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Stability 4 

1.0 Introduction  

In the previous notes (Stability 3), we developed 
the equal area criterion, which says that 

For stability, A1=A2, which means the 
decelerating energy (A2) must equal the 

accelerating energy (A1) in order for the 
system response to be stable. 

Analytically, we have that 
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Figure 1 below illustrates a stable case. 
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Fig. 1 
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Figure 2 below illustrates an unstable case.  
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Fig.  2 

 

Everything about Figs. 1 and 2 are the same 
with one exception, the clearing angle (δclear) in 

Fig. 2 is greater than the clearing angle in Fig. 1. 
In other words, Fig. 2 assumes that the speed of 

the protection system is slower than the speed of 
the protection system in Fig. 1. 

 
In these notes, we want to develop expressions 

for computing critical clearing angle. 
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2.0 Critical clearing angle 
 

The critical clearing angle will occur when the 
equal-area criterion is satisfied and the 

maximum angle is δmax=180-δ0. Such a case is 
illustrated in Fig. 3. 
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Fig. 3 

 
We want to compute the critical clearing time. 

We will denote it as δclear=δcr.  
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To do this, let’s define the following: 

sinmaxprepre PP         (2) 

 sinsin max1max prefaultfault PrPP    (3) 

 sinsin max2max prepostpost PrPP    (4) 

where  

 Ppremax, Pfaultmax, and Ppostmax are the amplitudes 
of the power-angle curves for the pre-fault, 

fault-on, and post-fault networks, respectively; 
 0<r1<1 where r1=0 corresponds to a three-

phase fault at the machine terminals, and r1=1 
corresponds to no-fault at all.  

 0<r2<1 where r2=0 corresponds to a three-
phase fault at the machine terminals that is not 

cleared, and r2=1 corresponds to a temporary 
fault (fault is removed without protective relay 

action to also remove a circuit and weaken the 
transmission) 

 
 Let’s first compute A1. 
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Now let’s compute A2. 
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If the system is stable, then A1=A2. So let’s 

equate the expressions in eq. (5) and (6), below. 
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Expand: 
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Notice there is a crMP 0
 on both sides, and so: 

max

0

maxmaxmax

0maxmax0

0

coscos

coscos





Mpostclearpost

faultclearfaultM

PPP

PPP





 (9) 

Let’s put all terms with cosδclear on the left side 

and everything else on the right: 
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Factor out the cosδclear term on the left and the 
0

MP  term on the right: 
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Divide by the term in parentheses on the left: 
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Now eq. (12) is true as long as the system 
response is stable (if it is not stable, then the 

equal-area criterion is not satisfied and therefore 
eq. (7) is invalid).  

 
But if the system response is marginally stable, 

then the clearing angle will be the maximum 
possible angle for which we can clear and still 

retain stability, i.e., it is the critical clearing 
angle, and so in this case, δclear=δcr. In addition, 

the maximum angle must be the unstable 
equilibrium, which is δmax=180-δ0. Making these 

substitutions into eq. (12) results in 
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(13) 
Recalling that cos(π-x)=-cos(x), and noting on 

the right-hand-side that we can combine the two 
δ0 terms inside the brackets, we get: 
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Now recall eqs. (3) and (4), which imply that: 

max1max prefault PrP      (15) 

max2max prepost PrP      (16) 

Substituting eqs. (15) and (16) into (14), we get: 
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Factoring out the Ppremax from the bottom and 
dividing it through all terms in the top, and 

rearranging, results in 
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Let’s consider a few cases: 
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Case 1, Temporary fault at machine terminals: 
 

The fact that it is a temporary fault means that 
the post-disturbance network is the same as the 

pre-disturbance network, therefore r2=1. 
 

The fact that it is a three-phase fault at the 
machine terminals means that the ability to 

transmit power to the infinite bus, during the 
fault-on period, is zero. Therefore r1=0. 

 
Applying these values to eq. (18) results in: 
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But recall that  

0max

0 sinpreM PP      (20) 

Substitution of (20) into (19) results in 
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Or, 

000 cos)2(sincos  cr    (22) 

The above is a closed form solution for the 

critical clearing angle for the condition of a 
temporary three phase fault at the machine 

terminals. 
 

Recall the example introduced in the notes 
called “Stability 2” for the below system: 

 

Bus 1 Bus 2 Bus 3 

j0.4 

j0.4 

j0.1 
X’d=j0.2 

|Vt|= |V1|=1.0 

V= 1.0<0° 

Fig. 4 

In those notes, we determined that the angle 
between the generator internal voltage and the 

infinite bus is δa=28.44°. This is δ0, and it is for 
the same system that is characterized in these 

notes by Fig. 3. Using δ0=28.44°=0.4964 rad in 
eq. (22) results in 
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1417.08793.0021.1
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Therefore we have that 

1417.0cos cr  radcr 4286.11417.0cos 1    

In degrees, this is 81.85°. Reference to Fig. 5, 

which is a “hand-approximation” for this case, 
suggests this angle is quite reasonable. 
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3.0 Critical clearing time 
 

Let’s consider our case of a temporary three-
phase fault at the machine terminals. To obtain 

information on clearing time, we need to look at 
the differential equation characterizing this 

system, which is: 
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The right hand-side is of course 0 before the 

fault (no acceleration), but just after the fault, in 
this case, Pe goes instantly to 0. We therefore 

have that 
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      (24) 

And so we see that just after the fault, there is 

non-zero acceleration, but that acceleration is 
constant since the right-hand-side is constant! 

 
Equation (22) may be rewritten as 
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Rewrite the left-hand-side of eq. (25) as 
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Multiply both sides by dt: 
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    (27) 

Now integrate on the left from ω(0)=0 (initial 

state is zero velocity) to ω(t) and on the right 
from t=0

+
 to t: 
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Now express the left-hand-side as the derivative 
of δ(t) 
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Multiply both sides by dt: 
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Now integrate the left-hand-side from δ0 to δ(t), 
and the right-hand-side from t=0

+
 to t: 
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Now recall we have the critical clearing angle 
δ(t)=δcr, and we are attempting to find the time 

for which we reach this angle. So solve eq. (33) 
for time to obtain: 

 
0

00

4
)(

eMP

H
tt


 

    (34) 

 



 15 

When the angle is the critical clearing angle, we 
obtain: 
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So, let’s compute the critical clearing time for 

our machine. The only other thing we need to 
know is the inertia constant H. We can assume 

that it is H=3.0 sec on the machine base. With 
0.10 MP , ωe0=377, δ0=28.44°=0.4964 rad, and 

radcr 4286.1 , we have 

 

sec1723.0

377*1

3*4
4964.04286.1



crt

 

What if the inertia constant was 5? In this case, 

we would obtain: 

 

sec2224.0

377*1

5*4
4964.04286.1



crt

 

The larger the machine, the longer it takes to 
accelerate it. 


