HW3 Solutions

1. Problem 9.8 (see end of this document)
2. Consider the 4-bus system shown below. Both machines have subtransient reactances of 0.20 pu (you can combine the machine subtransient reactance with the transformer impedance to get a single reactance connecting the machine internal voltage with the network).

a. Construct the Y-bus for this network (should be a 4×4 matrix).
b. Consider that there is a three-phase (symmetrical) fault at bus 2 .
ii. Use LU decomposition to obtain the $2^{\text {nd }}$ column of the Z-bus.
iii. Compute the subtransient fault current.
iv. Use eq. (12) to find the voltages during the fault.
v. Use eq. (17) to find the subtransient currents in lines 3-2, 1-2, and 4-2.

Solution:

a). Compute the Y-B us
$Y_{\text {bus }}=\left[\begin{array}{cccc}\frac{1}{j .25}+\frac{1}{j .125}+\frac{1}{j .40} & \frac{-1}{j .125} & \frac{-1}{j .25} & \frac{-1}{j .4} \\ \frac{-1}{j .125} & \frac{1}{j .25}+\frac{1}{j .125}+\frac{1}{j .2} & \frac{-1}{j .25} & \frac{-1}{j .2} \\ \frac{-1}{j .25} & \frac{-1}{j .25} & \frac{1}{j .25}+\frac{1}{j .25}+\frac{1}{j .3} & 0 \\ \frac{-1}{j .4} & \frac{-1}{j .25} & 0 & \frac{1}{j .2}+\frac{1}{j .3}+\frac{1}{j .40}\end{array}\right]$
$Y_{\text {bus }}=\left[\begin{array}{cccc}-j 14.5 & j 8 & j 4 & j 2.5 \\ j 8 & -j 17 & j 4 & j 5 \\ j 4 & j 4 & -j 11.3333 & 0 \\ j 2.5 & j 5 & 0 & -j 10.83333\end{array}\right]$
b).
i). LU Decomposition to obtain Z_{2}
$Y_{b u s} Z_{b u s}=I$
$Y_{\text {bus }} Z_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
Factorization of a matrix \underline{Y} can be done efficiently and easily using the matlab command:
$[\underline{\mathbf{L}}, \underline{\mathbf{U}}]=\mathbf{l} \mathbf{u}(\underline{\mathbf{Y}})$
Then it is easy to find \underline{w} by hand using forward substitution from:
$\underline{L} \underline{w}=\underline{I}_{k}$
$\rightarrow \underline{L} \underline{w}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
And then it is easy to find \underline{Z}_{2} by hand using backwards substitution from: $\underline{\boldsymbol{U}}_{\mathbf{Z}}^{2}=\underline{\boldsymbol{w}}$
Alternatively, the manual steps of LU decomposition can be performed per the notes from "LU Decomposition." I did it within Matlab, as follows. Here, $\mathbf{y} 1$ is the initial "augmented" matrix (see notes on LU decomposition for the meaning of this term).

```
>> yl=[-14.5i,8i,4i,2.5i,0;8i,-17i,4i,5i,1;4i,4i,-11.33333i,0,0;2.5i,5i,0,-10.833333i,0]
y1 =
\begin{tabular}{lllcc}
\(0-14.5000 \mathrm{i}\) & \(0+8.0000 \mathrm{i}\) & \(0+4.0000 \mathrm{i}\) & \(0+2.5000 \mathrm{i}\) & 0 \\
\(0+8.0000 \mathrm{i}\) & \(0-17.0000 \mathrm{i}\) & \(0+4.0000 \mathrm{i}\) & \(0+5.0000 \mathrm{i}\) & 1.0000 \\
\(0+4.0000 \mathrm{i}\) & \(0+4.0000 \mathrm{i}\) & \(0-11.3333 \mathrm{i}\) & 0 & 0 \\
\(0+2.5000 \mathrm{i}\) & \(0+5.0000 \mathrm{i}\) & 0 & \(0-10.8333 \mathrm{i}\) & 0
\end{tabular}
>> y2=[y1(1,:)/y1(1,1);y1(2,:);y1(3,:);y1(4,:)]
y2 =
\begin{tabular}{lrllll}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
\(0+8.0000 \mathrm{i}\) & \(0-17.0000 \mathrm{i}\) & \(0+4.0000 \mathrm{i}\) & \(0+5.0000 \mathrm{i}\) & 1.0000 \\
\(0+4.0000 \mathrm{i}\) & \(0+4.0000 \mathrm{i}\) & \(0-11.3333 \mathrm{i}\) & 0 & 0 \\
\(0+2.5000 \mathrm{i}\) & \(0+5.0000 \mathrm{i}\) & 0 & \(0-10.8333 \mathrm{i}\) & 0
\end{tabular}
>> y3=[y2(1,:);y2(1,:)*-y1(2,2)+y2(2,:);y2(1,:)*-y1(3,3)+y2(3,:);y2(1,:)*-
y1(4,4)+y2(4,:)]
y3 =
\begin{tabular}{ccccc}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
\(0+25.0000 \mathrm{i}\) & \(0-26.3793 \mathrm{i}\) & \(0-0.6897 \mathrm{i}\) & \(0+2.0690 \mathrm{i}\) & 1.0000 \\
\(0+15.3333 \mathrm{i}\) & \(0-2.2529 \mathrm{i}\) & \(0-14.4598 \mathrm{i}\) & \(0-1.9540 \mathrm{i}\) & 0 \\
\(0+13.3333 \mathrm{i}\) & \(0-0.9770 \mathrm{i}\) & \(0-2.9885 \mathrm{i}\) & \(0-12.7011 \mathrm{i}\) & 0
\end{tabular}
>> y3=[y2(1,:);y2(1,:)*-y1(2,1)+y2(2,:);y2(1,:)*-y1(3,1)+y2(3,:);y2(1,:)*-
y1(4,1)+y2(4,:)]
y3 =
\begin{tabular}{cccrc}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
0 & \(0-12.5862 \mathrm{i}\) & \(0+6.2069 \mathrm{i}\) & \(0+6.3793 \mathrm{i}\) & 1.0000 \\
0 & \(0+6.2069 \mathrm{i}\) & \(0-10.2299 \mathrm{i}\) & \(0+0.6897 \mathrm{i}\) & 0 \\
0 & \(0+6.3793 \mathrm{i}\) & \(0+0.6897 \mathrm{i}\) & \(0-10.4023 \mathrm{i}\) & 0
\end{tabular}
>> y4=[y3(1,:);y3(2,:)/y3(2,2);y3(3,:);y3(4,:)]
y4 =
\begin{tabular}{ccccc}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
0 & 1.0000 & -0.4932 & -0.5068 & \(0+0.0795 \mathrm{i}\) \\
0 & \(0+6.2069 \mathrm{i}\) & \(0-10.2299 \mathrm{i}\) & \(0+0.6897 \mathrm{i}\) & 0 \\
0 & \(0+6.3793 \mathrm{i}\) & \(0+0.6897 \mathrm{i}\) & \(0-10.4023 \mathrm{i}\) & 0
\end{tabular}
```

```
>> y5=[y4(1,:);y4(2,:);y4(2,:)*-y3(3,2)+y4(3,:);y4(2,:)*-y3(4,2)+y4(4,:)
y5 =
\begin{tabular}{ccccc}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
0 & 1.0000 & -0.4932 & -0.5068 & \(0+0.0795 \mathrm{i}\) \\
0 & 0 & \(0-7.1689 \mathrm{i}\) & \(0+3.8356 \mathrm{i}\) & 0.4932 \\
0 & 0 & \(0+3.8356 \mathrm{i}\) & \(0-7.1689 \mathrm{i}\) & 0.5068
\end{tabular}
>> y6=[y5(1,:);y5(2,:);y5(3,:)/y5(3,3);y5(4,:)]
y6 =
\begin{tabular}{ccccc}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
0 & 1.0000 & -0.4932 & -0.5068 & \(0+0.0795 \mathrm{i}\) \\
0 & 0 & 1.0000 & -0.5350 & \(0+0.0688 \mathrm{i}\) \\
0 & 0 & \(0+3.8356 \mathrm{i}\) & \(0-7.1689 \mathrm{i}\) & 0.5068
\end{tabular}
>> y7=[y6(1,:);y6(2,:);y6(3,:);y6(3,:)*-y5(4,3)+y6(4,:)]
y7 =
\begin{tabular}{ccccc}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
0 & 1.0000 & -0.4932 & -0.5068 & \(0+0.0795 \mathrm{i}\) \\
0 & 0 & 1.0000 & -0.5350 & \(0+0.0688 \mathrm{i}\) \\
0 & 0 & 0 & \(0-5.1168 \mathrm{i}\) & 0.7707
\end{tabular}
>> y8=[y7(1,:);y7(2,:);y7(3,:);y7(4,:)/y7(4,4)]
y8 =
\begin{tabular}{ccccc}
1.0000 & -0.5517 & -0.2759 & -0.1724 & 0 \\
0 & 1.0000 & -0.4932 & -0.5068 & \(0+0.0795 \mathrm{i}\) \\
0 & 0 & 1.0000 & -0.5350 & \(0+0.0688 \mathrm{i}\) \\
0 & 0 & 0 & 1.0000 & \(0+0.1506 \mathrm{i}\)
\end{tabular}
>> z4=y8(4,5)
z4 =
    0+0.1506i
>> z3=y8(3,5)-y8(3,4)*z4
z3 =
```

```
        0+0.1494i
>> z2=y8(2,5)-y8(2,4)*z4-y8(2,3)
z2 =
    0.4932+0.1558i
>> z2=y8(2,5)-y8(2,4)*z4-y8(2,3)*z3
z2 =
    0+0.2295i
>> z1=y8(1,5)-y8(1,4)*z4-y8(1,3)*z3-y8(1,2)*z2
zl =
    0+0.1938i
>>
>> Z2=[z1;z2;z3;z4]
Z2 =
    0+0.1938i
    0+0.2295i
    0+0.1494i
    0+0.1506i
```

ii). Compute the subtransient fault current.

$$
I_{f}^{\prime \prime}=\frac{V_{f}}{Z_{22}}=\frac{1}{j .2295}=-j 4.3573 p u_{-} \text {or }{ }_{-} 4.3573 \angle-90^{\circ} p u
$$

iii). Use eq. (12) to find the voltages during the fault.

$$
\begin{aligned}
& V_{i f}=V_{j}-\frac{Z_{j k}}{Z_{k k}} V_{f} \\
& V_{1 f}=V_{1}-\frac{Z_{12}}{Z_{22}} V_{f}=1-\frac{j .1938}{j .2295} 1=.15556 p u \\
& V_{2 f}=0
\end{aligned}
$$

$$
\begin{aligned}
& V_{3 f}=V_{3}-\frac{Z_{32}}{Z_{22}} V_{f}=.34902 p u \\
& V_{4 f}=V_{4}-\frac{Z_{42}}{Z_{22}} V_{f}=.343791 p u
\end{aligned}
$$

iv). Use eq. (17) to find the subtransient currents in lines 3-2, 1-2, and 4-2.

$$
\begin{aligned}
& I_{i j}^{\prime \prime}=-V_{f} \frac{Z_{i k}-Z_{j k}}{Z_{b} Z_{k k}} \\
& I_{32}^{\prime \prime}=-V_{f} \frac{Z_{32}-Z_{22}}{Z_{b} Z_{22}}=-1 \frac{j .1494-j .2295}{(j .25)(j .2295)}=-j 1.39608 p u \\
& I_{12}^{\prime \prime}=-V_{f} \frac{Z_{12}-Z_{22}}{Z_{b} Z_{22}}==-j 1.244 p u \\
& I_{42}^{\prime \prime}=-V_{f} \frac{Z_{42}-Z_{22}}{Z_{b} Z_{22}}==-j 1.71895 p u
\end{aligned}
$$

3. A Y-connected load has balanced currents with a-c-b sequence given by

$$
I_{a b c}=\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{c}
10 \angle 0^{\circ} \\
10 \angle+120^{\circ} \\
10 \angle-120^{\circ}
\end{array}\right]
$$

Calculate the sequence currents. How does your answer differ from the answer obtained in Example 1 in these notes?

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{a}^{0} \\
I_{a}^{+} \\
I_{a}^{-}
\end{array}\right]=\underline{A}^{-1}\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{2} \\
1 & \alpha^{2} & \alpha
\end{array}\right]\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]} \\
& =\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{2} \\
1 & \alpha^{2} & \alpha
\end{array}\right]\left[\begin{array}{c}
10 \angle 0^{\circ} \\
10 \angle 120^{\circ} \\
10 \angle-120^{\circ}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
0 \\
10 \angle 0^{\circ}
\end{array}\right]
\end{aligned}
$$

In this case the quantity that is non-zero is negative sequence component.
4. A feeder provides service to a delta-connected load having the following phase currents:

$$
\begin{aligned}
& I_{a b}=208.3 \angle-18.19^{\circ} \\
& I_{b c}=138.89 \angle-151.788^{\circ} \\
& I_{c a}=131.94^{\circ} \angle 145.84
\end{aligned}
$$

a. For the phase currents:
i. Are they balanced or unbalanced?
ii. What is their sum?
iii. Obtain their sequence quantities.
iv. What is the 0 -sequence quantity?
b. Obtain the line currents. For these currents:
i. Are they balanced or unbalanced?
ii. What is their sum?
iii. Obtain their sequence quantities.
iv. What is the 0 -sequence quantity?
c. Use what you have learned in the parts (a) and (b) to answer the three questions (ii, iv) from part (b) for the following a-b-c quantities:
i. Unbalanced currents into a grounded-Y.
ii. Unbalanced currents into an ungrounded-Y.
iii. Unbalanced line-to-line voltages.

Solution:

The situation is shown in the figure below.

Part a:
i. Phase currents are unbalanced.
ii. Their sum is....
$I_{a b}+I_{b c}+I_{c a}=$
$208.3 \angle-18.19^{\circ}+138.89 \angle-151.788^{\circ}+131.94^{\circ} \angle 145.84$
$=65.9252 \angle-121.01^{\circ}$
iii. Their sequence quantities are:
$\left[\begin{array}{c}I_{a b}^{0} \\ I_{a b}^{+} \\ I_{a b}^{-}\end{array}\right]=\underline{A}^{-1}\left[\begin{array}{l}I_{a b} \\ I_{b c} \\ I_{c a}\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha\end{array}\right]\left[\begin{array}{c}I_{a b} \\ I_{b c} \\ I_{c a}\end{array}\right]$
$=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha\end{array}\right]\left[\begin{array}{c}208.3 \angle-18.19^{\circ} \\ 138.89 \angle-151.788^{\circ} \\ 131.94^{\circ} \angle 145.84\end{array}\right]$
$=\left[\begin{array}{c}21.9531 \angle-120.753^{\circ} \\ 147.373 \angle-10.5147^{\circ} \\ 67.0451 \angle-16.699^{\circ}\end{array}\right]$
iv. The zero-sequence quantity is ($21.9531 _-120.753^{\circ}$) (it's non-zero).

Part b: Consider the figure above and note that we may relate the line currents to the phase currents using KCL:
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{ab}}-\mathrm{I}_{\mathrm{ca}}=(1) \mathrm{I}_{\mathrm{ab}}+(0) \mathrm{I}_{\mathrm{bc}}+(-1) \mathrm{I}_{\mathrm{ca}}$
$\mathrm{I}_{\mathrm{b}}=-\mathrm{I}_{\mathrm{ab}}+\mathrm{I}_{\mathrm{bc}}=(-1) \mathrm{I}_{\mathrm{ab}}+(1) \mathrm{I}_{\mathrm{bc}}+(0) \mathrm{I}_{\mathrm{ca}}$
$\mathrm{I}_{\mathrm{c}}=-\mathrm{I}_{\mathrm{bc}}+\mathrm{I}_{\mathrm{ca}}=(0) \mathrm{I}_{\mathrm{ab}}+(-1) \mathrm{I}_{\mathrm{bc}}+(1) \mathrm{I}_{\mathrm{ca}}$

Writing in matrix form, we have:

$$
I_{a b c}=\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
I_{a b} \\
I_{b c} \\
I_{c a}
\end{array}\right]
$$

Denote the matrix as:

$$
\underline{K}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Now let's use it to obtain the line currents:

$$
\begin{aligned}
& I_{a b c}=\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
208.3 \angle-18.19^{\circ} \\
138.89 \angle-151.788^{\circ} \\
131.94^{\circ} \angle 145.84
\end{array}\right] \\
& =\left[\begin{array}{c}
208.3 \angle-18.19^{\circ}-131.94^{\circ} \angle 145.84 \\
-208.3 \angle-18.19^{\circ}+138.89 \angle-151.788^{\circ} \\
-138.89 \angle-151.788^{\circ}+131.94^{\circ} \angle 145.84
\end{array}\right] \\
& =\left[\begin{array}{c}
337.108 \angle-24.3718^{\circ} \\
320.282 \angle-179.887^{\circ} \\
140.367 \angle 84.5983^{\circ}
\end{array}\right]
\end{aligned}
$$

i. They are unbalanced.
ii. Their sum is
$337.108 \angle-24.3718^{\circ}+320.282 \angle-179.887^{\circ}+140.367 \angle 84.598^{\circ}=0$
iii. Obtain their sequence quantities.

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{a}^{0} \\
I_{a}^{+} \\
I_{a}^{-}
\end{array}\right]=\underline{A}^{-1}\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{2} \\
1 & \alpha^{2} & \alpha
\end{array}\right]\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]} \\
& =\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{2} \\
1 & \alpha^{2} & \alpha
\end{array}\right]\left[\begin{array}{c}
337.1 \angle-24.37^{\circ} \\
320.3 \angle-168.81^{\circ} \\
140.4 \angle 84.56^{\circ}
\end{array}\right] \\
& =\left[\begin{array}{c}
255.258 \angle-40.5147^{\circ} \\
116.125 \angle 13.301^{\circ}
\end{array}\right]
\end{aligned}
$$

iv. The 0 -sequence quantity is zero.

Part c:
i. Unbalanced currents into a grounded-Y will not sum to zero and therefore will have a non-zero zero-sequence component .
ii. Unbalanced currents into an ungrounded- Y will sum to zero and therefore will have a zero zero-sequence component .
iii. Unbalanced line-to-line voltages must sum to zero (do a KVL!) and therefore will never have a zero-sequence component.

Problem 9.8
The network considered in Example 9.5 together with the appropriate branch impedances is shown in the figure below

We apply the $\mathbf{Z}_{\text {ows }}$ building algorithm described in Section 9.5.
Step 1
Add node 1 to the reference node. The branch has a reactance of $j 1.25$. This falls under the category Modification 1.

$$
z_{\text {buss }}=[j 1.25]
$$

Step 2

Add node 2 to node 1. The branch has a reactance of $j 0.0533$. This falls under the category Modification2.

$$
\mathbf{Z}_{\text {bus }}=\left[\begin{array}{cc}
j 1.25 & j 1.25 \\
j 1.25 & j 1.3033
\end{array}\right]
$$

Step 3
Add node 3 to node 2. The branch has a reactance of $j 0.25$. This falls under the category Modification 2.

$$
\mathrm{Z}_{\text {bus }}=\left[\begin{array}{ccc}
j 1.25 & j 1.25 & j 1.25 \\
j 1.25 & j 1.3033 & j 1.3033 \\
j 1.25 & j 1.3033 & j 1.5533
\end{array}\right]
$$

Step 4

Add node 4 to node 3. The branch has a reactance of $j 0.25$. This falls under category Modification 2.

$$
\mathrm{Z}_{\text {bus }}=\left[\begin{array}{cccc}
j 1.25 & j 1.25 & j 1.25 & j 1.25 \\
j 1.25 & j 1.3033 & j 1.3033 & j 1.3033 \\
j 1.25 & j 1.3033 & j 1.5533 & j 1.5533 \\
j 1.25 & j 1.3033 & j 1.5533 & j 1.8033
\end{array}\right]
$$

Step 5
Add branch between node 2 and node 4. The branch has a reactance of $j 0.15$. This falls under category Modification 4.

$$
\mathbf{b}=\left[\begin{array}{c}
0 \\
0 \\
-j 0.25 \\
-j 0.50
\end{array}\right] \quad \begin{aligned}
& y=(j 0.15+j 1.3033+j 1.8033-(2 \times j 1.3033))^{-1}=(j 0.65)^{-1} \\
& =-j 1.5385
\end{aligned}
$$

$$
z_{\text {bus }}^{n}=z_{\text {bus }}-\text { bb }^{\mathbf{T}}
$$

$$
Z_{\text {bus }}=\left[\begin{array}{cccc}
j 1.25 & j 1.25 & j 1.25 & j 1.25 \\
j 1.25 & j 1.3033 & j 1.3033 & j 1.3033 \\
j 1.25 & j 1.3033 & j 1.4571 & j 1.3610 \\
j 1.25 & j 1.3033 & j 1.3610 & j 1.4187
\end{array}\right]
$$

Step 6

Add node 5 to node 4. The branch has a reactance of $j 0.08$. This falls under the category Modification 2.

$$
\mathbf{Z}_{\text {bus }}=\left[\begin{array}{ccccc}
j 1.25 & j 1.25 & j 1.25 & j 1.25 & j 1.25 \\
j 1.25 & j 1.3033 & j 1.3033 & j 1.3033 & j 1.3033 \\
j 1.25 & j 1.3033 & j 1.4571 & j 1.3610 & j 1.3610 \\
j 1.25 & j 1.3033 & j 1.3610 & j 1.4187 & j 1.4187 \\
j 1.25 & j 1.3033 & j 1.3610 & j 1.4187 & j 1.4987
\end{array}\right]
$$

Step 7
Add the branch between node 5 and the reference node. The branch has a reactance of j 1.25. This falls under the category Modification 3.

We first augment the $\mathbf{Z}_{\text {bus }}$ with an additional row and column as shown below

$$
\mathrm{Z}_{\text {bus }}=\left[\begin{array}{cccccc}
j 1.25 & j 1.25 \\
j 1.25 & j 1.3033 \\
j 1.25 & j 1.3033 & j 1.4571 & j 1.3610 & j 1.3610 & j 1.3610 \\
j 1.25 & j 1.3033 & j 1.3610 & j 1.4187 & j 1.4187 & j 1.4187 \\
j 1.25 & j 1.3033 & j 1.3610 & j 1.4187 & j 1.4987 & j 1.4987 \\
j 1.25 & j 1.3033 & j 1.3610 & j 1.4187 & j 1.4987 & j 2.7487
\end{array}\right]
$$

Kron reduce the last row and column to obtain

$$
\mathbf{Z}_{\text {bus }}=\left[\begin{array}{lllll}
j 0.6815 & j 0.6573 & j 0.6311 & j 0.6048 & j 0.5685 \\
j 0.6573 & j 0.6853 & j 0.6580 & j 0.6306 & j 0.5927 \\
j 0.6311 & j 0.6580 & j 0.7832 & j 0.6585 & j 0.6189 \\
j 0.6048 & j 0.6306 & j 0.6585 & j 0.6865 & j 0.6452 \\
j 0.5685 & j 0.5927 & j 0.6189 & j 0.6452 & j 0.6815
\end{array}\right]
$$

We will now add the capacitances due to the half line charging at nodes 2,3 , and 4 . This falls under the category Modification 3.

Step 8

Add capacitive reactance between node 2 and the reference node. This branch has a reactance of $(j 0.11+j 0.055)^{-1}=-j 6.061$

As in step 7 we first augment the original $Z_{\text {bus }}$ with an additional row and column and Kron reduce. The augmented matrix and the Kron reduced matrix are given below.

$$
\mathbf{Z}_{\text {bus }}=\left[\begin{array}{llllll}
j 0.6815 & j 0.6573 & j 0.6311 & j 0.6048 & j 0.5685 & j 0.6573 \\
j 0.6573 & j 0.6853 & j 0.6580 & j 0.6306 & j 0.5927 & j 0.6853 \\
j 0.6311 & j 0.6580 & j 0.7832 & j 0.6585 & j 0.6189 & j 0.6580 \\
j 0.6048 & j 0.6306 & j 0.6585 & j 0.6865 & j 0.6452 & j 0.6306 \\
j 0.5685 & j 0.5927 & j 0.6189 & j 0.6452 & j 0.6815 & j 0.5927 \\
j 0.6573 & j 0.6853 & j 0.6580 & j 0.6306 & j 0.5927-j 5.3757
\end{array}\right]
$$

$$
\mathbf{Z}_{\text {bus }}=\left[\begin{array}{ccccc}
j 0.7619 & j 0.7411 & j 0.7115 & j 0.6819 & j 0.6409 \\
j 0.7411 & j 0.7727 & j 0.7419 & j 0.711 & j 0.6683 \\
j 0.7115 & j 0.7419 & j 0.8637 & j 0.7357 & j 0.6915 \\
j 0.6819 & j 0.711 & j 0.7357 & j 0.7604 & j 0.7147 \\
j 0.6409 & j 0.6683 & j 0.6915 & j 0.7147 & j 0.7469
\end{array}\right]
$$

Step 9
Add capacitive reactance between node 3 and the reference node. This branch has a reactance of $(j 0.11+j 0.11)^{-1}=-j 4.55$

Once again we first augment the original $Z_{\text {bus }}$ and Kron reduce.

$$
\begin{aligned}
& \mathbf{Z}_{\text {bus }}=\left[\begin{array}{cccccc}
j 0.7619 & j 0.7411 & j 0.7115 & j 0.6819 & j 0.6409 & j 0.7115 \\
j 0.7411 & j 0.7727 & j 0.7419 & j 0.711 & j 0.6683 & j 0.7419 \\
j 0.7115 & j 0.7419 & j 0.8637 & j 0.7357 & j 0.6915 & j 0.3637 \\
j 0.6819 & j 0.711 & j 0.7357 & j 0.7604 & j 0.7147 & j 0.7357 \\
j 0.6409 & j 0.6683 & j 0.6915 & j 0.7147 & j 0.7469 & j 0.6915 \\
j 0.7115 & j 0.7419 & j 0.8637 & j 0.7357 & j 0.6915-j 3.6817
\end{array}\right] \\
& \mathbf{Z}_{\text {bus }}=\left[\begin{array}{ccccc}
j 0.8944 & j 0.8845 & j 0.8785 & j 0.821 & j 0.7746 \\
j 0.8845 & j 0.9222 & j 0.9159 & j 0.8593 & j 0.8076 \\
j 0.8785 & j 0.9159 & j 1.0665 & j 0.9083 & j 0.8537 \\
j 0.821 & j 0.8593 & j 0.9083 & j 0.9075 & j 0.8529 \\
j 0.7746 & j 0.8 c 75 & j 0.8537 & j 0.8529 & j 0.8768
\end{array}\right]
\end{aligned}
$$

Step 10
Add capacitive reactance between node 4 and the reference node. This branch has a reactance of
$(j 0.11+j 0.055)^{-1}=-j 6.061$
We again augment the matrix and Kron reduce to obtain

$$
Z_{\text {bus }}=\left[\begin{array}{llllll}
j 0.8944 & j 0.8845 & j 0.8785 & j 0.821 & j 0.7746 & j 0.821 \\
j 0.8845 & j 0.9222 & j 0.9159 & j 0.8593 & j 0.8076 & j 0.8593 \\
j 0.8785 & j 0.9159 & j 1.0665 & j 0.9083 & j 0.8537 & j 0.9083 \\
j 0.821 & j 0.8593 & j 0.9083 & j 0.9075 & j 0.8529 & j 0.9075 \\
j 0.7746 & j 0.8076 & j 0.8537 & j 0.8529 & j 0.8768 & j 0.8529 \\
j 0.821 & j 0.8593 & j 0.9083 & j 0.9075 & j 0.8529 & -j 5.1351
\end{array}\right]
$$

$$
\mathbf{Z}_{\text {bus }}=\left[\begin{array}{ccccc}
j 1.0312 & j 1.0219 & j 1.0237 & j 0.9693 & j 0.911 \\
j 1.0219 & j 1.0655 & j 1.0674 & j 1.0106 & j 0.9498 \\
j 1.0237 & j 1.0674 & j 1.2266 & j 1.0683 & j 1.004 \\
j 0.9693 & j 1.0106 & j 1.0683 & j 1.0673 & j 1.003 \\
j 0.911 & j 0.9498 & j 1.004 & j 1.003 & j 1.0179
\end{array}\right]
$$

