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EE 458, Fall 2019: HW 7, Due Tuesday Nov 5  

 

A. Set up a linear program in Matlab or CPLEX to solve the 

linearized optimal power flow problem for the system and data 

shown below. There are 4 generators: A, B, C, and D. Line 

admittances given on the diagram (-j5, -j5, -j10) are in per unit. 

Provide your Matlab or CPLEX code, the dispatch, flows, total 

cost, and all Lagrange multipliers. 
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The offers submitted from owners of units A, B, C, and D are 7.5, 6, 

14, and 10, respectively, all in $/MWhr. 

 

Solution:  

The system is shown below: 
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First let’s develop the equality constraints for this problem. They 

correspond to the injection and flow equations, given by: 

0)(  ADPB   (1) 

0'  BP      (2) 

 

So we need to obtain the matrices D, A, and B’. We get B’ by first 

writing down the Y-bus matrix and then multiplying it by -1, which 

is, for this system: 
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The matrix D is MxM (where M=3 is number of branches) 

containing the negative of the branch susceptances along the 

diagonal and zeros elsewhere. For this system, it is: 
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The matrix A is the MxN node-arc incidence matrix, where M is the 

number of branches and N the number of nodes, and row k has 1 
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and -1 in the columns corresponding to beginning and ending nodes, 

respectively, for branch k. The direction of the branches is shown in 

the system diagram above. 
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So that the term DxA in eq. 1 is: 
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The solution vector is given by: 
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The objective function is then given by Z=cTx. However, we must 

recall that we are working in per-unit, and therefore the coefficients 

of the generation variables must be multiplied by 100 (to give $/pu-

hr instead of $/MW-hr). So the objective function is: 
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 
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The equality constraints are given by: eqeq bxA   which is comprised of 

eq. (1) at the top and eq.(2) at the bottom. In forming the eq. (2) part 

of Aeq, one must account for the fact that generators A and B are 

both located at bus 1 and will therefore both appear in the bus 1 

injection equation. In addition, the loads will appear in beq. Finally, 

one must remember to work in per-unit because the DC power flow 

equations corresponding to eq. (2) were derived in per-unit and are 

only valid when working in per-unit. 

 

Taking these issues into account, we get: 
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Finally, the equality constraints are given by: 
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The Matlab code to implement this optimization problem is: 
%Build objective function vector. 

c=[750 600 1400 1000 0 0 0 0 0 0]'; 

 

%Build A matrix for inequality constraints Ax<b. 

A=[]; 

%Build b, the right-hand-side of inequality constraints. 

b=[]; 

 

%Build Aeq matrix for equality constraints.  

Aeq=[0  0  0  0 -1   0   0   5   -5   0; 

     0  0  0  0  0  -1   0   0   10  -10; 

     0  0  0  0  0   0  -1   5    0   -5; 

    -1 -1  0  0  0   0   0   10  -5   -5; 

     0  0 -1  0  0   0   0   -5  15   -10; 

     0  0  0 -1  0   0   0   -5 -10    15]; 

 

%Build right-hand side of equality constraint. It will be vector of zeros 

%except for element in first row, which is load-sum of minimum generation 

beq=zeros(6,1); 

beq(4)=-0.5; 

beq(5)=-0.6; 

beq(6)=-3.0; 

 

%Build upper and lower bounds on decision variables. 

LB=[0     0     0        0   -1.26 -1.30 -2.50  -pi  -pi -pi]'; 

UB=[1.40  2.85  0.90    0.85  1.26  1.30  2.50   pi   pi  pi]'; 

%LB=[0     0     0        0   -500  -500 -500  -pi  -pi -pi]'; 

%UB=[1.40  2.85  0.90    0.85  500   500  500   pi   pi  pi]'; 

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=LINPROG(c,A,b,Aeq,beq,LB,UB); 
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The solution is (in per-unit): 
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The total cost is $2835/hr. (These values are in agreement with the 

solution given by the text by Kirschen & Strbac on page 163). 

The Lagrange multipliers on equality constraints are given by 

Matlab (from LAMBDA.eqlin) as: 

    625.0 

    0.0000 

    0.0000 

    750.0 

    1125.0 

    1000.0 

 

But this is in units of $/pu-hr. To get it in $/MWhr, we divide by 

100 to get 

    6.25 

    0.0000 

    0.0000 

    7.50 

    11.25 

    10.0 

This shows the spot prices (LMPs) for buses 1, 2, and 3 are 7.5, 

11.25, and 10.0 $/Mwhr, respectively. 

 

The Lagrange multipliers on the lower bounds of the inequality 

constraints (from LAMBDA.lower) are: 



 7 

    0.0000 

    0.0000 

  275.000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

This indicates that only unit C is at its lower limit. 

The Lagrange multipliers on the upper bounds of the inequality 

constraints (from LAMBDA.upper) are: 

    0.0000 

  150.0000 

    0.0000 

    0.0000 

  625.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

    0.0000 

This indicates that PB and Pb1 are at their upper limits. 

 

B. You solved the following optimization problem in HW6.  

 

y13 =-j10 y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

y24 =-j8 
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B1. Using this same system, set up the optimal power flow as a 

linear program assuming the objective function is the same as 

used in the example in class when we investigated the case of 

demand bidding, i.e.,  

32421 12001300125412111307 ddggg PPPPPZ  .  

Assume each generator has a lower limit of 100 MW and an 

upper limit of 300 MW, which will be (in per unit): 
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and the loads are constrained as follows: 
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Assume the lines have infinite capacity. 
Solution: 

minimize  

  1307 pg1 + 1211 pg2 + 1254 pg4 -1300 pd2 - 1200 pd3 

subject to 

  theta1=0 

  -pb1 + 10 theta1 - 10 theta4 = 0 

  -pb2 + 10 theta1 - 10 theta2 = 0 

  -pb3 + 10 theta2 - 10 theta3 = 0 

  -pb4 - 10 theta3 + 10 theta4 = 0 

  -pb5 + 10 theta1 - 10 theta3 = 0 

  -pb6 + 8 theta2  - 8 theta4  =0 

   pg1 - 30 theta1 + 10 theta2 + 10 theta3 + 10 theta4 = 0 

   pg2 -pd2 + 10 theta1 - 28 theta2 + 10 theta3 +8 theta4 = 0 

       -pd3 + 10 theta1 + 10 theta2 - 30 theta3 + 10 theta4 = 0 

   pg4 + 10 theta1 + 8 theta2 + 10 theta3 - 28 theta4 = 0 

  -pg1 <= -1 

   pg1 <= 3 

  -pg2 <= -1 

   pg2 <= 3 

  -pg4<= -1 

   pg4 <= 3 
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  -pd2 <= -1 

   pd2 <= 2 

  -pd3 <= -2 

   pd3 <= 3 

  -pb1 <= 500 

   pb1 <= 500 

  -pb2 <= 500 

   pb2 <= 500 

  -pb3 <= 500 

   pb3 <= 500 

  -pb4 <= 500 

   pb4 <= 500 

  -pb5 <= 500 

   pb5 <= 500 

  -pb6 <= 500 

   pb6 <= 500 

Bounds 

 -500  <= pb1 <= 500 

 -500  <= pb2 <= 500 

 -500  <= pb3 <= 500 

 -500  <= pb4 <= 500 

 -500  <= pb5 <= 500 

 -500  <= pb6 <= 500 

 -3.14159  <= theta1 <= 3.14159 

 -3.14159  <= theta2 <= 3.14159 

 -3.14159  <= theta3 <= 3.14159 

 -3.14159  <= theta4 <= 3.14159 

end 

 

B2: Provide the value of the objective function and values for all 

primal decision and auxiliary variables and dual variables at the 

optimal solution. Also identify the settlement, i.e., identify how 

much each load pays and how much each generator pays. 

Solution: 

Objective: -17.0$ 
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Primal decision and auxiliary variables: 

pg1                           1.000000 

pg2                           2.000000 

pg4                           1.000000 

pd2                           2.000000 

pd3                           2.000000 

pb1                          -0.013889 

theta4                        0.001389 

pb2                           0.263889 

theta2                       -0.026389 

pb3                           0.486111 

theta3                       -0.075000 

pb4                           0.763889 

pb5                           0.750000 

pb6                          -0.222222 

Dual variables: 

c8                         1211.000000 

c9                         1211.000000 

c10                        1211.000000 

c11                        1211.000000 

c12                         -96.000000 

c16                         -43.000000 

c19                         -89.000000 

c20                         -11.000000 

All other dual prices in the range 1-33 are 0. 

Settlement:  

Sum the products of LMP and Pg for supply side. 

Sum the products of LMP and Pd for demand side. 

Should be equal. 

 

B3: Now constrain the flow on branch 3 to Pb3=P23=0.45 pu and 

resolve. Provide the value of the objective function and values for 

all solution variables and dual variables at the optimal solution. Also 

identify the settlement, i.e., identify how much each load pays and 

how much each generator pays. Finally, compute the congestion 
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charges as the difference between total load payments made and 

total generator payments received, and also using the dual variable 

of the constrained branch. 

Objective: -11.41$ 

Primal decision and auxiliary variables: 

pg1                           1.000000 

pg2                           1.870000 

pg4                           1.130000 

pd2                           2.000000 

pd3                           2.000000 

pb1                          -0.050000 

theta4                        0.005000 

pb2                           0.300000 

theta2                       -0.030000 

pb3                           0.450000 

theta3                       -0.075000 

pb4                           0.800000 

pb5                           0.750000 

pb6                          -0.280000 

All other variables in the range 1-15 are 0. 

Dual variables: 

c1                            0.000000 

c4                         -154.800000 

c8                         1251.850000 

c9                         1211.000000 

c10                        1290.550000 

c11                        1254.000000 

c12                         -55.150000 

c19                         -89.000000 

c20                         -90.550000 

c27                        -154.800000 

All other dual prices in the range 1-33 are 0. 

Settlement:  

Sum the products of LMP and Pg for supply side. 

Sum the products of LMP and Pd for demand side. 
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Should be different; the excess of demand-side over supply side is 

the congestion charges. 

 

C. Using the system below, compute the T matrix of generation shift 

factors for every branch. Make the computation in two different 

ways, according to the following instructions. 
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y12 =-j10 
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Pd2=1pu 
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3 4 

Pg2=2pu 

Pg4=1pu 

y13 =-j10 

 

a. Assume bus 1 compensates for all changes, i.e., bus 1 is the 

slack bus. 
Solution:  
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b. Assume a distributed slack, with all buses compensating 

equally. 
Solution:  
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c. Use the elements of the appropriate T-matrix above to compute the flows for a 

change in generation at bus 2 from 2 to 4 per unit, compensated by reduction at bus 

1. Perform the calculations for each branch to get the new branch flow using the 

original branch flow plus the change in branch flow, where the change in branch 

flow is computed from the appropriate elements of the appropriate T matrix. The 

original branch flows are given by 
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y13 =-j10 y14 =-j10 

y34 =-j10 

y23 =-j10 

y12 =-j10 

Pg1 

Pd3=4pu 

Pd2=1pu 

1 2 

3 4 

Pg2=2pu 

Pg4=1pu 

y13 =-j10 

Power base=100 MVA 

 
Solution:  

The change made is compensated by the swing bus therefore we should use the 

distribution factors computed based on a bus 1 swing bus, which are: 
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The new branch flow is given by the old branch flow (which comes from the problem 

statement, and that comes from HW6-Part 1) plus the change in branch flows (using the 

above distribution factors) resulting from changing the bus 2 generation from 2 to 4 (a 

change of +2 at bus 2): 
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