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Stability 3 

1.0 Introduction  

 
In our last set of notes (Stability 2), we 

described in great detail the behavior of a 
synchronous machine following a faulted 

condition that is cleared by protective relaying. 
A key figure for us was Fig. 1 (it was Fig. 15 in 

the previous notes). 
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Fig. 1 

Fig. 1 shows how the rotor accelerates during 

the fault-on period (b-c), and then decelerates 
during the post-fault period (e-f-g), turning 

around at point g. 
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Question: Are there ever conditions where the 
rotor does not turn around? That is, are there 

conditions where the angle continues to 
increase? 

 
Answer: Unfortunately, yes. We qualify the 

answer as unfortunate because the system is 
unstable when the rotor does not turn around, a 

condition that is highly undesirable.  
 

Our analysis of the last set of notes was for a 
stable response. Now we want to look at the 

possibility of an unstable response.  
 

2.0 Unstable – what does it mean?  
 

Let’s first consider the ball-bowl analogy. What 
does it mean for this system to exhibit an 

unstable response?  
 

Consider the ball is initially at the stable 
equilibrium, i.e., it is at the bottom of the bowl. 

Then we perturb the ball by giving it a push. 
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If the push is not so strong the ball will go up 
the side of the bowl and then come back, rolling 

around and finally returning to the stable 
equilibrium. But if the push is very strong, the 

ball will go up the side of the bowl and over the 
edge, leaving the bowl altogether, an unstable 

response, shown in Fig. 2. 

 

Stable equilibrium Unstable equilibrium Unstable equilibrium 

 
Fig. 2 

Key to the whether the outcome is stable (rolls 

back) or unstable (rolls over the edge) is 
whether the ball reaches the edge or not. If it 

does not reach the edge, then clearly the 
response is stable. If it does reach the edge, then 

the response is unstable if it has any positive 
velocity at all when it reaches. The “dividing 

line” between these two situations is that the 
ball reaches the edge just as the velocity goes to 

zero, the so-called marginally stable case. 
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In the one-machine-infinite bus case, the 
unstable equilibrium (represented by the triangle 

on the right of the Fig. 1 post-disturbance 
curve), is the “edge.” If the initial “push” (the 

fault) on the rotor angle is so “strong” that the 
rotor angle increases beyond this point, then 

Pa=PM-Pe is positive, and as the angle increases, 
Pa and the velocity also increases. If the push is 

so that the velocity is 0 just as the angle reaches 
the unstable equilibrium, then the case is 

marginally stable. 
 

3.0 Different problems to solve 
 

Our interest is to be able to predict when an 
unstable response will occur or the conditions 

under which an unstable response will occur. To 
do this, let’s first consider what are the 

conditions that cause the “push” to be “strong.”  
 

These are 
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a. the pre-fault mechanical power into the 
machine is large; 

b. the fault-on power-angle curve has low 
amplitude; 

c. the fault has long duration. 
 

There are a number of different kinds of 
problems that we could try to solve in relation to 

predicting, as listed below. 
1.For a given pre-fault mechanical power, a 

given fault type and location, and a given 
clearing time, determine whether the response 

is stable or not. This is perhaps the simplest 
form of the problem. 

2.For a given pre-fault mechanical power and a 
given fault type and location, determine the 

maximum fault duration for which the system 
is marginally stable. This duration (a time) is 

called the critical clearing time, and its 
corresponding angle is called the critical 

clearing angle. 
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3.For a given fault type and location and a given 
clearing time, determine the pre-fault 

mechanical power for which the system is 
marginally stable. When the fault is a “worst-

case” fault (a three-phase fault at the machine 
terminals), this mechanical power is referred 

to as the operating limit for this machine. 
Operators will ensure that they never operate 

the machine above this generation limit. 
 

Let’s address the simplest of these three 
problems – the first one. In doing so, we will 

establish a criteria for stability. 
 

4.0 Criteria for stability 
 

Let’s refer back to eq. (42) of the notes called 
“Stability 1.” This version of the swing equation 

is: 
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Remember that we are working in electrical 
radians. Also note that ωr=0 whenever machine 

is at synchronous speed. 
 

Differentiating eq . (3), we get: 
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Substitute eq. (4) into the swing equation, eq. 

(1), to get: 
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Now multiply the left-hand-side by ωr and the 

right-hand-side by dδ/dt (recall ωr=dδ/dt), and 
also rearrange the left-hand-side, to get: 
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The reason we rearranged the left-hand-side is 
because what is in the brackets is something 

special, as observed from differentiating (ωr)
2
. 

Using the chain rule, 
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Observing the second expression in (7) is what 
is inside the brackets of (6), then (6) becomes: 
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Now multiply both sides by dt to obtain: 
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Consider a change in the state of this system 

characterized by (9) such that the angle changes 
from δ1 to δ2, and the speed changes from ωr1 to 

ωr2, i.e., condition (δ1, ωr1) condition (δ2, ωr2). 
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If the right-hand-side and the left-hand-side of 
(9) are indeed equal functions, with their 

variables (ωr)
2
 and δ related by (7), then the 

integration of the functions in (9) with respect to 

their variables should also be equal. Therefore: 
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Bring the constant in the left-hand integral out 
front: 
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Noting that the variable of integration in the 

left-hand integral is (ωr)
2
, we see that the left-

hand integral is simple to evaluate.  
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We have so far not specified anything about the 
two states characterized by (δ1, ωr1), (δ2, ωr2). It 

is useful to do so now. 
 

Let’s let both of these states be zero-velocity 
states such that ωr1= ωr2=0. Then the left-hand-

side of eq. (13) is 0, and we have: 
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Now return to Fig. 1, repeated below for 

convenience, except I have also labeled the 
initial, clearing, and maximum angles as δ0, 

δclear, and δmax, respectively.  
 

Question: Where are zero-velocity points? 
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Fig. 3 

 
Clearly, one zero-velocity point is the initial 

condition, characterized by the intersection of 
the pre-fault power-angle curve and the 

mechanical power (dark) line, the initial point 
for stage (a), which has an angle of δ0. Also, 

since velocity cannot change instantaneously, 
the point (b) is also a zero-velocity point. 

 
Another zero-velocity point is point (g), since it 

is at this point that the rotor “turns around.” 
 

Therefore, we can write eq. (14) as: 
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Let’s replace Pa in eq. (15) using eq. (2). 
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Equation (16) is a wonderful relation. It says 
that in order for there to be two zero-velocity 

points (and therefore be a stable response since 
the second zero-velocity point will not occur if 

the response is unstable), the total area under the 
curve of PM-Pe from δ0 to δmax must be zero! 

 
Now, what is the total area under the curve of 

PM-Pe from δ0 to δmax in Fig. 3? It is just the area 
between the PM and Pe curves. This area is 

appropriately colored in Fig. 4.  
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Fig. 4 

 
Note that the lower area, A1, uses the fault-on 

power-angle curve, whereas the upper area, A2, 
uses the post-fault power-angle curve. So the Pe 

curve is discontinuous. Therefore, in 
analytically evaluating eq. (16), we need to 

account for this discontinuity, as follows: 
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Therefore, 
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Taking the negative sign on the right inside the 

integral, we have: 
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Here, we have the so-called equal-area criterion: 
For stability, A1=A2, which means the 

decelerating energy (A2) must equal the 
accelerating energy (A1) in order for the 

system response to be stable. 
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When will instability occur?  
To answer this question, note that the maximum 

value of decelerating energy is bounded by the 
maximum angle δmax, i.e., once the angle 

exceeds δmax, then the energy becomes 
accelerating energy.  

 
If the maximum amount of available 

decelerating energy (A2) is not enough to 
counteract the accelerating energy, then the 

system response will be unstable. Such a case is 
illustrated in Fig. 5. 
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Fig. 5 

 


