EE 458, Homework 2: Due Tuesday, September 17, 2019

1. Assume that the fuel inputs R_1 and R_2 , in MBTU/hour for units 1 and 2, respectively, are a function of unit MW output powers P_1 and P_2 , respectively, and are given as

$$R_1 = 8P_1 + 0.024P_1^2 + 80$$
$$R_2 = 6P_2 + 0.044P_2^2 + 120$$

The minimum and maximum loadings for both units are 20 MW and 100 MW, respectively. All of the following plots should be given as a function of unit output power in MW.

- a. Plot the input-output curve for each unit.
- b. Plot the heat rate curves for each unit.
- c. Plot efficiency for each unit.
- d. Plot the incremental heat rate curves for each unit.
- e. Assume the cost of fuel is \$2/MBTU. Plot the cost-rate curves for each unit.
- f. Plot the incremental cost-rate curves for each unit.
- 2. In class, we computed the emissions per unit electric energy produced by a power plant in lbs/MWhr as:

$$lbs/MWhr = EC \times \frac{3.41}{\eta}$$

where EC is the CO₂ emissions content in pounds per short ton of the coal and η is the average full load efficiency. For example, for subbituminous coal, we computed:

$$212.7 \frac{lbs}{MBTU_{IN}} \times \frac{1MBTU_{IN}}{.39MBTU_{OUT}} \times \frac{3.41MBTU}{MWhr} = 1859.8lbs / MWhr$$

- a. Evaluate the average full load heat rate of the power plant used in the above calculation; make sure to give units.
- b. Repeat the calculation for lbs/MWhr if the average full load heat rate is 10.0 MMBTU/MWhr.
- c. Repeat the calculation for lbs/MWhr using the original heat rate, i.e., the one computed in part (a), but assume that bituminous coal is used.
- d. The Regional Greenhouse Gas Initiative (<u>www.rggi.org</u>) conducts an auction to sell GHG allowances. The clearing price at the June 2011 auction was \$1.89/allowance, where 1 allowance is a short ton of CO₂ emitted. Assume
 - the price of subbituminous (Powder River Basin) coal is \$15/ton and its energy content is 17.45MMBTU/ton;
 - the price of bituminous coal is \$60/ton and its energy content is 24MMBTU/ton.

For each type, compute the percentage increase in cost of producing a MWhr. Use the original heat rate, i.e., the one computed in part (a).

- e. Go to the RGGI website and identify the clearing price for the 45th RGGI auction on September 4, 2019/allowance.
- 3. Determine which of the below are convex sets.

- 4. Apply KKT conditions to the following optimization problems. Identify the solution(s) and the value of the objective function at the solution(s). Indicate whether your answer(s) is (are) a global optimum or not and how you know.
 - a. Min $f(x_1,x_2)=x_1^2+x_2^2$ subject to $h(x_1,x_2)=x_1+2x_2=5$ b. Min $f(x_1,x_2)=x_1^2+x_2^2$ subject to $h(x_1,x_2)=3x_1x_2^2=5$
- 5. A three-unit system is given by the following data. The total system demand is 1100MW. Generator constraints are $0 < P_{g1} < 550$, $0 < P_{g2} < 300$, $0 < P_{g3} < 300$

$$C_1(P_{g1}) = 0.010 \cdot (P_{g1})^2 + 0.3 \cdot (P_{g1}) + 1$$

$$C_2(P_{g2}) = 0.030 \cdot (P_{g2})^2 + 0.2 \cdot (P_{g2}) + 3$$

$$C_3(P_{g3}) = 0.020 \cdot (P_{g3})^2 + 0.9 \cdot (P_{g3}) + 5$$

- (a) Identify the objective function for this optimization problem.
- (b) Identify the Lagrangian function assuming no constraints are binding.
- (c) Identify the KKT conditions assuming no constraints are binding.
- (d) Find the solution to the problem assuming no constraints are binding.
- (e) Find the solution to the problem accounting for any binding constraints.
- (f) Find the total cost of supplying the 1100MW using the solution found in part (e)
- (g) Approximate the total cost of supplying the 1100MW change if the upper limit on generator 1 was increased from 550MW to 560MW.