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Additional Sensitivity Information 
 

 

1.0 Efficient computation of GSFs 

 

In the previous discussion, it was assumed that we would be able 

to compute (B’)-1, i.e., that the number of nodes would not be too 

large, which is can be the case under some approximations such as 

those made by the IDC [Error! Bookmark not defined.]. 

However, it is also common that this is not the case, i.e., that we 

may want to obtain GSFs for a system where the number of nodes 

is very large. 

In such a case, one can obtain the GSFs but only for one shift at a 

time, via 

 'BP       (14) 

 )( ADPB      (15) 

Equation (14) is solved for ∆θ via LU factorization for a given ∆P, 

and then the resulting ∆θ is used in (15) to obtain the line flow 

shifts in ∆PB. 

 

Example 4: Repeat example 1, which is to obtain the GSF for all 

branches corresponding to an increase in bus 2 injection and a 

decrease in bus 3 injection.  
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Using LU factorization: 
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Now use backwards/forwards substitution to obtain ∆θ, resulting in  
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And this gives our angle changes as 
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Now we can use eq. (15) to obtain 
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which is in agreement with the result of example 1. 

 

 

2.0 Line outage distribution factors 

 

The line outage distribution factors (LODFs) are linear estimates 

of the ratio:  

 

change in flow on circuit ℓ due to 

outage of circuit k, denoted by Δfℓ, 

to 

pre-contingency flow on 

circuit k, denoted by fk0. 
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In other words, it provides the fraction of pre-contingency flow on 

circuit k that appears on circuit ℓ following outage of circuit k, and 

is given by  

dℓ,k = Δfℓ  / fk0     (16) 

It is then clear that the change in flow on circuit ℓ due to the outage 

of circuit k is given by  

Δfℓ = dℓ,k × fk0     (17) 

The derivation is lengthy; we will not go through it here. To 

understand the result, we define a matrix X’ such that 

1)'('  BX      (18) 

This means that 

PXBP  ''     (19) 

 

Then we define another matrix X such that it is the same as X’ 

except we append another row at the top and another column to the 

left, corresponding to the reference bus (assumed bus #1) injection 

and angle, as shown below: 
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The line outage distribution factor dℓ,k = Δfℓ  / fk0 corresponding to 

the additional flow on branch k from outage of branch ℓ is then 

given by  
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In (21),  

 xk and xℓ are the reactances of outage branch k and remaining 

branch ℓ, respectively; 

 m and n are bus numbers terminating branch k; 

 i and j are bus numbers terminating branch ℓ. 

Therefore, 

 Xin is the element of X in row i, column n.  

 Xjn is the element of X in row j, column n.  

 Xim is the element of X in row i, column m.  

 Xjm is the element of X in row j, column m.  

 Xnm is the element of X in row n, column m.  

 Xnn is the element of X in row n, column n.  

 Xmm is the element of X in row m, column m.  

 

 

 

 

 

 

3.0 A computationally efficient method to obtain LODFs 

 

A significant problem with W&W’s method of obtaining the 

LODFs is that it requires X=(B’)-1, and if the system is very large, 

then inverting the matrix can be a computationally intense 

problem. We provide another method in this section. Our treatment 

is adapted from [1]. 

 

Let’s reconsider our familiar 4-bus, 5 branch example problem. 
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The B’ matrix for this system is  
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What happens to B’ if we lose the circuit #3 (from bus 2 to bus 3)?  

 

We could re-develop the new B’ from the one-line diagram as we 

are accustomed to doing now. Another way is to discern how the 

circuit #3 affects the B’ matrix, in that it will affect exactly 4 

elements, as indicated with the underlines below, corresponding to 

elements in bus numbered positions (2,2), (2,3), (3,2), and (3,3). 
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Recalling that all branch admittances of our network are –j10, what 

would these four elements be if branch #3 (between buses 2 and 3) 

were not there? 
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What is the difference between B’ and B’out? 
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Notice that the elements in ∆B’ are all multiples of B’23=-10, i.e.,  
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Notice that the above matrix can be expressed as  
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From this simple illustration, we can see a generalization, that 

whenever we remove a branch between buses i and j, with 

corresponding B’ matrix element B’ij, the B’ matrix will change as 

indicated below. 
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  (22) 

where bij is the susceptance of branch i-j. We use bij instead of B’ij 

in order to ensure we have a defined term even when i or j are the 

swing bus. Notice that bij will always be negative. 

 

The previous relation may be expressed as 
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If we define 
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then (23) becomes 

 
T
ijijij eebB  '      (25) 

Special case: If the branch to be outaged is connected to the swing 

bus (in our case, it is bus #1), then,  

      if i=1,       if j=1,  

j

e j
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From (22), and using (25), we have that 
T
ijijij

out eebBBB  '''     (26) 

Therefore the post-contingency B’ matrix can be expressed as 
T
ijijij

out eebBBBB  ''''     (27) 

From (1), we recall the DC power flow relation as 

 'BP        (1) 

If, when we remove the branch connected between buses i and j, 

the angles change by ∆θ, then the new (post-contingency) angles 

will be θ+∆θ, and (1) becomes 

)('   outBP     (28) 

Substituting (27) into (28), we obtain 

  )('  
T
ijijij eebBP

  (29) 

We can solve for the new angles according to 
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  PeebB
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ijijij
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  (30) 

We do not seem to have made much progress, because we still 

have to take an inverse… 

 

However, there is a significant benefit to writing the new matrix in 

the way that we have written it, and that benefit becomes apparent 

if we learn a certain matrix relation. This relation is generally 

referred to as a lemma.  

 

Matrix Inversion Lemma (MIL): Assume B’ is a nonsingular 

n×n matrix, and let c and d be n×M matrices with M<n. Then: 

    111)(111
''''' 

 BdcBdIcBBdcB
TTMT

where I(M) is the M×M identity matrix. 

 

We neglect the proof but mention that it is proved in [1, p. 100] by 

simply multiplying the right-hand-side of MIL by the expression 

inside the brackets of the left-hand-side, and showing that the 

product is the n×n identity matrix. 

 

We also mention that MIL is derived in [2, pp. 138-140]. 

 

It may not be very obvious at this point that MIL will help us, 

since we see 4 different inverses on the right-hand-side of MIL. 

Let’s apply MIL to (30) to see what happens. 
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T
ij

T

ijij

ed

ebc





    (31) 

we can apply MIL according to 
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One of the inverses on the right-hand-side can be addressed right 

away, however, by identifying the dimensionality of the expression 

inside the right-hand-side brackets, [I(M)+dTB’-1c]. Recalling from 

the MIL that M is the number of columns in c and d, and noting 

from (31) that in our case, c and d have only M=1 column, we see 

that what is inside the right-hand-side brackets is a scalar quantity! 

So that inverse we can take, and accordingly, we can express (32) 

as: 
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Pulling out the scalar multiplier bij from where it appears in both 

the numerator and denominator, we have 

 
ij

T
ijij

T
ijijijT

ijijij
eBeb

BeeBb
BeebB

1

11
11

'1

''
''









 (34) 

Now we can isolate bij to only one appearance in the expression by 

dividing top and bottom by it, resulting in: 
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What we have just expressed in (35) is the right-hand-side of (30), 

repeated below for convenience:  
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  (30) 

Substituting (35) into (30), we obtain: 
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Distributing the injection vector P results in 
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But θ=B’-1P, and therefore we can replace the corresponding 

expressions in both right-hand-side terms to obtain: 
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We can simplify a little more by investigating eij
Tθ in the 

numerator. This would be: 
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Substituting (39) into (38) results in: 
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Now we have only two inverses left. Interestingly, they both pre-

multiply eij. That is, we observe that both inverses appear in        

B’-1eij, an n×1 vector. 

 

Question: Besides inverting B’-1, how might we evaluate this term? 

 

When you don’t know how to evaluate something, just name it. 

Then, if things don’t get better right away, you can at least move 

on with a sort of indicator of where your problem lies.  

 

So let’s name this n×1 vector as gij, i.e.,  

ij
ij

eBg 1'      (41) 

Not sure if that helps much but it does indicate that 

ij
ij

egB '      (42) 

Equation (42) should stimulate a very good idea within your mind. 

Since we very well know B’ and eij, we can obtain gij through LU 

factorization. Doing so will give us everything we need to evaluate 

(40), which, when we substitute gij for B’-1eij, becomes: 
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One last small change should be made to (43), and that is to 

recognize that the term in the denominator eij
Tgij can be expressed 

as 
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Therefore, (43) becomes 
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Now what is the LODF? Recall the definition of the LODF is 

dℓ,k = Δfℓ  / fk0     (16) 

where we recall that  

 k designates the outaged circuit, terminated by buses i and j;  

 ℓ designates the circuit for which we want to compute the new 

flow, terminated by buses m and n.  

 

First, let’s express the denominator of (16) fk0, which is 

 T
ijijjiijk ebbf  )(0    (46) 

Now let’s express the numerator of (16) Δfℓ, which is  

 
T
mnmnnmmn ebbf )(l   (47) 

But note that ∆θ in (47) can be expressed using the second term of 

(45), i.e.,  
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Substituting (48) into (47) results in 
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It is of interest at this point to rearrange (49) according to 
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We recognize in (50) that 

)(0 jiijk bf       (51) 

and  
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Substituting (51) and (52) into (50) results in 
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   (53) 

So (53) can be used to obtain the change in flow on circuit ℓ 

(terminated by buses m and n) due to outage of circuit k 

(terminated by buses i and j).  

 

To get the LODF, we divide (53) by fk0, resulting in 
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The approach, then, to using (54), is to factorize B’ into the L and 

U factors once. Then, for each contingency k=1,…,NC, we use 

forward and backwards substation to obtain the vector gij. The 

LODFs for every branch ℓ (terminated by buses m and n), and then 

computed from (54).  
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