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Zbus 

1.0 Introduction 

The Zbus is the inverse of the Ybus, i.e.,  
1

YZ       (1) 

Since we know that 

VYI        (2) 
and therefore 

IYV
1

      (3) 
then  

IZV        (4) 

So Zbus relates the nodal current injections 
to the nodal voltages, as seen in (4). 

 
In developing the power flow problem, we 

choose to work with Ybus. The reason for 
this is that the power flow problem requires 

an iterative solution that can be made very 
efficient when we use Ybus, due to the 

sparsity (lots of zeros) in the matrix used in 
performing the iteration (the Jacobian matrix 

– we will discuss this more later).  
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However, in developing fault analysis 
methods (done in EE 457), we will choose 

to work with Zbus.  The main reason for 
choosing to work with Zbus in fault analysis 

is that, as we will see, Zbus quantities 
characterize conditions when all current 

injections are zero except one, 
corresponding to the faulted bus. We can use 

some creative thinking to express that one 
current injection (the fault current). Once we 

have that one current injection, eq. (4) is 
very easy to evaluate to obtain all bus 

voltages in the network, and once we have 
bus voltages, we can get all currents 

everywhere. These currents are the currents 
under the fault conditions and are used to 

design protection systems. 
 

The Zbus is not sparse (no zeros). But 
fortunately, fault analysis does not require 

iterative solutions, and so computational 
benefit of sparsity is not significant in fault 

analysis. 



 3 

 

2.0 The meaning of Zbus elements 

 

We can write the Z-bus relation for the same 

network as 
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We understand by eq. (11) that the 
independent sources are all current sources, 

and eq. (11) allows us to compute the 
voltages resulting from those current sources 

being injected into the network. These 
current sources are the equivalent 

representation of the generator voltage 
sources.  

 
Let’s inspect more closely one of the 

equations in (11). Arbitrarily choose the 
second equation. 

3232221212 IZIZIZV    (12) 
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Now solve for driving point impedance of 
bus 2, Z22.  

2

3231212
22

I

IZIZV
Z




  (13) 

But what if we set I1 and I3 to 0, i.e., what if 
we open-circuit buses 1 and 3? In other 

words, let’s idle all sources.  
 

This means that we will open any current 
sources at nodes 1 and 3 so that there are no 

sources there (but there may be load 
impedances). Then eq. (13) is: 

02

2
22

31 



II
I

V
Z

     (14) 

Equation (14) says that Z22 is the ratio of bus 
2 voltage to the bus 2 current injection when 

all sources are idled. This is the definition of 
the Thevenin impedance!!!! 
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Conclusion: The diagonal elements of the Z-
bus are the Thevenin equivalent impedances 

seen looking into the network at that bus. 
This is useful because, as seen in the last set 

of notes, the current into the fault may be 
computed as 

Thevf

f

f
ZZ

V
I




 

 

The remainder of these notes comes from 
chapter 9 of Bergen & Vittal. I often cover it 

in EE 456 (but other instructors do not). 
They show you how to construct the Z-bus 

for a large network without performing 
matrix inversion.  

 
One important attribute to building the Z-

bus for fault analysis is that the generator 
subtransient reactances should be included. 

This means that it is necessary to include an 
additional bus for every generator in order to 

enable distinguishing between the high side 
of the generator internal voltage from the 
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network side of the generator subtransient 
reactance. The figure below illustrates the 

difference between generator representation 
for power flow analysis (the focus of EE 

456) and generator representation for fault 
analysis (the focus of EE 457). 

 

jX’’d 

Generator 

representation 

for power flow 

analysis 

Generator 

representation 

for fault 

analysis  
 

3.0 Self admittance and driving point 

impedance 

 
You should recall that it is easy to develop 

the Y-bus. From that, one can invert it to 
obtain the Z-bus. However, in spite of the 

fact that Matlab is quite capable of matrix 
inversion for small dimension, you are NOT 
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ALLOWED to think about just inverting 
Ybus since we must, eventually, live in the 

real world of 5000+ bus models.  
 

As a result, we must turn to the so-called Z-
bus building algorithm, based on 

modification to an already existing Zbus. To 
understand it, we will first looking at 

modification to an already existing Ybus. 
 

4.0 Ybus modifications (See Appendix 7) 

 

Let’s assume that we have a 3-bus system 
with Ybus given by  



















333231

232221

131211
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Y
    (17) 

Assume the branch between buses 1 and 3 is 
numbered as branch 3. Then let’s modify 

branch 3 by adding another circuit between 
bus 1 and bus 3 having an admittance of 

Δy3. How will the Ybus change?  
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 Add Δy3 to diagonal elements in positions 
(1,1) and (3,3). 

 Subtract Δy3 from off-diagonal elements 
in positions (1,3) and (3,1). 

 
The resulting matrix is  
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  (18) 

So the new Y-bus is just the old Y-bus with 
the addition of Δy3 in four positions, as 

indicated by eq. (19): 
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The matrix on the right of eq. (19) can 
actually be written as a product of two 

vectors. Define a vector corresponding to 



 9 

the modification of branch 3 (connected 
between bus 1 and bus 3) as  
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Then notice that: 
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Substitution of (21) into (19) yields: 
Tn

aayYY
333      (22) 

In general, anytime we modify Y-bus, then  
T

kkk

n
aayYY       (23) 

where ak is constructed according to: 
 1 at position i, -1 at position j if we add or 

remove a branch between buses i and j. 
 1 at bus i if we add or remove a shunt at 

bus i. 
Why is eq. (23) of interest to us? 

 
Reason is that there is a nice way to invert 

an expression in the form of eq. (23). 
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5.0 Matrix inversion lemma (Appendix 6) 

The matrix inversion lemma (MIL), 

otherwise known as the Sherman-Morrison 
formula, is as follows. 

 
Suppose we have an n×n symmetric matrix 

Y whose inverse is known and we wish to 
find the inverse of Y+μakak

T
, where  

 μ is a scalar and 
 ak is an n×1 vector. 

Then the MIL says that: 

  T

kk

T

kk bbYaaY  
 11

   (24) 

where bk is an n×1 vector given by 

kk aYb
1

       (25) 

and γ is a scalar given by 

  1
1


  k

T

k ba      (26) 

There is a proof of MIL in the text, page 

600. It is also discussed in most books on 
linear algebra. 
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This formula is useful for getting a modified 
Z-bus, since Z=Y

-1
. In other words, eq. (24), 

(25), and (26) become: 

  T

kk

T

kk

n
bbZaaYZ  

1

  (27) 

where bk is an n×1 vector given by 

kk aZb        (28) 

and γ is a scalar given by 

  1
1


  k

T

k ba      (29) 

The implication is huge.  

Consider that somehow, we are able to get 
an initial Zbus, denoted Z, for some sub-

portion of our network. Then we can change 
Zbus to reflect the addition of an element to 

the network, by using eqs. (28) and (29) to 
compute the bk and γ, which are in turn used 

in eq. (27) to get the new Z-bus, denoted Z
n
. 

 

Repeated application of this will eventually 
provide us with the entire Z-bus. The 

algorithm implementing this approach is 
called the Z-bus building algorithm.  
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6.0 Example (Example A7.1 in text) 

We are given the following Zbus for a 3-

node network. 
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The admittance of branch 2, located between 
nodes 1 and 2, is changed from –j5 to –j15. 

Find the new Zbus, Z
n
. 

 

Solution: The change in admittance of 
branch 2, located between buses 1 and 2, is  

102,12 jyy   

Note that the fact that the admittance 
became more negative means that the 

impedance got less positive, i.e., the 
impedance decreased. This is caused by the 

addition of another circuit, as shown below. 

 

x=j0.2 
y=-j5 

x=j0.2 
y=-j5 

xadd=j0.1 
yadd=-j10 

xnew=j0.0667 
ynew=-j15 

Original subnetwork Add in a circuit Resulting subnetwork 
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Following the example of eq. (20), we have: 
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Writing out eq. (23), we have: 
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Now, if we had Y, we could easily compute 
Y

n
. But that is not our objective. Our 

objective is to compute Z
n
=(Y

n
)

-1
. By eq. 

(27), (28), and (29), this is  

  TTn
bbZaaYZ 22

1

22  


 

22 aZb   

  1

22

1


  ba
T

  

where μ=Δy2. 
 

So first let’s compute b2. That is 
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In other words, b2 finds the difference 
between the columns of Z corresponding to 

the buses terminating the branch being 
modified, in this case, buses 1 and 2, i.e., 

212 ZZb  , where  
321 ZZZZ  . 

Now let’s compute γ. 
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Finally, we can compute Z
n
 according to: 
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 
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7.0 A closer look at γ 

Recall that  
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The expression for γ becomes 

    1111 2
  jjjiiibk

T
kb ZZZyaZay

If there is no circuit between buses i and j,  

  1
2


 jjjiiib ZZZz  

where zb=1/Δyb is the impedance of the new 
circuit added. 

 
8.0 Some special cases 

The MIL is used to build Zbus when you 
have two existing buses and you want to add 

in a line. But how do you get those existing 
buses in the first place? This requires some 

“special cases” for modifying Zbus. We will 
consider three “special cases,” and then we 

will give the Z-bus building algorithm. 
 

8.1 Adding a bus connected to ground 
The situation is as illustrated in Fig. 5, 

where we are just adding in a bus with a 
shunt, but we are not (yet) connecting the 

bus to the network. 
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The network 

yb=1/zb 

 
Fig. 5 

Although this situation does not make much 
sense, it corresponds to a step that we must 

take in building the Z-bus. 
To understand the approach to this situation, 

we return to the Ybus. How will Ybus be 
modified? We simply increase the 

dimension of Ybus by 1, with only the new 
diagonal element being non-zero, and it will 

have value yb. The result of this is shown 
below, where Y is the Y-bus before the 

addition of the new node. 


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






b

T

n

y

Y
Y

0

0

    (30) 

Here, 0 is an n×1 vector of 0’s. Inverting eq. 
(30), we get: 

  
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
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
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
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


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


b

T

b

T

b

T

nn

z

Z

y

Y

y

Y
YZ

0

0

/10

0

0

0 11
1

(31) 
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So modifying Zbus to accommodate a new 
bus connected to ground is easy , and it 

results in Modification #1 and Rule #1 in 
Section 9.5. 

 
Modification #1: Add a branch with 

impedance zb from a new bus (numbered 
n+1) to the reference (ground) node. 

 
Rule #1: Z

n
 is given by  











b

T

n

z

Z
Z

0

0

   (32) 

8.2 Add a branch from new to existing bus 
We assume the new bus is numbered n+1 

and the existing bus is numbered i.  
The situation is as illustrated in Fig. 6. 

 

Existing 

network 

Bus i yb=1/zb 

 
Fig. 6 
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The derivation of what to do here is based 
on the same approach taken in section 8.1, 

i.e., we first see what happens to the Ybus, 
and then consider the inversion of the Ybus. 

In this case, the derivation is a little tedious 
and I will not go through it. You can refer to 

the text, pp. 604-605.  
 

The result is Modification #2 and Rule #2 in 
Section 9.5. 

Modification #2: Add a branch with 
impedance zb from a new bus (numbered 

n+1) to an existing node i. 
 

Rule #2: Denote the i
th
 column of Z as Zi, 

and the ii
th
 element of Z as Zii. Z

n
 is then 

given by  













bii

T

i

in

zZZ

ZZ
Z

   (33) 

Example 1: A network consists of a single 

bus connected to the reference node through 
an impedance of j1.25 ohms. Give Zbus. 
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Solution: This requires application of rule 1. 











b

T

n

z

Z
Z

0

0

 

But Z does not exist, i.e., it is a matrix of 

dimension 0×0. Therefore, 

 25.1jZ
n
  

 
Example 2: A bus 2 is added to the network 

of example 1 through a branch having a 
reactance of j0.0533. Give new Zbus. 

 
Solution: This requires application of rule 2. 













bii

T

i

in

zZZ

ZZ
Z

 

Here, because Z consists of just a single bus 
(bus 1), Z=Zi=Zi

T
=Zii, i.e., Z=Z1=Z1

T
=Z11. 

Therefore 






















3033.125.1

25.125.1

25.125.1

25.125.1

jj

jj

jzj

jj
Z

b

n
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8.3 Add a branch between existing buses 
This is the original situation we worked on 

to motivate MIL. It is illustrated in Fig. 8. 

 

Existing 

network 

Bus i 

yb=1/zb 

Bus j 

 
Fig. 8 

We know what to do with this. The result is 

summarized as Modification #4 and Rule #4 
in Section 9.5. 

 
Modification # 4: Add a branch zb between 

existing i
th
 and j

th
 nodes. 

 

Rule #4: Denote the i
th
 column of Z as Zi, 

and the j
th
 column of Z as Zj, and denote the 

ii
th
, jj

th
, and ij

th
 elements of Z as Zii, Zjj,  Zij.  

Then Z
n
 is given by  

Tn
bbZZ   

ji ZZb     

  1
2


 jjjiiib ZZZz  
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We have already given one example of this 
rule (Example A7.1, page 12 above), and 

another one is given in the text as Example 
9.11. So we will not illustrate further.  

 
There is one more modification necessary, 

that we will call modification #3, and that is 
to add a branch with impedance Zb between 

existing node and reference (ground). This 
differs from Modification #1 because in 

Modification #1, the node did not exist 
previously. Now it does. The issue is a bit 

tricky, and we will address it in section 8.5.  
 

Before we do that, however, it may help to 
take a look at the algorithm used to build Z-

bus, as we have enough information to do 
that now.  

 
8.4 Z-bus building algorithm 

Step 0: Number the nodes of the network 
starting with those nodes at the ends of 

branches connected to the reference node. 
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Step 1: Develop the Z-bus for all buses with 
a connection to the reference node. This is a 

Modification #1 using Rule #1, which 
means that the resulting matrix will be a 

diagonal matrix consisting of the values of 
the shunt impedances along the diagonal (all 

off-diagonals will be zero). 
 

Recall that this step is based on: 











b

T

n

z

Z
Z

0

0

   

The network 

yb=1/zb 

 

Note: building the Zbus in this way avoids 
the necessity of rule 3, since this step 

consists only of adding shunt impedances 
simultaneous with nodes (modification #1, 

rule #1), and after we are done, we will not 
have any more shunt impedances to add, and 

therefore it will not be possible to add a 
shunt impedance to an existing bus. Lovely. 
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Step 2: Add a new node to the i
th
 (existing) 

node of the network via a new branch 

having impedance zb. Continue until all 
nodes of the network have been added. This 

is modification #2, Rule #2, based on: 













bii

T

i

in

zZZ

ZZ
Z

  

Existing 

network 

Bus i yb=1/zb 

 

Step 3: Add a branch between the i
th
 and j

th
 

nodes. Continue until all remaining lines 
have been added. This is modification #4, 

Rule #4, which is based on: 
Tn

bbZZ   

ji ZZb     

  1
2


 jjjiiib ZZZz  

 

Existing 
network 

Bus i 

yb=1/zb 

Bus j 
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8.5 Adding shunt to existing bus: motivation 
The Zbus building algorithm provides a way 

to build the Zbus using only Rules #1, 2, and 
4. The reason why this works is that the first 

step of the algorithm is to build the Zbus for 
all buses that have shunt elements. This step 

eliminates the possibility that at some later 
step of the algorithm, we will have to add a 

shunt to an existing bus. Thus we avoid Rule 
#3, which addresses adding a shunt to an 

existing bus.  
 

Unfortunately, there are situations that 
require Rule #3 which we cannot avoid. 

Consider, for example, that you want to 
develop a program which will compute fault 

currents for each bus, one faulted bus at a 
time.  

 
An important question is, “What does 

faulted bus mean?” 
 



 27 

It means that a short-circuit is placed on the 
bus. In reality, there is no perfect short, i.e., 

any short will always have some impedance. 
In effect, then, faulted bus means connecting 

a very small shunt impedance from a bus to 
the reference node. 

 
So, assuming fault analysis requires the 

Zbus for each faulted condition, how would 
you do the study to get the short circuit 

current for each faulted bus? 
 

Using our algorithm described above, what 
we have to do is to re-build the Zbus for 

each separate faulted bus we want to 
analyze.  

 
Building Zbus is not as computational as 

inverting the matrix, but it does require 
some computational effort. 
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What we would like to do, from a 
programming perspective, is to build the 

network Zbus once, and then perform a 
more efficient manipulation for getting each 

fault-specific Zbus. This, then, is where 
Rule #3 comes in very handy. 

 
Adding a shunt impedance from bus i to the 

reference node may be thought of in a 
preliminary way as adding a branch between 

an existing node i and a new node. This is a 
Rule #2 issue. 

 
How do we handle Rule #2? Repeating eq. 

(33), we develop the new Zbus as: 













bii

T

i

in

zZZ

ZZ
Z

     (33) 

where the new Zbus relation is 





























refbii

T

i

i

ref I

I

zZZ

ZZ

V

V

  (34) 
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But in eq. (34), Vref=0, and so  





























refbii

T

i

i

I

I

zZZ

ZZV

0    (35) 

 
This fact that the left-hand-side of eq. (35) is 

0 for the last equation is significant. It 
means that we may eliminate a variable 

from our solution vector. In particular, we 
would like to eliminate Iref since it 

corresponds to a current that is not useful to 
us (it is the sum of all currents injected from 

the reference node into the network).  
 

There exists a certain analytical technique 
for eliminating Iref. It is called Kron 

Reduction after the famous power system 
engineer Gabriel Kron. 
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8.5 Kron Reduction (section 9.3) 
Consider the following matrix equation: 




































f

e

z

y

dc

bax

0      (36) 

We can write this as separate equations:  
ebzayx         (37) 
fdzcy 0        (38) 

Let’s eliminate the variable z from the top 

equation. This is accomplished by 
multiplying the bottom equation by -bd

-1
  

ebzayx          
fbddzbdcybd0 111          

and adding it to the top equation.  
This results in 

fbdedzbdbzcybdayx 111   (39) 
Factoring out y from the first two terms and 

noting the third and fourth terms go to 0, we 
have: 

fbdeycbdax 11 )(      (40) 
Conclusion: we can eliminate the second 
variable (z) from our equation set if we force 

to zero the element in the first row, second 
column (b). 
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This works if the bottom element in the left-
hand-side is zero. In this case, the operation 

to accomplish our purpose will not change 
the top element in the left-hand-side (x). 

 
Let’s see if we can do this same thing to eq. 

(35), repeated here for convenience: 





























refbii

T

i

i

I

I

zZZ

ZZV

0    (35) 

One can simply apply the same “pattern” 
that we used in the above case, which was: 

fbdeycbdax 11 )(      (40) 
to obtain (note that e and f are zero): 

  IZzZZZV
T

ibiii

1
    (41) 

 

Alternatively, one can think in terms of 
forcing the element in the second column, 

first equation, to zero, through an operation 
where we add a multiple of the second 

equation to the first.  
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The goal here is to zero out the element in 
position (1,2) of the eq. (35) matrix. The 

reason we want to do this is because then, 
the first equation becomes independent of 

the variable Iref.  
To do this, we will multiply the second row 

by –Zi(Zii+zb)
-1
. Then we add this multiplied 

second row to the first row. This results in: 





























 





refbii

T

i

biibiiii

T

ibiii

biii

I

I

zZZ

zZzZZZZzZZZ

zZZV

)()(*)(

0

0*)(

11

1

(42) 

Noting in eq. (42) the terms that go to zero,  





























 

refbii

T

i

T

ibiii

I

I

zZZ

ZzZZZV 0*)(

0

1

 

(43) 
And the first equation in (43) is independent 

of Iref, so that we may extract it as: 

  IZzZZZV
T

ibiii

1
         (44) 

which is the same as eq. (41). 
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This is Kron reduction. It can be applied to 

reduce the dimensionality of a set of linear 
equations whenever the left-hand-side of 

one of the equations is zero. 
 

Aside: The text, in Section 9.3, motivates 
Kron reduction in a totally different, but 

equally legitimate way. It raises the issue of 
what you can do to the Ybus when you have 

a bus for which there is neither generation or 
load modeled at it. This issue comes often in 

power flow analysis. There are, in fact, some 
substations that do not have generation, and 

they do not serve load. Such substations 
might arise, for example, at the junction of 

several transmission circuits, or at a 
transmission-level transformer application 

(e.g., 169kV:345 kV). In this case, the left-
hand side of the Ybus relation will be zero 

for the corresponding circuit. The text does 
some good examples of this on pp. 309-311. 
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8.6 Adding shunt to existing bus: method 

 
We are now (finally) in position to state 

Modification #3 and Rule #3. It is: 
 

Modification #3: Add a branch with 
impedance zb between (existing) i

th
 node and 

the reference node. 
 

Rule #3: Denote the i
th
 column of Z as Zi, 

and the ii
th
 element of Z as Zii.  Z

n,e
 is then 

given by  













bii

T

i

ien

zZZ

ZZ
Z

,

   (33) 

The new Zbus is then obtained by 

performing Kron reduction on Z
n,e

 to 
eliminate the last variable, that is,  

  T

ibiii

n
ZzZZZZ

1
         (45) 


