20 which is greater than its right-hand-side of 18. 
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Concept 2: Because the left-hand side of the 

composite inequality is less than or equal to the right 

hand side of the composite inequality, we can also 

say that any solution (x1,x2) results in a value F which 

is less than or equal to the right-hand-side of the 

composite inequality. 

Concept 3: Concept 2 implies the right-hand-side of 

the composite inequality is an upper bound on the 

value that F may take. This is true for any value of F, 

even the maximum value F*. In other words, if we 

look at the value F* and the right-hand-side of the 

composite inequality on the real number line, they 

appear as below, with F* to the left, and there would 

be some difference Δ between them. 

 

F* Right-hand-side of 

composite inequality 

0 

 Δ 

 
Concept 4: Now choose λ1, λ2, λ3 to minimize the 

right-hand-side of the composite inequality, subject 

to constraints (10). This creates a least upper bound 

to F*, i.e., it pushes the right-hand-side of the 

composite inequality as far left as possible, while 

guaranteeing right-hand-side remains greater than or 

equal to F* (due to enforcement of constraints (10)). 

Concept 5:  Given that the right-hand-side of the 

composite inequality is an upper bound to F*, then 

finding its minimum, subject to (10), implies Δ=0.  
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Concept 5 tells us that if we solve the following 

problem, call it Problem D, 
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that the value of the obtained objective function, at 

the optimum, will be the same as the value of the 

original objective function at its optimum, i.e., 

F*=G*.  

In other words, solving Problem D is equivalent to 

solving Problem P. 
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Problem P is called the primal problem. Problem D is 

called the dual problem. They are precisely 

equivalent. To show this, let’s use CPLEX to solve 

Problem D.  
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The CPLEX code to do it is below (note I am using y 

instead of λ): 

minimize  
 1 y1 + 12 y2 + 18 y3 
subject to 
 1 y1 + 3 y3 >= 3 
 2 y2 + 2 y3 >=5 
 y1 >= 0 
 y2 >= 0 
 y3 >= 0 
end 

The solution gives 

G*=36 

λ 1=0 

λ 2=1.5 

λ 3=1 

It is of interest to inspect Tableau 6 of the primal. 

Tableau 6 
 

Coefficients of Basic 

variable 

Eq. 

# F x1 x2 x3 x4 x5 

Right 

side 

F 0 1 0 0 0 1.5 1 36 

x3 1 0 0 0 1 0.333 -0.333 2 

x2 2 0 0 1 0 0.5 0 6 

x1 3 0 1 0 0 -0.333 0.333 2 
 

We note the values of the decision variables obtained 

for the dual problem are exactly the coefficients of 

the slack variables in the primal problem.  
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We also note that G*=F*=36. 

 

One last thing that is very interesting here. Using 

CPLEX, following solution of the dual, we can also 

obtain the coefficients for the dual problem slack 

variables (the slack variables to problem D), in the 

objective function row, using the following 

command,  

display solution dual - 
and they are: 

λ 4    2.0 

λ 5    6.0 

which is precisely the solution of the primal problem, 

x1=2, x2=6, as can be read off from Tableau 6 above. 

 

Caution to avoid confusion: The above values for λ 4 

and λ5 are not the values of the slack variables. They 

are the coefficients of the slack variables of the 

objective function expression in the last tableau of 

the dual problem. 

 

This suggests that there is a certain circular 

relationship here, which can be stated as 

The dual of the dual to a primal is the primal. 

That is, if you called Problem D our primal problem, 

and took its dual, you would get our original primal 

problem back, as illustrated below. 

This command was made after 

solution of the above “dual” 

problem in CPLEX, therefore it is 

giving the solution to the “dual of 

the dual,” which is the primal! 
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4.0 Obtaining the dual from the primal 

 

It is useful to make the following observations: 

1. Number of decision variables and constraints: 

 Number of dual decision variables is number of 

primal constraints. 

 Number of dual constraints is number of primal 

decision variables. 

2. Coefficients of decision variables in dual objective 

are right-hand-sides of primal constraints. 
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3. Coefficients of decision variables in primal 

objective are right-hand-sides of dual constraints. 
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4. Coefficients of one variable across multiple primal 

constraints are coefficients of multiple variables in 

one dual constraint. 
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5. Coefficients of one variable across multiple dual 

constraints are coefficients of multiple variables in 

one primal constraint. 
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





xx

xx

x

x

xxF



  
Problem Dual

      

         

to subject

G

D Problem

0,0,0

522

33

18124min

321

32

31

321

















 

 

 



 19 

 

6. If primal objective is maximization, then dual 

objective is minimization. 

7. If primal constraints are ≤, dual constraints are ≥. 

From the above, we should be able to immediately 

write down the dual given the primal.  

Example:   

Let’s return to the example we used to illustrate use 

of CPLEX in the notes called “Intro_CPLEX.” 

321 345max xxxF   

Subject to 

532 321  xxx  

1124 321  xxx  

8243 321  xxx   

0,0,0 321  xxx  

The dual problem can be written down by inspection. 

321 8115min  G  

Subject to 

5342 321    

443 321    

322 321    

0,0,0 321    
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We can use CPLEX to check. First, we solve the 

primal problem using the below code: 

maximize  
  5 x1 + 4 x2 + 3 x3 
subject to 
 2 x1 + 3 x2 + x3 <= 5 
 4 x1 + x2 + 2x3 <= 11 
 3 x1 + 4 x2 + 2 x3 <= 8 
 x1 >= 0 
 x2 >= 0 
 x3 >= 0 
end 

The solution is (x1,x2,x3)=(2,0,1), F*=13. 

The dual variables are: (λ1, λ2, λ3)=(1,0,1) 

 

Now, solve the dual problem using the below code: 

minimize  
  5 y1 + 11 y2 + 8 y3 
subject to 
 2 y1 + 4 y2 + 3 y3 >= 5 
 3 y1 + 1 y2 + 4 y3 >= 4 
 1 y1 + 2 y2 + 2 y3 >= 3 
 y1 >= 0 
 y2 >= 0 
 y3 >= 0 
end 

The solution is (λ1, λ2, λ3)=(1,0,1), G*=13. 

The dual variables are: (x1,x2,x3)=(2,0,1). 
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5.0 Viewing the primal-dual relationship 

 

Another way to view the relationship between the 

primal and the dual is via use of the primal-dual 

table. Although this offers no new information 

relative to what we have already learned, you might 

find it helpful in remembering the structural aspects 

to the relationship.  

 

Let’s consider the following generalized primal-dual 

problems. 

0,...,,

...

...

...

..

...max

21

2211

22222121

11212111

2211











n

mnmnmm

nn

nn

nn

xxx

bxaxaxa

bxaxaxa

bxaxaxa

ts

xcxcxcF

   

0,...,,

...

...

...

..

...min

21

2211

22222112

11221111

2211











n

nmmnnn

mm

mm

mm

caaa

caaa

caaa

ts

bbbG











  

The primal-dual table is shown below. 
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  Primal Problem  

  Coefficients of Right 

side 
 

  x1 x2 … xn  

D
u

al
 P

ro
b

le
m

 

C
o
ef

fi
ci

en
ts

 o
f 

λ 1
 a11 a12 … a1n ≤b1 

 

C
o
ef

fi
ci

en
ts

 f
o

r 
d
u

al
 

o
b
je

ct
iv

e 
fu

n
ct

io
n

 

λ 2
 a21 a22 … a2n ≤b2 



           

λ m
 am1 am2 … amn ≤bm 

R
ig

h
t 

si
d
e ≤
 

≤
  
≤

   

c1 c2 … cn   

   

 

Coefficients for  

primal objective function 

  

 

For example, our previous example problem has a 

primal-dual table as shown below. 
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  Primal Problem  

  Coefficients of Right 

side 
 

  x1 x2 x3  

D
u

al
 P

ro
b

le
m

 

C
o
ef

fi
ci

en
ts

 o
f 

λ 1
 2 3 1 ≤5 

 

C
o
ef

fi
ci

en
ts

 f
o

r 
d
u

al
 

o
b
je

ct
iv

e 
fu

n
ct

io
n

 

λ 2
 

4 1 2 ≤11 

λ 3
 3 4 2 ≤8 

R
ig

h
t 

si
d
e ≤
 

≤
 

≤
   

5 4 3   

   

 

Coefficients for  

primal objective function 
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6.0 The duality theorem 

 

We have already been using this theorem, and so now 

we merely formalize it…. 

 

Duality theorem: If the primal problem has an 

optimal solution x*, then the dual problem has an 

optimal solution λ* such that 

*)(*)( xFG   

The proof is given in [1, pp. 58-59]. 

 

The duality theorem raises an interesting question.  

What if the primal does not have an optimal solution? 

Then what happens in the dual?  

 

To answer this, we must first consider what are the 

alternatives for finding an optimal solution to the 

primal? There are two: 

1. The primal is unbounded. 

2. The primal is infeasible. 
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7.0 Unbounded primal 

 

We have already seen an example of an unbounded 

primal, illustrated by the problem below and its 

corresponding feasible region. 

0,0        

18          3      

12         4       

4              s.t.

53max

21

1

1

1

21











xx

x

x

x

xxF
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Recall that the objective function for the dual 

establishes an upper bound for the objective function 

of the primal, i.e., 

)()( xFG   

for any sets of feasible solutions λ and x. 

If F(x) is unbounded, then the only possibility for 

G(λ) is that it must be infeasible. 

 

Let’s write down the dual of the above primal to see. 

0,0,0

5000

334

..

18124min

321

321

321

321

















ts

G

 

and we immediately see that the second constraint 

cannot be satisfied, and so the dual is infeasible. 

Likewise, we can show that if the dual is unbounded, 

the primal must be infeasible. 

However, it is not necessarily true that if the primal 

(or dual) is infeasible, that the dual (or primal) is 

unbounded. It is possible for an infeasible primal to 

have an infeasible dual and vice-versa, that is, both 

the primal and the dual may be both be infeasible. 

Reference [1, p. 60] provides such a case. 
                                                 

[1] V. Chvatal, “Linear Programming,” Freeman & Company, NY, 1983. 


