HW3 Solutions

- 1. Problem 9.8 (see end of this document)
- 2. Consider the 4-bus system shown below. Both machines have subtransient reactances of 0.20 pu (you can combine the machine subtransient reactance with the transformer impedance to get a single reactance connecting the machine internal voltage with the network).

- a. Construct the Y-bus for this network (should be a 4×4 matrix).
- b. Consider that there is a three-phase (symmetrical) fault at bus 2.
 - ii. Use LU decomposition to obtain the 2^{nd} column of the Z-bus.
 - iii. Compute the subtransient fault current.
 - iv. Use eq. (12) to find the voltages during the fault.
 - v. Use eq. (17) to find the subtransient currents in lines 3-2, 1-2, and 4-2.

Solution:

a). Compute the Y-Bus

$$Y_{bus} = \begin{bmatrix} \frac{1}{j.25} + \frac{1}{j.125} + \frac{1}{j.40} & \frac{-1}{j.125} & \frac{-1}{j.25} & \frac{-1}{j.4} \\ \frac{-1}{j.125} & \frac{1}{j.25} + \frac{1}{j.125} + \frac{1}{j.2} & \frac{-1}{j.25} & \frac{-1}{j.2} \\ \frac{-1}{j.25} & \frac{-1}{j.25} & \frac{1}{j.25} + \frac{1}{j.25} + \frac{1}{j.3} & 0 \\ \frac{-1}{j.4} & \frac{-1}{j.25} & 0 & \frac{1}{j.2} + \frac{1}{j.3} + \frac{1}{j.40} \end{bmatrix}$$

$$Y_{bus} = \begin{bmatrix} -j14.5 & j8 & j4 & j2.5 \\ j8 & -j17 & j4 & j5 \\ j4 & j4 & -j11.3333 & 0 \\ j2.5 & j5 & 0 & -j10.83333 \end{bmatrix}$$

b).i). LU Decomposition to obtain Z₂

$$Y_{bus}Z_{bus} = I$$
$$Y_{bus}Z_2 = \begin{bmatrix} 0\\1\\0\\0\end{bmatrix}$$

Factorization of a matrix $\underline{\mathbf{Y}}$ can be done efficiently and easily using the matlab command:

 $[\underline{L},\underline{U}]=lu(\underline{Y})$

Then it is easy to find <u>w</u> by hand using forward substitution from: $\underline{Lw} = \underline{I}_k$

$$\underbrace{\underline{L}}_{\underline{W}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

And then it is easy to find \underline{Z}_2 by hand using backwards substitution from: $\underline{U}\underline{Z}_2 = \underline{w}$

Alternatively, the manual steps of LU decomposition can be performed per the notes from "LU Decomposition." I did it within Matlab, as follows. Here, y1 is the initial "augmented" matrix (see notes on LU decomposition for the meaning of this term).

y1 =

0 -14.5000i	0 + 8.0000i	0 + 4.0000i	0 + 2.5000i	0
0 + 8.0000i	0 -17.0000i	0 + 4.0000i	0 + 5.0000i	1.0000
0 + 4.0000i	0 + 4.0000i	0 -11.3333i	0	0
0 + 2.5000i	0 + 5.0000i	0	0 -10.8333i	0

>> y2=[y1(1,:)/y1(1,1);y1(2,:);y1(3,:);y1(4,:)]

y2 =

1.0000	-0.5517	-0.2759	-0.1	1724	0
0 + 8.000	0i 0-17	.0000i 0	+ 4.0000i	0 + 5.0000i	1.0000
0 + 4.000	00i $0+4$.0000i 0	-11.3333i	0	0
0 + 2.500	0 i $0+5$.0000i 0		0 -10.8333i	0

>> y3=[y2(1,:);y2(1,:)*-y1(2,2)+y2(2,:);y2(1,:)*-y1(3,3)+y2(3,:);y2(1,:)*-y1(4,4)+y2(4,:)]

y3 =

1.0000	-0.5517	-0.27	59 -0.1	724 0)
0 +25.00	000i 0 ·	-26.3793i	0 - 0.6897i	0 + 2.0690i	1.0000
0+15.33	333i 0 ·	- 2.2529i	0 -14.4598i	0 - 1.9540i	0
0+13.33	333i 0 ·	- 0.9770i	0 - 2.9885i	0 -12.7011i	0

>> y3=[y2(1,:);y2(1,:)*-y1(2,1)+y2(2,:);y2(1,:)*-y1(3,1)+y2(3,:);y2(1,:)*-y1(4,1)+y2(4,:)]

y3 =

1.0000	-0.5517	-0.2759	-0.1724	0
0	0 -12.5862i	0 + 6.2069i	0 + 6.3793i	1.0000
0	0 + 6.2069i	0 -10.2299i	0 + 0.6897i	0
0	0 + 6.3793i	0 + 0.6897i	0 -10.4023i	0

>> y4=[y3(1,:);y3(2,:)/y3(2,2);y3(3,:);y3(4,:)]

y4 =

1.0000	-0.5517	-0.2759	-0.1724	0
0	1.0000	-0.4932	-0.5068	0 + 0.0795i
0	0 + 6.2069i	0 -10.22	0.99i 0 + 0.6897	'i 0
0	0 + 6.3793i	0 + 0.68	97i 0 -10.4023	Bi O

>> y5=[y4(1,:);y4(2,:);y4(2,:)*-y3(3,2)+y4(3,:);y4(2,:)*-y3(4,2)+y4(4,:) y5 =

1.0000	-0.5517	-0.2759	-0.1724	0
0	1.0000	-0.4932	-0.5068	0 + 0.0795i
0	0	0 - 7.1689i	0 + 3.8356i	0.4932
0	0	0 + 3.8356i	0 - 7.1689i	0.5068

>> y6=[y5(1,:);y5(2,:);y5(3,:)/y5(3,3);y5(4,:)]

y6 =

1.0000	-0.5517	-0.2759	-0.1724	0
0	1.0000	-0.4932	-0.5068	0 + 0.0795i
0	0	1.0000	-0.5350	0 + 0.0688i
0	0	0 + 3.8356	i 0 - 7.1689i	0.5068

>> y7=[y6(1,:);y6(2,:);y6(3,:);y6(3,:)*-y5(4,3)+y6(4,:)]

y7 =

1.0000	-0.5517	-0.2759	-0.1724	0
0	1.0000	-0.4932	-0.5068	0 + 0.0795i
0	0	1.0000	-0.5350	0 + 0.0688i
0	0	0	0 - 5.1168i	0.7707

>> y8=[y7(1,:);y7(2,:);y7(3,:);y7(4,:)/y7(4,4)]

y8 =

1.0000	-0.5517	-0.2759	-0.1724	0
0	1.0000	-0.4932	-0.5068	0 + 0.0795i
0	0	1.0000	-0.5350	0 + 0.0688i
0	0	0	1.0000	0 + 0.1506i

>> z4=y8(4,5)

z4 =

0 + 0.1506i

>> z3=y8(3,5)-y8(3,4)*z4

z3 =

0 + 0.1494i

```
>> z2=y8(2,5)-y8(2,4)*z4-y8(2,3)
```

z2 =

0.4932 + 0.1558i

>> z2=y8(2,5)-y8(2,4)*z4-y8(2,3)*z3

z2 =

0 + 0.2295i

>> z1=y8(1,5)-y8(1,4)*z4-y8(1,3)*z3-y8(1,2)*z2

z1 =

0 + 0.1938i

>> >> Z2=[z1;z2;z3;z4]

Z2 =

0 + 0.1938i 0 + 0.2295i 0 + 0.1494i0 + 0.1506i

ii). Compute the subtransient fault current.

$$I''_{f} = \frac{V_{f}}{Z_{22}} = \frac{1}{j.2295} = -j4.3573 pu _or _4.3573 \angle -90^{\circ} pu$$

iii). Use eq. (12) to find the voltages during the fault.

$$V_{if} = V_j - \frac{Z_{jk}}{Z_{kk}} V_f$$

$$V_{1f} = V_1 - \frac{Z_{12}}{Z_{22}} V_f = 1 - \frac{j.1938}{j.2295} 1 = .15556 pu$$

$$V_{2f} = 0$$

$$V_{3f} = V_3 - \frac{Z_{32}}{Z_{22}}V_f = .34902 \, pu$$
$$V_{4f} = V_4 - \frac{Z_{42}}{Z_{22}}V_f = .343791 \, pu$$

iv). Use eq. (17) to find the subtransient currents in lines 3-2, 1-2, and 4-2.

$$\begin{split} I_{ij}'' &= -V_f \, \frac{Z_{ik} - Z_{jk}}{Z_b Z_{kk}} \\ I_{32}'' &= -V_f \, \frac{Z_{32} - Z_{22}}{Z_b Z_{22}} = -1 \frac{j.1494 - j.2295}{(j.25)(j.2295)} = -j1.39608 \, pu \\ I_{12}'' &= -V_f \, \frac{Z_{12} - Z_{22}}{Z_b Z_{22}} == -j1.244 \, pu \\ I_{42}'' &= -V_f \, \frac{Z_{42} - Z_{22}}{Z_b Z_{22}} == -j1.71895 \, pu \end{split}$$

3. A Y-connected load has balanced currents with a-c-b sequence given by

$$I_{abc} = \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} 10\angle 0^\circ \\ 10\angle +120^\circ \\ 10\angle -120^\circ \end{bmatrix}$$

Calculate the sequence currents. How does your answer differ from the answer obtained in Example 1 in these notes?

Solution:

$$\begin{bmatrix} I_{a}^{0} \\ I_{a}^{+} \\ I_{a}^{-} \end{bmatrix} = \underline{A}^{-1} \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \end{bmatrix} \begin{bmatrix} I_{a} \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \end{bmatrix} \begin{bmatrix} I_{a} \\ 1 & \alpha^{2} & \alpha \end{bmatrix} \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \end{bmatrix} \begin{bmatrix} 10\angle 0^{\circ} \\ 10\angle 120^{\circ} \\ 10\angle -120^{\circ} \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 0 \\ 10\angle 0^{\circ} \end{bmatrix}$$

In this case the quantity that is non-zero is negative sequence component.

4. A feeder provides service to a delta-connected load having the following phase currents:

$$I_{ab} = 208.3 \angle -18.19^{\circ}$$
$$I_{bc} = 138.89 \angle -151.788^{\circ}$$
$$I_{ca} = 131.94^{\circ} \angle 145.84$$

a. For the phase currents:

- i. Are they balanced or unbalanced?
- ii. What is their sum?
- iii. Obtain their sequence quantities.
- iv. What is the 0-sequence quantity?
- b. Obtain the line currents. For these currents:
 - i. Are they balanced or unbalanced?
 - ii. What is their sum?
 - iii. Obtain their sequence quantities.
 - iv. What is the 0-sequence quantity?
- c. Use what you have learned in the parts (a) and (b) to answer the three questions (ii, iv) from part (b) for the following a-b-c quantities:
 - i. Unbalanced currents into a grounded-Y.
 - ii. Unbalanced currents into an ungrounded-Y.
 - iii. Unbalanced line-to-line voltages.

Solution:

The situation is shown in the figure below.

Part a:

i. Phase currents are unbalanced.

ii. Their sum is....

$$\begin{split} I_{ab} + I_{bc} + I_{ca} &= \\ 208.3 \angle -18.19^{\circ} + 138.89 \angle -151.788^{\circ} + 131.94^{\circ} \angle 145.84 \\ &= 65.9252 \angle -121.01^{\circ} \\ \text{iii. Their sequence quantities are:} \\ \begin{bmatrix} I_{ab}^{0} \\ I_{ab}^{+} \\ I_{ab}^{-1} \end{bmatrix} &= \underline{A}^{-1} \begin{bmatrix} I_{ab} \\ I_{bc} \\ I_{ca} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \end{bmatrix} \begin{bmatrix} I_{ab} \\ I_{bc} \\ I_{ca} \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \end{bmatrix} \begin{bmatrix} 208.3 \angle -18.19^{\circ} \\ 138.89 \angle -151.788^{\circ} \\ 131.94^{\circ} \angle 145.84 \end{bmatrix} \\ &= \begin{bmatrix} 21.9531 \angle -120.753^{\circ} \\ 147.373 \angle -10.5147^{\circ} \\ 67.0451 \angle -16.699^{\circ} \end{bmatrix} \end{split}$$

iv. The zero-sequence quantity is (21.9531 / -120.753°) (it's non-zero).

<u>Part b</u>: Consider the figure above and note that we may relate the line currents to the phase currents using KCL:

$$\begin{split} I_{a} = & I_{ab} - I_{ca} = (1)I_{ab} + (0)I_{bc} + (-1)I_{ca} \\ I_{b} = -I_{ab} + I_{bc} = (-1)I_{ab} + (1)I_{bc} + (0)I_{ca} \\ I_{c} = -I_{bc} + I_{ca} = (0)I_{ab} + (-1)I_{bc} + (1)I_{ca} \end{split}$$

Writing in matrix form, we have:

$$I_{abc} = \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} I_{ab} \\ I_{bc} \\ I_{ca} \end{bmatrix}$$

Denote the matrix as:

$$\underline{K} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Now let's use it to obtain the line currents:

$$\begin{split} I_{abc} &= \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 208.3 \angle -18.19^{\circ} \\ 138.89 \angle -151.788^{\circ} \\ 131.94^{\circ} \angle 145.84 \end{bmatrix} \\ &= \begin{bmatrix} 208.3 \angle -18.19^{\circ} -131.94^{\circ} \angle 145.84 \\ -208.3 \angle -18.19^{\circ} +138.89 \angle -151.788^{\circ} \\ -138.89 \angle -151.788^{\circ} +131.94^{\circ} \angle 145.84 \end{bmatrix} \\ &= \begin{bmatrix} 337.108 \angle -24.3718^{\circ} \\ 320.282 \angle -179.887^{\circ} \\ 140.367 \angle 84.5983^{\circ} \end{bmatrix} \end{split}$$

i. They are unbalanced.

ii. Their sum is $337.108 \angle -24.3718^{\circ} + 320.282 \angle -179.887^{\circ} + 140.367 \angle 84.598^{\circ} = 0$

 $\begin{bmatrix} I_a^0\\ I_a^+\\ I_a^-\\ I_a^- \end{bmatrix} = \underline{A}^{-1} \begin{bmatrix} I_a\\ I_b\\ I_c \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1\\ 1 & \alpha & \alpha^2\\ 1 & \alpha^2 & \alpha \end{bmatrix} \begin{bmatrix} 1 & 1 & 1\\ 1 & \alpha^2 & \alpha \end{bmatrix} \begin{bmatrix} 337.1 \angle -24.37^\circ\\ 320.3 \angle -168.81^\circ\\ 140.4 \angle 84.56^\circ \end{bmatrix}$ $= \begin{bmatrix} 0\\ 255.258 \angle -40.5147^\circ\\ 116.125 \angle 13.301^\circ \end{bmatrix}$

iii. Obtain their sequence quantities.

iv. The 0-sequence quantity is zero.

Part c:

- i. Unbalanced currents into a grounded-Y will not sum to zero and therefore will have a non-zero zero-sequence component.
- ii. Unbalanced currents into an ungrounded-Y will sum to zero and therefore will have a zero zero-sequence component .
- iii. Unbalanced line-to-line voltages must sum to zero (do a KVL!) and therefore will never have a zero-sequence component.

Problem 9.8 The network considered in Example 9.5 together with the appropriate branch impedances is shown in the figure below

We apply the Z_{bus} building algorithm described in Section 9.5.

Step 1

Add node 1 to the reference node. The branch has a reactance of j 1.25. This falls under the category Modification 1.

 $Z_{bus} = [j1.25]$

Step 2

Add node 2 to node 1. The branch has a reactance of j 0.0533. This falls under the category Modification2.

$$\mathbf{Z}_{\text{bus}} = \begin{bmatrix} j1.25 & j1.25 \\ j1.25 & j1.3033 \end{bmatrix}$$

Step 3

Add node 3 to node 2. The branch has a reactance of j 0.25. This falls under the category Modification 2.

 $\mathbf{Z}_{\text{bus}} = \begin{bmatrix} j1.25 & j1.25 & j1.25 \\ j1.25 & j1.3033 & j1.3033 \\ j1.25 & j1.3033 & j1.5533 \end{bmatrix}$

Step 4

Add node 4 to node 3. The branch has a reactance of j 0.25. This falls under category Modification 2.

	j1.25	j1.25	j1.25	j1.25
Z _{bus} =	j1.25	<i>j</i> 1.3033	j1.3033	j1.3033
	j1.25	j1.3033	<i>j</i> 1.5533	j1.5533
	j1.25	j1.3033	/1.5533	/1.8033

Step 5

Add branch between node 2 and node 4. The branch has a reactance of j 0.15. This falls under category Modification 4.

$$\mathbf{b} = \begin{bmatrix} 0\\0\\-j0.25\\-j0.50 \end{bmatrix} \qquad \begin{aligned} \gamma = (j0.15 + j1.3033 + j1.8033 - (2 \times j1.3033))^{-1} = (j0.65)^{-1}\\= -j1.5385 \end{aligned}$$

$$Z_{bus}^n = Z_{bus} - \gamma b b^T$$

 $Y_{\text{bus}} = \begin{bmatrix} j1.25 & j1.25 & j1.25 & j1.25 \\ j1.25 & j1.3033 & j1.3033 & j1.3033 \\ j1.25 & j1.3033 & j1.4571 & j1.3610 \\ j1.25 & j1.3033 & j1.3610 & j1.4187 \end{bmatrix}$

<u>Step 6</u>

Add node 5 to node 4. The branch has a reactance of j 0.08. This falls under the category Modification 2.

	1.25	jl.25	j1.25	j1.25	j1.25]	
	j1.25	j1.3033	j1.3033	j1.3033	j1.3033	
Z _{bus} ≈	j1.25	<i>j</i> 1.3033	<i>j</i> 1.4571	j1.3610	j1.3610	
	j1.25	<i>j</i> 1.3033	j1.3610	jl.4187	j1.4187	
	j1.25	j1.3033	j1.3610	j1.4187	/1.4987	

Step 7 Add the branch between node 5 and the reference node. The branch has a reactance of j 1.25. This falls under the category Modification 3.

We first augment the Z_{bus} with an additional row and column as shown below

	j1.25	j1.25	j1.25	j1.25	j1.25	<i>i</i> 1.25	1
	j1.25	<i>j</i> 1.3033	<i>j</i> 1.3033	jl.3033	<i>j</i> 1.3033	/1.3033	
Zh =	j1.25	<i>j</i> 1.3033	j1.4571	<i>j</i> 1.3610	j1.3610	<i>j</i> 1.3610	
-ous	j1.25	<i>j</i> 1.3033	j1.3610	<i>j</i> 1.4187	j1.4187	jl.4187	
	j1.25	j1.3033	<i>j</i> 1.3610	<i>j</i> 1.4187	<i>j</i> 1.4987	j1.4987	
	_j1.25	j1.3033	<i>j</i> 1.3610	<i>j</i> 1.4187	j1.4987	j2.7487	

Kron reduce the last row and column to obtain

	j0.6815	j0.6573	<i>j</i> 0.6311	<i>j</i> 0.6048	/0.5685]
	j0.6573	<i>j</i> 0.6853	j0.6580	<i>j</i> 0.6306	10.5927
Z _{bus} =	j0.6311	j0.6580	<i>j</i> 0.7832	j0.6585	10.6189
	j0.6048	j0.6306	j0.6585	j0.6865	10.6452
	j0.5685	j0.5927	j0.6189	j0.6452	10.6815

We will now add the capacitances due to the half line charging at nodes 2, 3, and 4. This falls under the category Modification 3.

Step 8

Add capacitive reactance between node 2 and the reference node. This branch has a reactance of $(j0.11 + j0.055)^{-1} = -j6.061$

As in step 7 we first augment the original Z_{bus} with an additional row and column and Kron reduce. The augmented matrix and the Kron reduced matrix are given below.

Z _{bus} =	j0.6815	j0.6573	j0.6311	j0.6048	j0.5685	<i>i</i> 0.6573
	j0.6573	j0.6853	j0.6580	j0.6306	j0.5927	/0.6853
	<i>j</i> 0.6311	j0.6580	j0.7832	j0.6585	<i>j</i> 0.6189	i0.6580
	<i>j</i> 0.6048	j0.6306	j0.6585	j0.6865	j0.6452	<i>i</i> 0.6306
	<i>j</i> 0.5685	j0.5927	<i>j</i> 0.6189	j0.6452	j0.6815	<i>j</i> 0.5927
i	j0.6573	j0.6853	<i>j</i> 0.6580	j0.6306	j0.5927	j5.3757
Z _{bus}	j0.761	9 <i>j</i> 0.741	1 j0.711;	5 <i>j</i> 0.6819	j0.6409	1
	j0.741	1 j0.772	7 j0.741	<i>j</i> 0.711	j0.6683	
	= j0.711	5 <i>j</i> 0.741	9 <i>j</i> 0.8631	7 j0.7357	j0.6915	1
	j0.681	9 <i>j</i> 0.711	<i>j</i> 0.7357	7 j0.7604	j0.7147	
	j0.640	9 <i>j</i> 0.668	3 <i>j</i> 0.6915	5 j0.7147	j0.7469	
						-

Step 9

Add capacitive reactance between node 3 and the reference node. This branch has a reactance of $(j0.11+j0.11)^{-1} = -j4.55$

Once again we first augment the original Z_{bus} and Kron reduce.

j0.7619 j0.7411 j0.7115 j0.6819 j0.6409 j0.7115 j0.7411 j0.7727 j0.7419 i0.711 i0.6683 i0.7419 j0.7115 j0.7419 j0.8637 j0.7357 j0.6915 j0.8637 Zhus j0.6819 *j*0.711 j0.7357 j0.7604 j0.7147 *i*0.7357 j0.6409 j0.6683 j0.6915 j0.7147 j0.7469 j0.6915 j0.8637 j0.7115 j0.7419 j0.7357 j0.6915 - j3.6817 j0.8944 j0.8845 j0.8785 i0.821 i0.7746 j0.8845 j0.9222 j0.9159 *j*0.8593 j0.8076 j0.8785 j0.9159 j1.0665 j0.9083 j0.8537 *j*0.821 j0.8593 *j*0.9083 j0.9075 j0.8529 j0.7746 j0.8075 j0.8537 j0.8529 *j*0.8768

<u>Step 10</u> Add capacitive reactance between node 4 and the reference node. This branch has a reactance of

 $(j0.11 + j0.055)^{-1} = -j6.061$

We again augment the matrix and Kron reduce to obtain

Z _{bus} =	j0.8944	j0.8845	j0.8785	j0.821	j0.7746	j0.821]
	j0.8845	j0.9222	<i>j</i> 0.9159	j0.8593	j0.8076	j0.8593
	j0.8785	<i>j</i> 0.9159	j1.0665	j0.9083	j0.8537	j0.9083
	j0.821	j 0.859 3	<i>j</i> 0.9083	j0.9075	j0.8529	j0.9075
	j0.7746	j0.8076	j0.8537	j0.8529	j0.8768	j0.8529
	j0.821	j0.8593	j0.9083	j0.9075	j0.8529	- j5.1351

j1.0312 j1.0219 j1.0237 j0.9693 j0.911 *i*1.0219 j1.0655 j0,9498 j1.0674 j1.0106 j1.0237 j1.0674 j1.2266 j1.0683 j1.004 j0.9693 j1.0106 j1.0683 j1.0673 j1.003 j0.911 j0.9498 j1.004 *j*1.003 j1.0179