EDC3
1.0 Introduction
In the last set of notes (EDC2), we saw how to use penalty factors in solving the EDC problem with losses. In this set of notes, we want to address two closely related issues. 

· What are, exactly, penalty factors? 

· How to obtain the penalty factors in practice?

2.0 What are penalty factors?
Recall the definition:
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(1)

In order to gain intuitive insight into what is a penalty factor, let’s replace the numerator and denominator of the partial derivative in (1) with the approximation of ΔPL/ΔPGi, so:
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(2)

Multiplying top and bottom by ΔPGi, we get:
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(3)

What is ΔPGi? 

It is a small change in generation. 
But that cannot be all, because if you make a change in generation, then there must be a change in injection at, at least, one other bus. Let’s assume that a compensating change is equally distributed throughout all other load buses. By doing so, we are embracing the so-called “conforming load” assumption, which indicates that all loads change proportionally. 

Therefore we have that ΔPGi=ΔPD. But this will also cause a change in losses of ΔPL, which will be offset by a compensating change in generation at the swing bus by ΔP1. Therefore we will have 
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(4)

where we see generation changes are on the left and load & loss changes are on the right.

Solving for ΔPGi-ΔPL (because it is in the denominator of (3)), we get
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(5)

Substituting (5) into (3), we obtain:
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(6)

So from (6), we can see that the penalty factor indicates the amount of generation at unit i necessary to supply a change in load of ΔPD. Clearly this is going to depend on how the load is changed, which is why we must have the conforming load assumption.

A simple example, similar to the one we worked in class last time, will illustrate the significance of (6). Consider Fig. 1.
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Fig. 1

One observes that L2<1. This is because a load change compensated by a gen change at bus 2 decreases the losses as indicated by the fact that the bus 1 generation decreased by 0.2 MW.

On the other hand, L3>1. This is because a load change compensated by a gen change at bus 3 increases the losses as indicated by the fact that the bus 1 generation increases by 0.2. MW.

Why does the bus 2 generation reduce losses whereas the bus 3 generation increases losses? 

Answer:  Because increasing bus 2 tends to reduce the line flow. 

So we see that in general, generators on the receiving end of flows will tend to have lower penalty factors (below 1.0), and generators on the sending end of flows will tend to have higher penalty factors (above 1.0). 
Because transmission systems are in fact relatively efficient, with reasonably small losses in the circuits, the amount of generation necessary to supply a load change tends to be very close to that load change. Therefore penalty factors tend to be relatively close to 1.0. 
A list of typical penalty factors for the power system in northern California is illustrated in Fig. 2. The generators marked to the right are units in the San Francisco Bay Area, which is a relatively high import area for the Northern California system. Most of the penalty factors for these units are below 1.0.
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Fig. 2

But why do we actually call them penalty factors? Consider the criterion for optimality in the EDC with losses:
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(7)
This says that all units (or all regulating units) must be at a generation level such that the product of their incremental cost and their penalty factor must be equal to the system incremental cost λ.
Let’s do an experiment to see what this means. Consider that we have three identical units such that their incremental cost-rate curves are identical, given by IC(PG)=45+0.02PG.
Now consider the three units are so located such that unit 1 has penalty factor of 0.98, unit 2 has penalty factor of 1.0, and unit 3 has penalty factor of 1.02, and the demand is 300 MW.

Without accounting for losses, this problem would be very simple in that each unit would carry 100 MW. 

But with losses, the problem is as follows:

λ=0.98(45+0.02PG1)=44.1+0.196PG1
λ=1.0(45+0.02PG2)=45+0.02PG2
λ=1.02(45+0.02PG3)=45.9+0.0204PG3
Putting these three equations into matrix form results in:
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Solving in Matlab yields:
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One notes that the unit with the lower penalty (unit 1) was “turned up” and the unit with the higher penalty (unit 3) was “turned down.” The reason for this is that unit 1 has a better effect on losses.
3.0 Calculation of penalty factors
Consider a power system with total of n buses of which bus 1 is the swing bus, buses 1…m are the PV buses, and buses m+1…n are the PQ buses.
Consider that losses must be equal to the difference between the total system generation and the total system demand:
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Recall the definition for bus injections, which is
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Now sum the injections over all buses to get:
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(10)
Therefore, 
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(11)

which is eq. (11.46) in the text.

Now differentiate with respect to a particular bus angle θk (where k is any bus number except 1) to obtain:
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(12)

Assumption to the above: All voltages are fixed at 1.0 (this relieves us from accounting for the variation in power with angle through the voltage magnitude term).
Now let’s assume that we have an expression for losses PL as a function of generation PG2, PG3,…,PGm, i.e., 

PL=PL(PG2, PG3,…,PGm)



(13)

Then we can use the chain rule of differentiation to express that


[image: image17.wmf]n

k

P

P

P

P

P

P

P

P

P

k

m

Gm

G

L

k

G

G

L

k

L

,...,

2

,

)

(

)

(

2

2

=

¶

¶

¶

¶

+

+

¶

¶

¶

¶

=

¶

¶

q

q

q

K

(14)

Subtracting eq. (12) from eq. (14), we obtain, for k=2,…,n:

[image: image18.wmf]k

n

k

m

Gm

G

L

k

m

G

G

L

k

k

k

m

Gm

G

L

k

G

G

L

k

L

k

n

k

m

k

m

k

k

k

L

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

q

q

q

q

q

q

q

q

q

q

q

q

q

q

¶

¶

+

+

¶

¶

+

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

-

¶

¶

+

+

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

-

¶

¶

+

¶

¶

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

¶

¶

+

+

¶

¶

¶

¶

-

=

¶

¶

-

¶

¶

+

+

¶

¶

+

¶

¶

+

¶

¶

+

¶

¶

=

¶

¶

+

+

K

K

K

K

K

1

2

2

1

2

2

1

2

1

)

(

1

)

(

1

0

_

__________

__________

__________

__________

)

(

)

(

Now bring the first term to the left-hand-side, for k=2,…,n

Writing the above 
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The above equation, when written for k=2,…,n, can be expressed in matrix form as
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