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State Estimation 

 

1.0 Introduction  

 

State estimation for electric transmission grids 

was first formulated as a weighted least-squares 

problem by Fred Schweppe and his research 

group [1] in 1969 (Schweppe also developed 

spot pricing, the precursor of modern-day 

locational marginal prices – LMPs – which are a 

central feature of electricity markets). Figure 0 

below shows Dr. Schweppe (the one seated in 

the chair). 

 

Fig. 0 

 

The basic motivation for state estimation is that 

we want to perform computer analysis of the 
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network under the conditions characterized by 

the current set of measurements.  

 

Specifically, we want to know the values of the 

bus voltage phasor magnitudes and angles |Vk|, 

θk for all k=1,…,N buses in the network (we 

assume θ1=0 so we do not need to find that one). 

 

We begin with linear least squares estimation. 

 

2.0 Linear least squares estimation 

The material in this section closely follows that 

in [2, chapter 2]. 

 

Consider the circuit given in Fig. 1 below where 

current injections I1, I2, and voltage E are 

unknown. Let R1=R2=R3=1.0 Ω. The 

measurements are as follows: 

 meter A1: i1,2=1.0 Ampere 

 meter A2: i3,1=-3.2 Ampere 

 meter A3: i2,3=0.8 Ampere 

 meter V: e=1.1 volt 
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The problem is to determine the state of the 

circuit, which in this case is nodal voltages v1, 

v2, and the voltage e across the voltage source.  
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Fig. 1 

Let’s write each one of the measured currents in 

terms of the node voltages, and we may also 

write down our one voltage measurement. 
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Expressing all of the above in matrix form: 
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Let’s denote terms in eq. (5) as A, x, and b, so: 

bxA         (6a) 

where  
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How do we solve eq. (5)? 

Observe that the multiplying matrix is not 

square, i.e., there are 4 rows but only 3 columns.  

The reason for this is because there are 4 

equations but only 3 variables. This means that 

the system of equations defined by eq. (5) is 

over-determined. This is a standard feature in 

state-estimation. Noticing that there is one 

equation for each measurement, the implication 

is that we will attempt to always obtain as many 

measurements as we can.  
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There is no single solution to eq. (5), but there is 

a single solution that is normally thought of as 

“best.” This solution is the one that minimizes 

the sum of the squared “error” between what 

should be computed by each equation, which is: 
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and what is computed by each equation, which 

is: 
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The difference, or error, is then: 
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The squared error is then 
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and the sum of the squared errors is: 
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Careful tracking of the previous expression will 

indicate that it could be written as  
   xAbxAb

T
  

Let’s multiply the above by ½ and give it a 

name: 

   xAbxAbJ
T
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Our problem is then to choose x so as to 

minimize J. (This is an unconstrained 

minimization problem.) We can do this setting 

the gradient of J with respect to x to zero and 

solving for x. 

To do this, we expand J as follows: 
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Using (Ax)
T
=x

T
A

T
, we have: 
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Consider the second and third terms in (12a). 

Using a 2x2 to illustrate, 
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we observe these terms are equal. Therefore, 

(12a) becomes 

 xAAxxAbbbJ
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To remind us all about gradients, we recall that 

it is given by (13): 
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Now (12b) is written in compact notation, and it 

may not be obvious how to differentiate each 

term in it. To assist with this, I provide the 

following relations: 
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 Function Gradient 
#1 bxF

T
  bFx   

#2 xbF
T

  bFx   
#3 uAxF

T
  uAFx   

#4 xAuF
T

  uAF
T

x   
#5 xAxF

T
  xAF

T
x 2  

The above gradient relations apply to (12b) as 

illustrated in (12c). 
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Using the appropriate relations in the above 

table (#4 to the second term and #5 to the third 

term), the gradient of (12c) can be expressed as: 
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Again, using (Ax)
T
=x

T
A
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, the second term is 

xAAxAA
TTT
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The minimum of J is obtained when 
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And this implies that 
xAAbA

TT
       (17) 

Note: 

 Equation (17) is referred to in statistics as the 

normal equations.  

 We could have obtained (17) by just 

multiplying Ax=b through by A
T
. 

 AT
A multiplies an m×n by an n×m to get an 

m×m matrixSquare!  

 (AT
A)

T
=A

T
A, so the transpose of A

T
A is 

itself. This may only occur if A
T
A is 

symmetric, implying that A
T
A is symmetric. 

 Reference [3, p. 157] shows that if A has 

linearly independent columns, then A
T
A is 

invertible. 

 

Solving eq. (17) for x results in 

  bAAAx
TT 1

      (18) 

Define the gain matrix G as  
AAG

T
       (19) 

Also define the pseudo-inverse of A as 
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Now we can find the answer to our problem as. 

  bAbAGbAAAx
ITTT
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    (21) 

First, the gain matrix is given as 
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The inverse of the gain matrix is then found 

from Matlab as 
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The pseudo-inverse is then 
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Then we can obtain the least squares estimate of 

the 3 states from the 4 measurements as 
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It is also interesting at this point to look at the 

difference between the measurements we 

actually had, which is b, and the values 

corresponding to those measurements that we 

would compute using the state vector x, which 

is Ax.  

 

This difference is referred to as the residual, r, 

and given by eq. (9) as 
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3.0 A motivating system and some basics 

 

Consider Fig. 2 where we obtain measurements 

on the indicated quantities. 
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Fig. 2 

 

We denote the measured quantities as follows: 
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      (22) 

 

Then we can write  

iii zz  ˆ      (23) 

where 

 zi is the measured value 

 iẑ is the true value (unknown) 
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 i is the error (unknown) 

 

Not knowing iẑ  and i is a problem. However, 

we may obtain statistical information from 

calibration curves (error as a function of 

measurement) of measuring instruments. It is 

usually assumed that i  is a random variable 

with a normal (Gaussian) distribution having 

zero mean, as illustrated in Fig. 3.  

 
σ 2σ 3σ 0 
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Fig. 3 

 

This makes sense because a particular 

measuring instrument, if it is reasonably 

calibrated, may read a little high (positive error) 
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at times or a little low (negative error) at times, 

so that the average error is zero. Calibration 

curves enable determination of the variance σi.  

 

Recall the expectation operator, which we 

denote as E(●) (i.e., the expected value of ●). It 

is defined as: 






 dxxxfxE )()(       (24) 

which gives the mean value of a variable x 

described by the probability distribution 

function f(x). 

 

We also define variance as: 

 




 dxxfxExxx )()()var(
22    (25) 

We relate variance to mean beginning with (25). 
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(26) 

From eq. (26) (which is true for any random 

variable x), we see that if the mean is 0 

(E(x)=0), then the last term in eq. (26) is 0 and 

)( 22 xEx        (27) 

In regards to the calibration error, characterized 

by the random variable ηi, we have then:  

 0)( iE  (zero mean) 

 
22)( iiE   (variance) 

Note that the larger the variance, the less 

accurate is the measuring device. 

 

Since we have multiple measuring instruments, 

we also need to understand how the statistics of 
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one random variable relate to the statistics of 

another.  

 

The covariance measure is effective in doing 

this, and is defined as 

  




 dxyxfyEyxExyxxy ),()()(),cov(2  (28) 

Note that variance is a special case of 

covariance when x=y, i.e., var(x)=cov(x,x). 

 

The covariance cov(x,y) is a measure of how 

two variables change together.  

 If cov(x,y)>0, then x tends to increase when 

y increases. 

 If cov(x,y)<0, then x tends to decrease when 

y increases. 

 If x and y are independent, then cov(x,y)=0 

(but note that cov(x,y)=0 does not 

necessarily imply independence) because 

covariance reflects linear dependence. Two 

variables can be nonlinearly dependent (and 

therefore not independent) but have a 

covariance of 0. 
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It can be shown [4] from eq. (26) that 

 )()()(),cov(2 yExExyEyxxy     (29) 

 If x and y are independent, then 

E(xy)=E(x)E(y). 

Therefore, for two independent random 

variables, the covariance is: 
0),cov(2  yxxy  

 

Now, back to our state estimation problem… 

 

A basic assumption: 

The errors i  and j for any two measuring 

instruments i and j are independent. This means 

that 
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Thus, we can define a covariance matrix R, 

where the element in position (i,j) is cov(ηi,ηj). 

Given (28), the matrix will appear as: 



 18 























2

2

2

2

1

000

00

000

00

m

R











    (31) 

where it is assumed that we have m measuring 

instruments. 

We will use eq. (31) in our development. 

 

4.0 Problem for AC State Estimator 

 

We will define the state vector as for an N-bus 

network as: 
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We will have n=2N-1 states. 

For each parameter for which we have a 

measurement, we want to write an equation in 

terms of the states. In other words, if we have a 
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measurement zi, then the true value of that 

measurement will be 

)(ˆ xhz ii       (33) 

For a voltage measurement, the function hi is 

very simple: 

ki Vz ˆ       (34) 

where measurement i occurs at bus k. 

For MW and MVAR flows, the function hi is 

given by the expressions for power flow across 

a line from bus p to bus q. These are given by 
)sin()cos(2

qppqqpqppqqppqppq bVVgVVgVP   (35) 
)cos()sin()(2

qppqqpqppqqpppqppq bVVgVVbbVQ   (36) 

where the line has  

 series admittance of gpq+jbpq; gpq>0, bpq<0 for 

inductive line. 

 Shunt susceptance at bus p of bp (which 

includes any reactive shunt at the bus plus half 

of the line charging). If capacitive, then bp>0. 

 

Now define some vectors: 
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Measured values: 
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True values: 
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Generalizing eq. (23), we have: 

 zz ˆ      (40) 

From (33), we also have for a vector of 

functions expressing the measurement values in 

terms of the states: 

)(ˆ xhz       (41) 

Substituting eq. (41) into (40), we have: 

 )(xhz      (42) 

Now consider what we have here. The number 

of unknowns is n=2N-1 (the states in x which 
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are the angle and voltage variables), and then 

we have some number of measurements m. 

 

Let’s assume that m>n, i.e., that we have more 

measurements than states. 

 

One thing we could do is 

 set η=0 z=h(x) 

 choose m=n equations (each corresponding to 

a measurement) 

 Solve for x (it would need to be non-linear 

solver but once done, solution is unique). 

However, the tough question would be: Which 

measurements to choose to keep? Which are the 

best?  

 

Since we do not know which measurements are 

the best, we instead make sure that we have 

more measurements than states, i.e., we will 

solve the problem for m>n=2N-1.  

 

So our strategy is as we saw in our earlier 

example, to choose x so as to minimize the sum 
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of the squared errors between the measured 

values and the actual values. 

 

From eq. (40), we have the error is 

)(xhz       (43) 

Similar to eq. (10), we can then express the sum 

of squared errors as 

   )()(
2
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2 xhzxhzJ
TT

m
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We denote the above as J’ because we will find 

it convenient to modify a bit. 

 

 

By minimizing J’, we are effectively choosing x 

that best “fits” the measurements. Remember, 

however, that some measurement devices are 

better than others (which is a different statement 

than some measurements are better than others).  

 

It is reasonable, then, to place more weight on 

the better measuring devices.  
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A good choice for this weight is 2

1

i  since 

 Good device small 
2

i , large 2

1

i
 

 Bad device large 
2

i , small 2

1

i
 

 

Therefore, we will modify eq. (44) to be: 
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      (45) 

And so 
2

i will increase the error terms for 

accurate measurements, making the 

optimization (and the solution) more dependent 

on those measurements. 

Recall the covariance matrix given by eq. (31), 

repeated here for convenience: 
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Because R is diagonal, its inverse is easy to 

find: 
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We can therefore express eq. (45) in as: 
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The problem then becomes to find x that 

minimizes J. Note, however, that h is nonlinear, 

and so our solution will necessarily be iterative. 

 

 

 

 

5.0 Solution for AC State Estimator 

 

So the problem can be stated as follows: 

 

mimimize 
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(48) 

We can apply first order conditions, which 

means that all first derivatives of the objective 

function with respect to decision variables must 

be zero, i.e., that 0 Jx . That is, 
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For a single element in Jx , we have: 
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This can be written in matrix form as 
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And we then see how to write the vector of 

derivatives, according to: 
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(53) 

We recognize the matrix of partial derivatives in 

(53) as a sort of Jacobian matrix but  

(a) it is n x m, i.e., it is not square and 

(b) unlike standard Jacobian, here the rows 

vary with variable (x1, x2, …), not function 

(h1, h2, …). 

 

Let’s define a matrix H that does not have the 

second (b) attribute, i.e.,  
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Note that H is m x n, and it is the negative 

transpose of the first matrix in eq. (53). 

 

Then we see that the optimality condition can be 

written as: 
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The solution to eq. (55) will yield the estimated 

state vector x which minimizes the square error.  

 

Because there are n elements in the partial-J 

vector on the left, we observe that eq. (55) gives 

n equations. Since there are n variables in x, it is 

possible to solve eq. (55) explicitly for x. 

Now we need to determine a solution procedure 

for eq. (55). To do so, let’s define the left-hand-

side of eq. (55) as G(x), i.e.,  
   0)()()(

1



xhzRxHxG T

    (56) 
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Perform a Taylor series expansion of G(x) 

around a certain solution x0. 

0...)()()(
0

00  tohxxGxGxxG
xx   (57) 

Note that eq. (57) indicates that if x0+Δx is to be 

a solution, then the right-hand-side of eq. (57) 

must be zero. 

 

Recall that in a Taylor series expansion, the 

higher order terms contain products of Δx, and 

so if Δx is relatively small, terms containing 

products of Δx will be very small, and in fact, 

negligible. So we will neglect the h.o.t. in eq. 

(57). This results in: 

0)()()(
0

00  xxGxGxxG
xx   (58) 

Since eq. (58) is nonlinear, we must resort to an 

iterative algorithm to solve it. We will use a 

Newton-type algorithm 

Let’s assume that we can make a pretty good 

guess at the solution to eq. (58), i.e., that the 

difference between our guess and the real 

solution is relative small.  
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Denote this guess as x
(k)

. Because it is not the 

solution, G(x
(k)

)≠0.  

 

So we want a better guess. Denote the better 

guess as x
(k+1)

. The difference between the old 

guess x
(k)

 and the new guess x
(k+1)

 is Δx
(k+1)

, i.e.,  

xxx
kk


 )()1(

     (59) 

Or we can write 
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Evaluating G at the better guess, we have 

xxGxGxxGxG
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We desire that G(x
(k+1)

)=0. Under this desired 

condition, eq. (61) becomes: 
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Solving for )(
)(

k
xx xG , we have: 

)()(
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k

xx xGxxG
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     (63) 

In considering eq. (63), we already understand 

the right-hand-side, this is just the negative of 

eq. (56), evaluated at x
(k)

, i.e.,  
  )()()(

)(1)()( kkTk
xhzRxHxG 



   (64) 

There are n functional expressions in eq. (64). 
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But what is )(
)(

k
xx xG ? This is the derivatives, 

with respect to each of the n state variables, of 

each of the n functional expressions in eq. (56): 
   0)()()(

1



xhzRxHxG T

    (56) 

Since there are n functional expressions and n 

derivatives to take for each one, we can see that 

G(x) will be n×n, a square matrix. 

 

Remembering eq. (55) 
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reminds us that G(x) are also derivatives with 

respect to each of the n state variables. 

Therefore, )(
)(

k
xx xG  are second derivatives of J 

with respect to the state variables. 

Can we obtain a form for these second 

derivatives. Let’s start from eq. (56): 
  )()()(

1
xhzRxHxG T 



    (56) 

So what we want is: 
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The differentiation of what is inside the brackets 

of eq. (65) is formidable. We will make it easier 

for ourselves by assuming that H(x) is a 

constant matrix. This implies H(x+Δx)≈ H(x), 

i.e., the derivatives of the power flow equations 

do not change. 

Remember, from eq. (54), 
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  (54) 

where the functions hi are the expressions for 

the measurements (voltages, real and reactive 

power flows) in terms of the states (angles and 

voltage magnitudes).  

So H is really a power flow Jacobian matrix. It 

is well known that the power flow Jacobian is 

relatively insensitive to relatively small 

variations in state. 
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With the above assumption, differentiating the 

right-hand-side of eq. (63) becomes not-so-bad: 
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 (66) 

But we recognize from eq. (54) the term 
x

xh



 )(
in 

eq. (66) as H. Therefore, eq. (66) becomes: 
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     (67) 

Making this substitution into eq. (61) results in: 
)()(
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xx xGxxG
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     (63) 
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    (68) 

Finally, replacing the right-hand-side of eq. (68) 

with eq. (54) evaluated at x
(k)

 yields: 

  
)()(

)()()()(
11

kk
x

T

x

T xhzRxHxxHRxH 


  (69) 

Equation (69) provides a way to solve for Δx. 

6.0 Solution Algorithm 

Given: 

 measurements z   [z1, …,zm] 

 standard deviations σ1,…σm 
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 the network 

Compute : state estimate x   [x1,…,xn] 

(this is all voltage magnitudes and all voltage 

angles except for swing bus angle) 

 
1. Form measurement expressions h(x) 

2. Form derivative expressions 
x

xh
H






)(
 

3. Form R 

4. Let k=0. Guess solution x(0). 

5. Compute H(x(k)), h(x(k)) 

6.Compute )(
)()(

1

k
x

T xHRxHA


 ,   
)(

)()(
1

k
x

T xhzRxHb 


 

7. Solve AΔx=b for Δx. 

8. Compute x(k+1)= x(k)+ Δx 

9. If    i
i

xmax then 

k=k+1 

Go to 5 

Else Stop 

 

 

Homework #10: 

For the lossless network shown below, the following 

data is given: 

z1=V1=1.02, σ1=0.1 
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z2=V2=1.0, σ2=0.1 

z3=P12=2.0, σ3=0.05 

z4=Q12=0.2, σ4=0.05 

Let  
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and perform one iteration of the solution procedure 

to find x(1). 

 

Bus 1 Bus 2 

-j10 
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