HW \#5, Due Tuesday, March 3, 2015

A. From Text, 13.1-13.5
B. Work the following problem:

Consider the 138 kV transmission system.

The relays are impedance relays with directionality.
(a) Select the CT ratio so that maximum load current provides 5 amperes on the relay side. Choices are I:5 where I may be 50, $100,150,200,250,300,400,450,500,600,800,900,1000$, or 1200.
(b) Select the VT ratio $\mathrm{V}: 1$ so that the rated line-to-neutral voltage provides 67 volts on the on the relay side.
(c) If the primary (line) side of the relay sees an impedance of $V_{p} / I_{p}=Z_{\text {line }}$, determine an expression for the impedance seen on the relay side, $Z_{\text {relay }}$, as a function of $Z_{\text {line }}$ and the $C T$ and $V T$ ratios.
(d) Identify zone 1, 2, and 3 settings for R12, i.e., the threshold impedance values, on the relay side corresponding to 80% of line 1-2 (zone 1), 120% of line 1-2 (zone 2), 120% of the longest line beyond bus 2 (zone 3) which would be line 2-4 in this case.
(e) Draw zone 1, 2, 3 circles on R-X diagram; plot the point corresponding to maximum cct.1-2 load of $50 \mathrm{MVA}, 0.8 \mathrm{pf}$ lag.

