AGC 4

1.0 Problem 11.2

For the isolated generating station with local load shown in Fig. 1 below, it is observed that $\Delta \mathrm{P}_{\mathrm{L}}=0.1 \mathrm{pu}$ brings about $\Delta \omega=-0.2 \mathrm{rad} / \mathrm{sec}$ in the steady-state.

Fig. 1
(a) Find $1 / \mathrm{R}$.

Solution:

We need the transfer function between $\Delta \omega$ and $\Delta \mathrm{P}_{\mathrm{L}}$. To get this, write down $\Delta \omega$ as a function of what is coming into it:

$$
\Delta \hat{\omega}=\frac{10}{1+10 s}\left[\left(\frac{1}{s+1}\right)\left(\Delta \hat{P}_{C}-\frac{1}{R} \Delta \hat{\omega}\right)+-\Delta \hat{P}_{L}\right]
$$

Now solve for $\Delta \omega$. Expanding:

$$
\begin{aligned}
\Delta \hat{\omega} & =\frac{10}{1+10 s}\left[\left(\frac{1}{s+1}\right)\left(\Delta \hat{P}_{C}-\frac{1}{R} \Delta \hat{\omega}\right)-\Delta \hat{P}_{L}\right] \\
& =\Delta \hat{P}_{C} \frac{10}{1+10 s}\left(\frac{1}{s+1}\right)-\frac{10}{1+10 s}\left(\frac{1}{s+1}\right)\left(\frac{1}{R} \Delta \hat{\omega}\right)-\frac{10 \Delta \hat{P}_{L}}{1+10 s}
\end{aligned}
$$

Bringing terms in $\Delta \omega$ to the left-hand-side:

$$
\Delta \hat{\omega}+\frac{10}{1+10 s}\left(\frac{1}{s+1}\right) \frac{1}{R} \Delta \hat{\omega}=\Delta \hat{P}_{C} \frac{10}{1+10 s}\left(\frac{1}{s+1}\right)-\frac{10 \Delta \hat{P}_{L}}{1+10 s}
$$

Factoring $\Delta \omega$:

$$
\Delta \hat{\omega}\left[1+\frac{10}{1+10 s}\left(\frac{1}{s+1}\right) \frac{1}{R}\right]=\Delta \hat{P}_{C} \frac{10}{1+10 s}\left(\frac{1}{s+1}\right)-\frac{10 \Delta \hat{P}_{L}}{1+10 s}
$$

Dividing:

$$
\Delta \hat{\omega}=\frac{\Delta \hat{P}_{C} \frac{10}{1+10 s}\left(\frac{1}{s+1}\right)-\frac{10 \Delta \hat{P}_{L}}{1+10 s}}{1+\frac{10}{1+10 s}\left(\frac{1}{s+1}\right) \frac{1}{R}}
$$

Multiply through by $(1+10 \mathrm{~s})(\mathrm{s}+1)$:

$$
\Delta \hat{\omega}=\frac{10 \Delta \hat{P}_{C}-10 \Delta \hat{P}_{L}(s+1)}{(1+10 s)(s+1)+\frac{10}{R}}
$$

Rearrange the top and expand the bottom:

$$
\begin{equation*}
\Delta \hat{\omega}=\frac{10 \Delta \hat{P}_{C}-10(s+1) \Delta \hat{P}_{L}}{10 s^{2}+11 s+(1+10 / R)} \tag{*}
\end{equation*}
$$

Now we consider $\Delta \mathrm{P}_{\mathrm{C}}=0 \mathrm{pu}, \Delta \mathrm{P}_{\mathrm{L}}=0.1 \mathrm{pu}$, and assume it is a step change. Therefore:

$$
\Delta \hat{P}_{L}=\frac{\Delta P_{L}}{s}
$$

Substituting into (*), we get:

$$
\Delta \hat{\omega}=\frac{-10(s+1)}{10 s^{2}+11 s+(1+10 / R)} \frac{\Delta P_{L}}{s}
$$

The above expression is a LaPlace function (i.e., in s). The problem gives data for the steadystate (in time). We may apply the final-value theorem to the above expression to obtain:

$$
\begin{aligned}
\Delta \omega= & \lim _{t \rightarrow \infty} \Delta \omega(t) \\
& =\lim _{s \rightarrow 0} s \Delta \hat{\omega}=\lim _{s \rightarrow 0} s \frac{-10(s+1)}{10 s^{2}+11 s+(1+10 / R)} \frac{\Delta P_{L}}{s} \\
& =\lim _{s \rightarrow 0} \frac{-10(s+1) \Delta P_{L}}{10 s^{2}+11 s+(1+10 / R)}=\frac{-10 \Delta P_{L}}{1+10 / R}
\end{aligned}
$$

that is,

$$
\Delta \omega=\frac{-10 \Delta P_{L}}{1+10 / R}
$$

Solving for R, we obtain:

$$
\begin{aligned}
& 10 / R=\frac{-10 \Delta P_{L}}{\Delta \omega}-1=\frac{-10 \Delta P_{L}-\Delta \omega}{\Delta \omega} \\
& R=\frac{-10 \Delta \omega}{10 \Delta P_{L}+\Delta \omega}
\end{aligned}
$$

Substituting $\Delta \mathrm{P}_{\mathrm{L}}=0.1 \mathrm{pu}$ and $\Delta \omega=-0.2 \mathrm{rad} / \mathrm{sec}$, we obtain:

$$
R=\frac{-10 \Delta \omega}{10 \Delta P_{L}+\Delta \omega}=\frac{-10(-0.2)}{10(0.1)+(-0.2)}=2.5
$$

The problem was specified with power in perunit and $\Delta \omega$ in rad/sec. Reference to the block diagram indicates that the left-hand-side summing junction outputs $\Delta \mathrm{P}_{\mathrm{C}}-\Delta \omega / \mathrm{R}$. To make this sum have commensurate units, it must be the case that R has units of $(\mathrm{rad} / \mathrm{sec}) / \mathrm{pu}$ power. So R=2.5 ($\mathrm{rad} / \mathrm{sec}$)/pu power.

The problem asks for $1 / \mathrm{R}$, which would be $1 / 2.5=0.4 \mathrm{pu}$ power/(rad/sec).

One might also express R and $1 / \mathrm{R}$ in units of pu frequency/pu power. This would be:
$\mathrm{R}_{\mathrm{pu}}=2.5 / 60=0.0417$
$1 / \mathrm{R}_{\mathrm{pu}}=24$
Recalling the NERC specification that all units should have $\mathrm{R}=0.05$, then this R should be adjusted upwards.
Question: What does an $\mathrm{R}=0.0417$ mean relative to an $\mathrm{R}=0.05$?
Answer: Recalling that $R_{p u}=-\Delta \omega_{p u} / \Delta P_{m, p u}$, we can say that $R_{p u}$ expresses the steady-state frequency deviation, as a percentage of 60 Hz , for which the machine will move by an amount equal to its full rating. So:

- if $\mathrm{R}_{\mathrm{pu}}=0.05$, then the steady-state frequency deviation for which the machine will move by an amount equal to its full rating is $0.05 * 60=3 \mathrm{hz}$.
- if $\mathrm{R}_{\mathrm{pu}}=0.0417$, then the steady-state frequency deviation for which the machine will move by an amount equal to its full rating is $0.0417 * 60=2.502 \mathrm{hz}$.
(b) Specify $\Delta \mathrm{P}_{\mathrm{C}}$ to bring $\Delta \omega$ back to zero (i.e., back to the steady-state frequency $\omega=\omega_{0}$).

Solution:

Recalling eq. (*):

$$
\begin{equation*}
\Delta \hat{\omega}=\frac{10 \Delta \hat{P}_{C}-10(s+1) \Delta \hat{P}_{L}}{10 s^{2}+11 s+(1+10 / R)} \tag{*}
\end{equation*}
$$

Now we have that

$$
\Delta \hat{P}_{C}=\frac{\Delta P_{C}}{s}
$$

and $\Delta \mathrm{P}_{\mathrm{L}}=0$. In this case, eq. $(*)$ becomes:

$$
\Delta \hat{\omega}=\frac{10 \Delta P_{C} / s}{10 s^{2}+11 s+(1+10 / R)}
$$

Applying the final value theorem again: $\Delta \omega=\lim _{t \rightarrow \infty} \Delta \omega(t)$
$=\lim _{s \rightarrow 0} s \Delta \hat{\omega}=\lim _{s \rightarrow 0} s$
$\Delta \omega=\lim _{t \rightarrow \infty} \Delta \omega(t)$

$$
\begin{aligned}
& =\lim _{s \rightarrow 0} s \Delta \hat{\omega}=\lim _{s \rightarrow 0} s \frac{10 \Delta P_{C} / s}{10 s^{2}+11 s+(1+10 / R)} \\
& =\lim _{s \rightarrow 0} \frac{10 \Delta P_{C}}{10 s^{2}+11 s+(1+10 / R)}=\frac{10 \Delta P_{C}}{1+10 / R}
\end{aligned}
$$

that is,

$$
\Delta \omega=\frac{10 \Delta P_{C}}{1+10 / R}
$$

Solving for $\Delta \mathrm{P}_{\mathrm{C}}$, we get:

$$
\Delta P_{C}=\frac{\Delta \omega(1+10 / R)}{10}
$$

Having already computed $1 / \mathrm{R}=0.4$ in part (a), and with $\Delta \omega=-0.2$, we have

$$
\Delta P_{C}=\frac{-0.2(1+10 / 2.5)}{10}=-0.1
$$

which indicates that for this load increase of 0.1 which results (from primary speed control) in a frequency deviation of $-0.2 \mathrm{rad} / \mathrm{sec}$, we need to adjust the speed-changer motor to increase plant output by 0.1 pu in order to correct the steadystate frequency deviation back to 0 .

The change to the speed-changer motor would be accomplished by the supplementary control.

2.0 Last comments on AGC

Someone asked me about applying the root locus method as in Example 11.3 of text. Root locus is a procedure for analysis of stability, that you would not have learned unless you took EE 475 , and so I choose not to cover this.

Hint on Problem 11.3: At the bottom of page 390, the text says: "The reader is invited to check that with $K_{P i}=1 / \tilde{D}_{i}$ and $T_{P i}=M_{i} / \tilde{D}_{i}$, Figure 11.10 represents (11.22) in block diagram form. In Figure 11.10 we have $\Delta \omega_{i}$ as an output and $\Delta \mathrm{P}_{\mathrm{Mi}}$ as an input and can close the power control loop by introducing the turbine-governor block diagram shown in Figure 11.4." This will result in the following block diagram.

