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Unsymmetrical Fault Analysis 1 

 

1.0 Recap 

We have seen in 

“SymmetricalComponents2,” that positive, 
negative, and zero sequence networks are 

decoupled under the conditions that the 
phase impedance matrix for all components 

of the system have: 
 Equal diagonal elements (phase 

impedances must be equal), i.e.,  

ccbbaa ZZZ       (1) 

 Equal offdiagonal elements (offdiagonal 
phase impedances must be equal), i.e.,  

bcacab ZZZ       (2) 

We also found that under the above 

conditions, the 0+- impedances are given by 

00000  

SSSSSS ZZZZZZ (3) 

abaaS ZZZ 20       (4) 

abaaSS ZZZZ  

    (5) 
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The resulting sequence networks are shown 
in Fig. 1. 
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Fig. 1 
 

Distribution systems generally do not satisfy 
the requirements in (1) and (2) above since 

transposition is not used, that is, distribution 
systems are not symmetric. 

 
Transmission systems generally do satisfy 

the requirements in (1) and (2). 
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2.0 Important concept 

 

Section 12.2 of your text provides a very 
good conceptual description of using 

symmetrical components in fault analysis. I 
condense this discussion here for you. 

Please read it, and digest/absorb it!!! 
 SC provides 3 decoupled systems for 

analysis of unbalanced sources applied to a 
symmetrical system. 

 Faulted symmetrical systems (except for 3-
phase faults) are not symmetrical systems, 

so it would appear that SC are not much 
good for SLG, 2LG, and LL faults. 

 But we can replace the fault with an 
unbalanced source (substitution theorem), 

then the network becomes symmetric. 
 Then get the sequence components of the 

(fictitious) unbalanced source at the fault 
point, then you can perform per-phase 

analysis on each sequence circuit. 
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3.0 Developing sequence networks 

 

Basic steps in using symmetrical 
components for assessing faulted conditions 

are (all quantities are assumed to be in pu). 
 

A. For positive, negative, & zero sequence: 
1.Develop the sequence network for the 

system under analysis. 
2.Obtain the Thevenin equivalents looking 

into the network from the fault point. 
B. Connect the networks to capture the 

influence of the particular fault type. 
C. Compute the fault current from the 

circuit resulting from step B. 
D. From step C, you will also determine the 

currents in all three of the networks 
(positive, negative, and zero sequence 

currents). This enables computation of the 
phase currents Ia, Ib, and Ic from Iabc=AIS. 

 
We discuss each one of these steps in what 

follows. 
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We address loads, lines, transformers, & 
generators. For each of these, we may derive 

expressions for the 0+- sequence 
impedances via the following steps: 

1.Express abc voltages as a function of abc 
currents and abc impedances. 

2.Substitute symmetric components for abc 
voltages and currents (e.g., Vabc=AVS and 

Iabc=AIS). 
3.Manipulate to obtain the form VS=ZSIS. 

 
If you refer back to 

“SymmetricalComponents2,” you will see 
that this is the procedure we followed to 

obtain 0+- sequence impedances for a Y-
connected load.  

 
However, in what follows, we will not go 

through the analytical details but will rather 
just state the results. 
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3.1 Loads (see section 12.6 of text) 

Recall from “SymmetricalComponents2”  

that for a Y-connected, balanced load 
grounded through a neutral impedance Zn 

with impedance ZY per phase, the 0+- 
sequence circuits are as in Fig. 2. 
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Fig. 2 

where we see the sequence impedances are: 
Z

0
  =ZY+3Zn      (6) 

Z
+ 

=ZY        (7) 
Z

-
 =ZY        (8) 



 7 

If the neutral is solidly grounded, then Zn=0 
and eq. (6) above becomes Z

0
=ZY. 

If the neutral is ungrounded, then Zn=∞, and 
eq. (6) above becomes Z

0
=∞, i.e., the 0-

sequence circuit is an open circuit, implying 
no 0-sequence current flows in an 

ungrounded Y connection. 
 

For a delta-connected, balanced load, we 
simply convert to an equivalent Y using 

ZY=ZΔ/3 and then apply relations for an 
ungrounded Y connection, resulting in 

Z
0
 =∞        (9) 

Z
1
 = ZΔ/3       (10) 

Z
-
 = ZΔ/3       (11) 

 

Example: A delta connected balanced load 
with phase impedance ZΔ is in parallel with 

a solidly grounded Y-connected load with 
phase impedance ZY. Draw the sequence 

networks for the entire paralleled load. 
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It is possible to develop the sequence 
networks using the 3-step approach given 

above (and I have notes that do that).  
 

However, this is very painful. Intuition, 
which suggests that we should just obtain 

the sequence networks of the parallel 
combination as parallel combinations of the 

individual sequence networks, is right. 
Figure 3 shows the result.  
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Fig. 3 
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3.2 Lines (see section 12.9 of text) 
 

In “SymmetricalComponents2,” the work 
we did to answer the question of “What if 

the load (or line, or load and line) is not 

symmetric?” led to another question, which 

was: “So what are the conditions for the off-

diagonal elements of ZS to be 0?”  
We have already reviewed the answer to this 

question in Section 1.0 above, which was: 
 Equal diagonal elements (phase 

impedances must be equal), i.e.,  

ccbbaa ZZZ       (1) 

 Equal offdiagonal elements (offdiagonal 
phase impedances must be equal), i.e.,  

bcacab ZZZ       (2) 

In this case, the 0+- sequence impedances 

are [1, p. 28-30]: 

00000  

SSSSSS ZZZZZZ (3) 

abaaS ZZZ 20      (4) 

abaaSS ZZZZ  

   (5) 
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Equation (3) simply says that all off-
diagonal elements on the 0+- sequence 

impedance matrix are zero. Equations (4) 
and (5) provide the actual expressions that 

we need for the 0, positive, and negative 
sequence impedances. These expressions 

apply to transmission lines because 
transposition makes conditions (1, 2) true. 

 
The sequence networks are given in Fig. 4. 
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It is interesting to compare eqs. (4) and (5) 
for a symmetric line, and note that they 

indicate that the zero-sequence quantity is 
larger than the positive and negative 

sequence quantities by 3Zab. 
 

A typical overhead line has Zab≈(2/5)Zaa. In 
this case, it is easy to show that Z

0
=3Z

+
, 

suggesting that finding zero sequence 
impedance 3 times as large as positive 

sequence impedance, is quite typical (see 
bottom of page 474 in text). 
 

3.3 Transformers (see Sec. 12.8 of text) 

 
There are five different types of transformer 

connections to assess. These are: 
1.Grounded Y to grounded Y. 

2.Grounded Y to Y or Y to grounded Y. 
3.Δ-Δ 

4.Grounded Y to Δ or Δ to grounded Y 
5.Y-Δ or Δ-Y. 
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As before, we can perform our 3-step 
procedure given at the end of Section 3.0 

(pg. 5), where we express abc quantities, 
substitute in symmetrical components, and 

then obtain the decoupled equations. Here, 
however, we must repeat this for both sides 

of the transformer and then relate the two 
sets of equations. 

 
We will not perform this tedious work but 

will instead simply observe general guides 
for drawing appropriate sequence circuits. In 

forming these guides, we assume: 
 Exciting current is negligible so shunt path 

is infinite impedance and we only have the 
series Z (winding resistance and leakage 

reactance) in our transformer abc model. 
 Transformers in Δ-Y or Y-Δ configuration 

are always connected so that positive 
sequence voltages on the high side lead 

positive sequence voltages on the low side 
by 30º (per industry convention). See pp. 

139-140 for more on xfmr 30° phase shift. 
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General guidelines for transformer 0+- 
sequence circuits: 

1.Positive and negative sequence 
impedances are equal, i.e., 

 Z
+

 =Z
-
 =Zseries 

where Zseries is the transformer winding 

resistance and leakage reactance. 
2.For connection types 4 and 5 in the above 

list (pg. 11), the phase shift is included 
from low side to high side as 

 +30º for positive sequence 
 -30º for negative sequence 

Let’s take a brief “aside” to look at this. 
a. Why does a Δ-Y or Y-Δ xfmr have a 

30º phase shift for positive sequence 
quantities? Consider a Y-Δ. Across the 

winding, it is Van/VAB, but on the Y-
side, the line-line voltage is 

Vab=√3Van/_30º, so line-line voltage 
ratio is Vab/VAB=√3Van/_30º/ VAB. 

b.Why does negative sequence use -30º? 
Consider the Y-side in our Y-Δ. From 

KVL, Vab=Van-Vbn. See Fig. 5. 
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i. Positive sequence: Vbn=Van/_-120 
ii. Negative sequence: Vbn=Van/_+120 
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3.For zero-sequence network,   
a. We get a complete open circuit (I

0
 =0) if 

there is an ungrounded Y on one or both 

sides. 
b.We get isolation of primary from 

secondary if there is a Δ on one or both 
sides. This means that Δ connection 

prevents pass-through of zero-sequence 
currents. However, we may still get 

zero-sequence current flowing if the 
other side is grounded Y or Δ. 

c. We get no isolation if both sides are 
grounded-Y. 
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d.Z
0
 =Zseries+3Znp+3Zns where: 
 Znp: neutral impedance on primary 

 Zns: neutral impedance on secondary 
Two concepts important in understanding 

the points under (3) above are: 
 There must be a connection to ground on 

the primary (secondary) side for zero-
sequence current to flow between the 

primary (secondary)-side system and the 
primary (secondary) side of the 

transformer. 
 If zero-sequence currents cannot flow 

on primary (secondary) side of the 
transformer, then because currents on the 

secondary (primary) side of the 
transformer can only arise through 

induction of currents on the primary 
(secondary) side of the transformer, zero-

sequence currents also cannot flow on 

the secondary (primary) side of the 

transformer. 
So let’s draw 0+- sequence circuits for 

various transformer connections…. 
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1.Grounded Y to grounded Y. 
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2.Grounded Y to Y or Y to grounded Y. 
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Fig. 6 

 

Here, there is no place for zero-sequence 
currents to flow on the Y side (since there is 

no neutral and sum of phase currents, which 
equals 3Ia

0
, must be 0). Therefore, there can 

be no zero-sequence currents flowing on the 
other side either. So Ia

0
=0 for this connection. 

 
Y to grounded Y is the same. 
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3.Δ-Δ 
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Fig. 7 

Here, zero sequence currents cannot enter or 
leave either Δ winding, so for all practical 

purposes, the zero-sequence circuit is an 
open on both sides. 
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4.Grounded Y to Δ or Δ to grounded Y 
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Fig. 8: Grounded Y to Δ 
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Fig. 9: Δ to Grounded Y 
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In Figs. 8 and 9, we observe that zero 
sequence currents can flow out of the 

grounded Y side, which means they also 
must be able to flow within the Δ (but not 

out of the Δ).  
 

We also observe that, in both Figs. 8 and 9: 
 -30º phase shift occurs of low side 

quantities relative to high side quantities 
for positive sequence (which implies high 

side leads low side by 30º for positive 
sequence quantities, in conformance with 

industry convention) 
 30º phase shift occurs of low side 

quantities relative to high side quantities 
for negative sequence (which implies high 

side quantities lag low side by 30º for 
negative sequence, in conformance with 

industry convention). 
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5.Y-Δ or Δ-Y. 
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Fig. 10: Y to Δ 
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Fig. 11: Δ to Y 
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Observe that Figs. 10 and 11 are exactly like  
Figs. 8 and 9 in the positive and negative 

sequence circuits. The only difference is the 
zero-sequence circuit, where we see that, in 

Figs. 10 and 11, not only can zero-sequence 
currents not pass through (which is the case 

in Figs. 8 and 9) but they cannot flow at all. 
 

3.4 Rotating machines (see sec 12.7, text) 
 

Development of sequence impedances for 
the synchronous machine requires 

significant effort together with background 
in two-reactance theory, including the Park’s 

transformation. We do not have that 
background. Your text offers some of that 

background in chapter 7, and in Appendix 5. 
Additional references include [1, chap. 6], 

[2, chap. 1]. Here we simply provide some 
comments. 
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Positive sequence reactance: As in the 
symmetrical fault analysis, we will just use 

Xd, X’d, or X’’d, depending on what time 
frame of interest we have. This is quite 

reasonable for smooth rotor machines, but 
approximate for salient pole-machines. 

 
Negative sequence reactance: The negative 

sequence currents set up flux in the air gap 
that rotates opposite to the rotor and 

therefore sweeps rapidly over the face of the 
rotor, inducing currents in the iron which 

counteract the original flux. This condition 
is similar to the rapidly changing flux 

immediately upon the occurrence of a short 
circuit at the machine terminals. As a result, 

the negative sequence reactance is generally 
assumed equal to X’’d. 
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Zero-sequence: Two comments: 
1.The zero sequence reactance is typically 

quite small. The reason for this is that the 
zero sequence currents in the a, b, and c 

windings are in-phase. Their individual 
fluxes in the air gap sum to zero and 

therefore induce no voltage, so the only 
effect to be modeled is due to leakage 

reactance. We call this 
0

gZ  . 

2.As with loads, if the neutral is grounded 

through an impedance Zn, because 3 times 
the zero sequence current flows through 

Zn, we model 3Zn in the zero sequence 
network. 

Therefore we have, for generators, that 

ng ZZZ 300       (12) 

Voltage source: Finally, because generators 
produce balanced positive sequence 

voltages, generators produce no negative or 
zero sequence voltages. Therefore, we 

model a voltage source only in the positive 
sequence circuit.  
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When working in per-unit (as we have been 

assuming throughout this discussion), the 
positive sequence source voltage is typically 

assumed to be Ean=1.0. Although it actually 
may be something a little different than 1.0, 

the influence on final short circuit currents 
calculated is negligible.  
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Your text provides a table of typical 
synchronous machine reactances, see Table 

12.1 of pp. 468. You can compare this table 
with a similar one below that I obtained 

from another reference [3]. All values are in 
per-unit on the MVA base of the machine. 

 
 Smooth 

Rotor 

Salient 

Pole 

Synchronous 

Condensers  

Motor 

 

X+ 
Xd 1.1 1.15 1.8 1.2 

X’d 0.23 0.37 0.4 0.35 

X’’d 0.12 0.24 0.25 0.30 

X-  0.13 0.29 0.27 0.35 

X0  0.05 0.11 0.09 0.16 

 

HW4: Due Tuesday, Feb 10, 2015.  
In your text: 

12.2, 12.3, 12.9, 12.10, 12.11, 12.12, 12.17 
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