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EDC1 

1.0 Introduction 
 

In EE 303, we study the economic dispatch 
calculation (EDC) problem. We review our 

EE 303 work on EDC in this class, but we 
solve it in a different way. In addition, we 

extend the problem to account for losses. 
 

Economic dispatch is the process of 
allocating the required load demand between 

the available generation units such that the 
cost of operation is at a minimum. The 

process of solving such a problem is referred 
to as optimization. Optimization problems 

are found in all engineering fields; in fact, 
some claim that engineering is optimization.  

 

You have seen 1-dimensional optimization 

problems in calculus, when you found the 
minimum or maximum of a function. 

Generally, however, optimization problems 
are multi-variable.  
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An additional feature to general 
optimization problems is that they may be 

constrained. That is, we must find the 
minimum or maximum to a function subject 

to some kind of constraints on the variables 
of interest. The constraints may be either 
equality or inequalities.  

 

A last very important feature of optimization 
problems is whether they are linear or 
nonlinear.  

 

We will see that the EDC problem is a non-
linear, multivariable, constrained 
optimization problem. 

 

2.0 Optimization basics 

 

Optimization is a decision-making tool. In 
light of this, we provide 2 basic definitions. 
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The decision variables are the variables in 
the problem, which, once known, determine 

the decision to be made. 
 

The objective function is the function to be 
minimized or maximized. It is also 

sometimes known as the cost function. 
 

The constraints are equality or inequality 
relations in terms of the decision variables 

which impose limitations or restrictions on 
what the solution may be, i.e., they 

constrain the solution.  
 

Inequality constraints may be either non-
binding or binding. A non-binding 

inequality constraint is one that does not 
influence the solution. A binding inequality 

constraint does restrict the solution, i.e., the 
objective function becomes “better” (greater 

if the problem is maximization or lesser if 
the problem is minimization) if a binding 

constraint is removed. 
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Optimization problems are often called 
programs or programming problems. Such 

terminology is not to be confused with use 
of the same terminology for a piece of 

source code (a program) or what you do 
when you write source code (programming). 

Use of the terminology here refers to an 
analytical statement of a decision problem. 

In fact, optimization problems are often 
referred to as mathematical programs and 

their solution procedures as mathematical 
programming.  Such use of this terminology 

is indicated when one uses the term linear 
programming (LP), nonlinear programming 

(NLP), or integer programming (IP). 
 

The general form of a nonlinear 
programming problem is to find vector x in:  

 Min f (x)   
 subject to:  (1) 

g (x)  b 

h (x) = c 

and:   x  0 
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Here, f, g, and h are given functions of the n 

decision variables x. The condition x  0 can 

be satisfied by appropriate definition of 

decision variables.  
 

The LaGrangian function of (1) is: 

         bxgcxhxfxF
TT

 ,,  (2) 

where individual elements of  m ,, 21   

and  r ,, 21   are called LaGrange 

multipliers. 

 
The LaGrangian function is simply the 

summation of the objective function with the 
constraints.  It is assumed that f, h, and g are 

continuous and differentiable, that f is 
convex, and that the region in the space of 

decision variables defined by the inequality 
constraints is a convex region.  

 
Given that x is a feasible point, the 

conditions for which the optimal solution 
occurs are: 
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These conditions are known as the Karush-
Kuhn-Tucker (KKT) conditions or, more 

simply, as the Kuhn-Tucker (KT) 
conditions. The KKT conditions state that 

for an optimal point 
1) The derivatives of the LaGrangian with 

respect to all decision variables must be 
zero (3). 

2) All equality constraints must be satisfied 
(4). 

3) A multiplier μk cannot be zero when its 
corresponding constraint is binding (5). 

4) All decision variables must be non-
negative at the optimum (6). 
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Requirement 3, corresponding to eq. (5), is 
called the “complementary” condition. The 

complementary condition is important to 
understand. It says that if x occurs on the 

boundary of the k
th
 inequality constraint, 

then gk(x) = bk. In this case eq. (5) allows μk 

to be non-zero. Once it is known that the k
th
 

constraint is binding, then the k
th
 constraint 

can be moved to the vector of equality 
constraints; i.e., gk(x) can then be renamed 

as hm+1(x) and μk as λm+1, according to: 
   

1

1









J

J

k

k xhxg

   (7)  

On the other hand, if the solution x does not 
occur on the boundary of the k

th
 inequality 

constraint, then (assuming x is an attainable 
point) gk(x) - bk < 0. In this case, eq. (5) 

requires that μk = 0 and the k
th
 constraint 

makes no contribution to the LaGrangian. 
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It is important to understand the significance 
of μ and λ. The optimal values of the 

LaGrangian Multipliers are in fact the rates 
of change of the optimum attainable 

objective value f(x) with respect to changes 
in the right-hand-side elements of the 

constraints. Economists know these 
variables as shadow prices or marginal 

values.  This information can be used not 
only to investigate changes to the original 

problem but also to accelerate repeat 
solutions.  The marginal values λj or μk 

indicate how much the objective f(x) would 
improve if a constraint bj or ck, respectively, 

were changed.  One constraint often 
investigated for change is the maximum 

production of a plant. 
 

3.0 EDC Problem Formulation 

 

Each plant i has a cost-rate curve that gives 
the cost Ci in $/hour as a function of its 

generation level PGi (the 3 phase power). 
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So we denote the cost-rate functions as 
Ci(PGi). These functions are normally 

assumed to be quadratic. For example, in 
Example 11.8 of the text, two such functions 

are given as 
2

1111 01.045900)( GGG PPPC    (8) 
2

2221 003.0432500)( GGG PPPC    (9) 

If we have m generating units, then the total 
system cost will be given by 

)(
1

Gi

m

i

iT PCC 



    (10) 

Equation (10), which corresponds to eq. 
(11.34) in the text, represents our objective 

function, and we desire to minimize it. The 
generation values PGi are the decision 

variables.  
 

There are two basic kinds of constraints for 
our problem.  

1.Power balance 
2.Generation limits 
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3.1 Power balance constraint 
In regards to power balance, it must be the 

case that the total generation equals the total 
demand PD plus the total losses PL.  

LD

m

i

Gi PPP 
1

    (11a) 

The demand PD is assumed to be a fixed 
value. However, the losses PL depend on the 

solution (given by the PGi) which we do not 
know until we solve the problem. This 

dependency is due to the fact that the losses 
depend on the flows in the circuits, and the 

flows in the circuits depend on the 
generation dispatch. Therefore we represent 

this dependency according to eq. (11b).  

),,,( 21

1

GmGGLD

m

i

Gi PPPPPP 


 (11b) 

One point made in the text (p.416) is that only 

m-1 of the PGi are independent variables. 

Given the demand, one of the generation 

values, and the losses, are determined once the 

other m-1 of them are set.  
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In EE 303 (and in EE 456 if you took it), 
when we studied the power flow problem, 

this generator was referred to as the swing 
bus. We will assume this generator is unit 1. 

 
Therefore we need to remove PG1 from the 

arguments of PL so that eq. (11b) becomes 

),,( 2

1

GmGLD

m

i

Gi PPPPP 


  (11c) 

We rearrange eq. (11c) so that all terms 

dependent on the decision variables are on 
the left-hand-side, according to: 

DGmGL

m

i

Gi PPPPP 


),,( 2
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  (11d) 

 
3.2 Generation limits 

There are physical constraints on the 
generation levels. The generators cannot 

exceed their maximum capabilities, 

represented by 
max

GiP . And clearly, they 

cannot operate below 0 (otherwise they are 
operating as a motor, attempting to drive the 
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turbine – not a good operational state!). 
Most units actually cannot operate at 0; as a 

result, we will denote the minimum as 
min

GiP . 

Therefore, the generation limits are 
represented by 

maxmin

GiGiGi PPP      (12) 

 

3.3 Problem statement 
 

This leads us to the statement of the 
problem, i.e., the articulation of the 

mathematical program, which is, from eqs. 
(10), (11d), and (12), as follows. 

Min 
)(

1

Gi

m

i

iT PCC 



 

Subject to 

DGmGL

m

i

Gi PPPPP 


),,( 2

1


 

miPPP GiGiGi ,...,1maxmin   
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4.0 Application of KKT conditions 

 

Recall the KKT conditions as given by eqs. 
(3-6). In formulating these conditions, we 

make one observation in regards to the 
complementary condition (5), which is 

repeated here for convenience. 

   Kkbxg kkk ,10         (5) 

This is a sort of “either-or” condition, i.e.,  

 Either uk=0 & gk(x)-bk<0 (non-binding) or 

 uk0 & gk(x)-bk=0 (binding) 

However, we do not know in advance which 

it is.  
 

So what we do is the following: 
 Solve the problem without any inequality 

constraint 
 Check solution against inequality 

constraints. For those that are violated, 
bring them in as equality constraints and 

re-solve the problem. Repeat this step until 
you obtain a solution for which no 

inequality constraints are violated. 
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This is an iterative solution procedure, and 

represents a procedural equivalent to the 
complementary condition. Thus, for any 

given iteration, we can assume there are no 
inequality constraints. 

 
Therefore we may state the KKT conditions 

more simply as 

ni
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                 (4) 

where it is assumed that any binding 

inequality constraints are included in eq. (4) 
as equality constraints. 

 
Let’s apply these conditions to the problem 

statement of Section 3.3 above, assuming 
that no inequality constraints are binding so 

that there is only one equality constraint to 
consider (the power balance constraint). 
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First, we form the Lagrangian function: 
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Now applying the KKT conditions of (3) 

and (4), we get: 
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Observe that we have m equations of the 
form given in (14). However, the one 

corresponding to i=1 will not have a loss 
term and therefore will be: 

0
)(

1

11

1












G

Gi

G P

PC

P

F
    (16) 

Because 0
1






P

PL

, eq. (14) appropriately 

captures eq. (16). Nevertheless, your text 

specifies them separately (see eqs. (11.48-
11.50) on page 417).  
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The term 
Gi

i

P

C




 is called the incremental cost 

of unit i and is denoted by ICi. 

 
Let’s consider eq. (14) more closely. In 

particular, let’s solve it for λ. 
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Define the fraction out front as Li, that is 
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We call Li the penalty factor for the i
th
 unit. 

Note that L1=1. 

Substituting eq. (18) into (17) results in 

mi
P

PC
L

Gi

Gii
i ,...1

)(





     (19) 

What eq. (19) says is that, at the optimum 
dispatch, for each unit not at a binding 

inequality constraint, the product of the 
penalty factor and the incremental cost of 

unit is the same and is equal to λ. 
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Example:  
We study ex. 11.8 in the text. In this 

example, the fuel-cost curves are given (and 
were referenced above in eqs. (8), (9)): 

2

1111 01.045900)( GGG PPPC    (8) 
2

2221 003.0432500)( GGG PPPC    (9) 

The load is specified as PD=700 MW, but 

let’s solve it first for 600 MW. Generator 
limits are given as 

MWPMW G 20050 1   

MWPMW G 60050 1   

In this example, we assume that there are no 

losses. This means that all penalty factors 
are 1.0. Assuming there are no binding 

inequality constraints, eq. (19) is 

2

22

1

11 )()(

G

G

G

G

P

PC

P

PC









   

Writing out these equations, we have: 

102.045 GP  

2006.043 GP  

We also have our equality constraint eq. (15) 
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60021  GG PP  

In EE 303, we learned to solve these 

equations in matrix representation, as a set 
of linear equations, as given below. 
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Solution to this equation yields: 

   


































23.46

46.538

64.61

2

1
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Checking the inequality limits, we see that 
we have found the solution. 

 
Let’s explore another solution method. The 

previous one is fine, but it requires that all 
equations be linear. This may not always be 

the case, e.g., when we include losses, the 
power balance equation can be nonlinear. 

The method is known as Lambda-iteration 
and is best understood via Fig. 1 which 

shows incremental cost curves IC1, IC2, 
given by 
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11 02.045 GPIC   

22 006.043 GPIC   

The incremental cost curves are just the 

derivatives of the cost-rate curves. Observe 
that the expressions derived for λ under the 

KKT conditions specify a certain relation 
among the incremental cost curves. An 

implication here is that the incremental cost 
curves express the derivatives (or the 

incremental costs) under any condition, not 
necessarily at the optimum. 
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Fig. 1 
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The lambda iteration method begins with a 
guess in regards to a value of λ which 

satisfies the KKT conditions (such that all 
incremental costs are equal), and the total 

demand equals the load.  
 

The lambda iteration may be performed 
graphically. Let’s guess that λ=46. To 

determine what the corresponding 
generation levels are at the optimum, draw a 

horizontal line across our IC curves, as 
shown by the dark horizontal line in Fig. 2. 
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Fig. 2 
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The corresponding generation values are the 
dark vertical dashed lines, so we can see that 

PG1=50 and PG2=500, for a total generation 
of 550 MW.  This is less than the desired 

600 MW so let’s increase our guess. Let’s 
try about 46.4, as shown in Fig. 3. 
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Fig. 3 

The corresponding generation levels are 
about PG1=65 MW and PG2=565 MW, for a 

total of 630 MW, and so this is a little too 
high. Let’s try λ=46.2 as shown in Fig. 4. 
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Fig. 4 

The corresponding generation levels are 
about PG1=55 MW and PG2=540 MW for a 

total of 595 MW, so this is just a small bit 
too low. It is probably not possible to do 

better than this unless with use a more 
granular axis in our plots.  

 
This method can be stated analytically as 

well. Notice what we are doing: we choose λ 
and then obtain the generation levels from 

the plots.  
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Well, the plots are really analytical relations 
between  λ and the generation levels, and we 

can easily manipulate them so that they give 
the generation levels as a function of λ, as 

shown below. 

2250504502.0 11   GG PP  

7.716667.16643006.0 22   GG PP  

Now we can proceed analytically.  
 

As before, guess 46 and calculate: 

502250)46(501 GP  

5007.7166)46(67.1662 GP  

Total is 550 MW which is too low so let’s 

try 46.4 (we could try anything we like, as 
long as it is higher, since the generation is 

too low in our first guess):  

702250)4.46(501 GP  

78.5667.7166)4.46(67.1662 GP  

Total is 636.78, so now we need to try a 
lower λ. But let’s use linear interpolation to 

guide our next value of λ: 

Observe that 
PG1+PG2=PD= 
50λ-
2250+166.67λ-

7166.7.  
Thus, we can solve 
for λ as a function 
of PD. This may be 

helpful in Pr11.11. 
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55078.636

464.46













 

Because our equations for PG1 and PG2 are 
linear with λ, the linear interpolation will 

provide an exact answer. We can check to 
see: 

525.612250)2305.46(501 GP  

5374.5387.7166)2305.46(67.1662 GP  

And the sum is 600.06 MW, as desired. 

 
This method will also work when the IC 

curves and/or the power balance equation 
are nonlinear. For nonlinear relations, 

however, linear interpolation will not find 
the solution in one shot, and so it is 

necessary to iterate. On each iteration, one 
may employ a stopping criterion by 

checking to see whether the total generation 
is within some tolerance of the load. This 

basic procedure is given on p.411 of the text. 
 

 
 



 25 

Example (extended) (Ex 11.9 in text) 
Now let’s reconsider our example, but with 

a load of 700 MW instead of 600 MW. 
Using our graphical method again, and with 

the knowledge gained from our previous 
example, we know that λ will exceed 46.4. 

But it cannot go too much higher without 
causing Unit 2 to exceed its upper limit. 

Let’s try it at the value of λ that causes unit 
2 to be at its upper limit. This is shown in 

Fig. 5. 
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Fig. 5 
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It appears that λ is about 46.6, and PG1≈85 
MW, PG2≈600 MW, for a total of 685 MW. 

So this is not enough, and we must therefore 
raise λ. However, we cannot raise λ on unit 

2 because it is already at its upper limit. So 
we have to clamp PG2 at 600 MW. In other 

words, we will no longer use PG2 in our λ-
iteration, although we will need to account 

for its generation of 600 MW. 
 

So we will now perform λ-iteration on only 
the remaining units. In this case, the 

“remaining units” is just unit 1. In addition, 
our stopping criteria will now be that the 

total generation of the remaining units be 
equal to PD-Pg2=700-600=100.  

 
The upshot of this is that we need to perform 

λ-iteration on unit 1’s ability to supply 100 
MW. The horizontal solid-dark line of Fig. 6 

illustrates.  
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Fig. 5 

Observe, however that there are now two 
horizontal lines,  

 the solid one for unit 1 at 47; 
 the dashed one for unit 2 at about 46.6 

So which one is λ? 
 λ is the SYSTEM incremental cost and 

indicates the cost of optimally supplying 
another MW from the system for the next 

hour. If the system has to supply another 
MW for the next hour, in this case (because 

there is only 1 regulating unit), it would 
have no choice but to do it with unit 1. 
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Therefore λ=47. 
 

Then what is 46.6? It is the incremental cost 
of unit 2 (but not the system incremental 

cost). The unit incremental cost is normally 
understood as the cost for the unit to supply 

another MW for one hour. It can 
equivalently be understood as the savings if 

the unit was off-loaded by 1 MW for one 
hour, and in this case, that is a better 

interpretation since the unit cannot supply 
more power. 

 
Hint on Problem 11.11: This problem is very 

similar to Example 11.10 in the text. And so 
study of Example 11.10 should help you a 

great deal in solving this problem. The other 
thing that will help you is the IC curves of 

the three units (which you should plot for 
problem 11.10). These IC curves are below. 
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Incremental Cost vs. Power Generated
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The problem is asking you to assume that all 

three units are within a single power 
generating plant, and we want to obtain the 

composite PLANT incremental cost as a 
function of PLANT loading. To do this, 

observe: 
 Min plant loading is 

PG1,min+PG2,min+PG3,min=50+50+50= 150MW, which 

can be obtained from the data of problem 11.10 or 
can be read off the above plots. 

 Max plant loading is 

PG1,max+PG2,max+PG3,max=400+800+1000= 2200MW 
which can be obtained from the data of problem 

11.10 or can be read off the above plots. 
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So you will obtain a set of piecewise linear curves 

from PD=150 to PD=2200, depending on which 
machines are regulating (not at their limits). You so 

this by finding the IC for each set of regulating 

conditions. For example, when IC=7.6, only unit 3 is 

regulating (units 1 and 2 are at their limits).  
 


