Examples

Example 1: Compute sequence components of the following balanced a-b-c sequence line-to-neutral voltages.

$$
\underline{V}_{a b c}=\left[\begin{array}{l}
V_{a n} \\
V_{b n} \\
V_{c n}
\end{array}\right]=\left[\begin{array}{c}
277 \angle 0^{\circ} \\
277 \angle-120^{\circ} \\
277 \angle 120^{\circ}
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& \underline{V}_{S}=\underline{A}^{-1} \underline{V}_{a b c}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{2} \\
1 & \alpha^{2} & \alpha
\end{array}\right]\left[\begin{array}{l}
V_{a n} \\
V_{b n} \\
V_{c n}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{2} \\
1 & \alpha^{2} & \alpha
\end{array}\right]\left[\begin{array}{c}
277 \angle 0^{\circ} \\
277 \angle-120^{\circ} \\
277 \angle 120^{\circ}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
277 \angle 0^{\circ}+277 \angle-120^{\circ}+277 \angle 120^{\circ} \\
277 \angle 0^{\circ}+\alpha 277 \angle-120^{\circ}+\alpha^{2} 277 \angle 120^{\circ} \\
277 \angle 0^{\circ}+\alpha^{2} 277 \angle-120^{\circ}+\alpha 277 \angle 120^{\circ}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
0 \\
3 \times 277 \angle 0^{\circ} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
277 \angle 0^{\circ} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
V_{a n} \\
0
\end{array}\right]
\end{aligned}
$$

Implication: the only sequence component in a set of 3-phase a-b-c balanced quantities is the positive sequence component.

Example 2: Compute the sequence components for a balanced Y-load that has phase b opened.

Fig. 1: Balanced Y load with open phase b

$$
\begin{aligned}
& \underline{I}_{S}=\underline{A}^{-1} \underline{I}_{a b c}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
10 \angle 0^{\circ} \\
0 \\
10 \angle 120^{\circ}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
10 \angle 0^{\circ}+0+10 \angle 120^{\circ} \\
10 \angle 0^{\circ}+a 0+a^{2} 10 \angle 120^{\circ} \\
10 \angle 0^{\circ}+a^{2} 0+a 10 \angle 120^{\circ}
\end{array}\right]=\left[\begin{array}{c}
3.333 \angle 60^{\circ} \\
6.667 \angle 0^{\circ} \\
3.333 \angle-60^{\circ}
\end{array}\right]
\end{aligned}
$$

Implication: Zero-sequence component will result from an unbalanced load if the a-b-c quantities do not sum to zero.

HW\#3

1. As assigned at bottom of notes called "Fault analysis using Zbus".
2. As assigned at bottom of notes called "Fault analysis using Zbus".
3. A Y-connected load has balanced currents with a-c-b sequence given by

$$
\underline{I}_{a b c}=\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{c}
10 \angle 0^{\circ} \\
10 \angle+120^{\circ} \\
10 \angle-120^{\circ}
\end{array}\right]
$$

Calculate the sequence currents. How does your answer differ from the answer obtained in Example 1 in these notes?
4. A feeder provides service to a deltaconnected load having the following phase currents:

$$
\begin{aligned}
& I_{a b}=208.3 \angle-18.19^{\circ} \\
& I_{b c}=138.89 \angle-151.788^{\circ} \\
& I_{c a}=131.94^{\circ} \angle 145.84
\end{aligned}
$$

a.For the phase currents:
i. Are they balanced or unbalanced?
ii. What is their sum?
iii. Obtain their sequence quantities. iv. What is the 0 -sequence quantity?
b.Obtain the line currents. For these currents:
i. Are they balanced or unbalanced?
ii. What is their sum?
iii. Obtain their sequence quantities. iv. What is the 0 -sequence quantity?
c.Use what you have learned in the parts (a) and (b) to answer the questions (ii, iv) from part (b) for the following a-b-c quantities:
i. Unbalanced currents into a grounded-Y.
ii. Unbalanced currents into an ungrounded-Y.
iii. Unbalanced line-to-line voltages.

