Stability 3
1.0 Introduction

In our last set of notes (Stability 2), we
described in great detail the behavior of a
synchronous machine following a faulted
condition that is cleared by protective relaying.
A key figure for us was Fig. 1 (it was Fig. 15 in
the previous notes).
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Fig. 1
Fig. 1 shows how the rotor accelerates during
the fault-on period (b-c), and then decelerates
during the post-fault period (e-f-g), turning
around at point g.




Question: Are there ever conditions where the
rotor does not turn around? That is, are there
conditions where the angle continues to
INcrease?

Answer: Unfortunately, yes. We qualify the
answer as unfortunate because the system is
unstable when the rotor does not turn around, a
condition that is highly undesirable.

Our analysis of the last set of notes was for a
stable response. Now we want to look at the
possibility of an unstable response.

2.0 Unstable — what does it mean?

Let’s first consider the ball-bowl analogy. What
does it mean for this system to exhibit an
unstable response?

Consider the ball is initially at the stable
equilibrium, 1.e., 1t is at the bottom of the bowl.
Then we perturb the ball by giving it a push.
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If the push Is not so strong the ball will go up
the side of the bowl and then come back, rolling
around and finally returning to the stable
equilibrium. But if the push Is very strong, the
ball will go up the side of the bowl and over the
edge, leaving the bowl altogether, an unstable
response, shown in Fig. 2.
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Fig. 2

Key to the whether the outcome is stable (rolls
back) or unstable (rolls over the edge) Is
whether the ball reaches the edge or not. If it
does not reach the edge, then clearly the
response Is stable. If it does reach the edge, then
the response Is unstable If it has any positive
velocity at all when 1t reaches. The “dividing
line” between these two situations is that the
ball reaches the edge just as the velocity goes to
zero, the so-called marginally stable case.



In the one-machine-infinite bus case, the
unstable equilibrium (represented by the triangle
on the right of the Fig. 1 post-disturbance
curve), is the “edge.” If the initial “push” (the
fault) on the rotor angle is so “strong” that the
rotor angle increases beyond this point, then
P.=Pw-Pe Is positive, and as the angle increases,
P, and the velocity also increases. If the push is
so that the velocity iIs O just as the angle reaches
the unstable equilibrium, then the case Is
marginally stable.

3.0 Different problems to solve

Our interest is to be able to predict when an
unstable response will occur or the conditions
under which an unstable response will occur. To
do this, let’s first consider what are the
conditions that cause the “push” to be “strong.”

These are



a.the pre-fault mechanical power Into the
machine is large;

b. the fault-on power-angle curve has low
amplitude;

c.the fault has long duration.

There are a number of different kinds of

problems that we could try to solve In relation to

predicting, as listed below.

1.For a given pre-fault mechanical power, a
given fault type and location, and a given
clearing time, determine whether the response
IS stable or not. This Is perhaps the simplest
form of the problem.

2.For a given pre-fault mechanical power and a
given fault type and location, determine the
maximum fault duration for which the system
IS marginally stable. This duration (a time) Is
called the critical clearing time, and its
corresponding angle is called the critical
clearing angle.



3.For a given fault type and location and a given
clearing time, determine the pre-fault
mechanical power for which the system Is
marginally stable. When the fault is a “worst-
case” fault (a three-phase fault at the machine
terminals), this mechanical power is referred
to as the operating limit for this machine.
Operators will ensure that they never operate
the machine above this generation limit.

Let’s address the simplest of these three
problems — the first one. In doing so, we will
establish a criteria for stability.

4.0 Criteria for stability

Let’s refer back to eq. (42) of the notes called
“Stability 1.”” This version of the swing equation
IS

2H ..

—o(t)=P, .,

A, (1)

where



a, pu e (2)
Define
do
. =—= 00w — a
r dt ;?_; I e0
actual qynchronos (3)
fotor - rotorspeed
speed

Remember that we are working iIn electrical
radians. Also note that o,=0 whenever machine
IS at synchronous speed.

Differentiating eq . (3), we get:

dw, d?s

dt  dt’ (4)
Substitute eq. (4) into the swing equation, edg.
(1), to get:

2H do,
— F%a pu
@,, dt | (5)

Now multiply the left-hand-side by , and the
right-hand-side by doé/dt (recall w,~=doé/dt), and
also rearrange the left-hand-side, to get:
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H o ) p 80
@, dt T dt (6)

The reason we rearranged the left-hand-side is
because what Is In the brackets Is something
special, as observed from differentiating (w,)".
Using the chain rule,

daw, (t) d*s

d 2

Observing the second expression in (7) is what

IS Inside the brackets of (6), then (6) becomes:
H d(f) _, do

w,, dt “PEdt (8)

Now multiply both sides by dt to obtain:

H
—d(w?)=P, ,,d5
A, (9)
Consider a change in the state of this system
characterized by (9) such that the angle changes
from o, to o,, and the speed changes from wy t0
oy, i.e., condition (81, w;1)=> condition (5,, wy).




If the right-hand-side and the left-hand-side of
(9) are iIndeed equal functions, with their
variables (w,)° and & related by (7), then the
Integration of the functions in (9) with respect to
their variables should also be equal. Therefore:

a)rz

i:d(a)) jppuda 0

Bring the constant in the Ieft-hand Integral out
front:

Cf)rz

:a;[d(a)) jP .4 -

Noting that the varlable of integration in the
left-hand integral is (o,)°, we see that the left-
hand integral is simple to evaluate.

H b
S (a)rz) a); — j I:)a,pud5
o)

a)eo

(12)

or



weo ) | (13)

We have so far not specified anything about the
two states characterized by (01, 1), (02, ®r). It
IS useful to do so now.

Let’s let both of these states be zero-velocity
states such that w,;= ®,,=0. Then the left-hand-
side of eq. (13) is 0, and we have:

5, (14)
Now return to Fig. 1, repeated below for
convenience, except | have also labeled the
initial, clearing, and maximum angles as 0g
Oclear, aNd Omax, respectively.

Question: Where are zero-velocity points?
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Fig. 3

Clearly, one zero-velocity point is the initial
condition, characterized by the intersection of
the pre-fault power-angle curve and the
mechanical power (dark) line, the initial point
for stage (a), which has an angle of oy Also,
since velocity cannot change Instantaneously,
the point (b) Is also a zero-velocity point.

Another zero-velocity point is point (g), since it
IS at this point that the rotor “turns around.”

Therefore, we can write eq. (14) as:
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5max
j P, .06 =0
g

(15)
Let’s replace P, In eq. (15) using eq. (2).
5max
| Ry —Pds=0
5 (16)

Equation (16) i1s a wonderful relation. It says
that in order for there to be two zero-velocity
points (and therefore be a stable response since
the second zero-velocity point will not occur if
the response is unstable), the total area under the
curve of Py-Pe from 6y to dmax must be zero!

Now, what iIs the total area under the curve of
Pm-Pe from &g to Omax IN FIg. 37 It IS just the area
between the Py, and P. curves. This area Is
appropriately colored in Fig. 4.
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Fig. 4

Note that the lower area, A;, uses the fault-on
power-angle curve, whereas the upper area, A,
uses the post-fault power-angle curve. So the P,
curve Is  discontinuous.  Therefore, In
analytically evaluating eq. (16), we need to
account for this discontinuity, as follows:
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5max
| Py —P.do
g

S S
= [PS —Puudd+ [P —P,d5=0

50 5clear

(17)

Therefore,
Octear Omax

Pl —p_ . d5=— [P0 -P __d&S
é_[ M t 50_'!ar post (18)

Taking the negative sign on the right inside the
Integral, we have:

é‘clear 5max
0 0
j PM - I:)faultd§ — j I:)post o PM do
\50 g ) é‘clear g ) (19)
A A

Here, we have the so-called equal-area criterion:
For stability, A;=A, which means the
decelerating energy (A,) must equal the
accelerating energy (A.;) in order for the
system response to be stable.
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When will instability occur?

To answer this guestion, note that the maximum
value of decelerating energy iIs bounded by the
maximum angle Omax, I.€., once the angle
exceeds dmax, then the energy becomes
accelerating energy.

If the maximum amount of available
decelerating energy (A;) Is not enough to
counteract the accelerating energy, then the
system response will be unstable. Such a case Is
illustrated In Fig. 5.
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Fig. 5
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