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AGC 4 

1.0 Problem 11.2  

For the isolated generating station with local 
load shown in Fig. 1 below, it is observed that 

ΔPL=0.1pu brings about Δω=-0.2rad/sec in the 
steady-state. 
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(a) Find 1/R. 
 

Solution:  
 

We need the transfer function between Δω and 
ΔPL. To get this, write down Δω as a function of 

what is coming into it: 
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Now solve for Δω. Expanding: 
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Bringing terms in Δω to the left-hand-side: 
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Factoring Δω: 
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Dividing: 

Rss

s

P

ss
P L

C

1

1

1

101

10
1

101

ˆ10

1

1

101

10ˆ

ˆ






























 

Multiply through by (1+10s)(s+1): 
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Rearrange the top and expand the bottom: 
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Now we consider ΔPC=0pu, ΔPL=0.1pu, and 

assume it is a step change. Therefore: 
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Substituting into (*), we get: 
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The above expression is a LaPlace function (i.e., 

in s). The problem gives data for the steady-
state (in time). We may apply the final-value 

theorem to the above expression to obtain: 
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Solving for R, we obtain: 


























L

LL

P
R

PP
R

10

10

10
1

10
/10

 

 
Substituting ΔPL=0.1pu and Δω=-0.2rad/sec, we 

obtain: 
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The problem was specified with power in per-

unit and Δω in rad/sec. Reference to the block 
diagram indicates that the left-hand-side 

summing junction outputs ΔPC-Δω/R. To make 
this sum have commensurate units, it must be 

the case that R has units of (rad/sec)/pu power. 
So R=2.5 (rad/sec)/pu power. 

 
The problem asks for 1/R, which would be 

1/2.5=0.4 pu power/(rad/sec).  
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One might also express R and 1/R in units of pu 
frequency/pu power. This would be: 

Rpu=2.5/60=0.0417  
1/Rpu=24 

Recalling the NERC specification that all units 
should have R=0.05, then this R should be 

adjusted upwards. 
Question: What does an R=0.0417 mean relative 

to an R=0.05?  
Answer: Recalling that Rpu=-Δωpu/ΔPm,pu, we 

can say that Rpu expresses the steady-state 
frequency deviation, as a percentage of 60 Hz, 

for which the machine will move by an amount 
equal to its full rating. So:  

 if Rpu=0.05, then the steady-state frequency 

deviation for which the machine will move by 
an amount equal to its full rating is 

0.05*60=3hz. 

 if Rpu=0.0417, then the steady-state frequency 

deviation for which the machine will move by 
an amount equal to its full rating is 

0.0417*60=2.502hz. 
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(b) Specify ΔPC to bring Δω back to zero (i.e., 
back to the steady-state frequency ω=ω0). 

 
Solution:  

 
Recalling eq. (*): 
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Now we have that 
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and ΔPL=0. In this case, eq. (*) becomes: 
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Applying the final value theorem again: 

ss

t

ss

t

00
limˆlim

)(lim












 

R

P

Rss

P

Rss

sP
ss

t

CC

s

C

ss

t

/101

10

)/101(1110

10
lim

)/101(1110

/10
limˆlim

)(lim

20

200




























 



 7 

that is,  
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Solving for ΔPC, we get: 

10

)/101( R
PC





 

Having already computed 1/R=0.4 in part (a), 

and with Δω=-0.2, we have 
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which indicates that for this load increase of 0.1 

which results (from primary speed control) in a 
frequency deviation of -0.2 rad/sec, we need to 

adjust the speed-changer motor to increase plant 
output by 0.1 pu in order to correct the steady-

state frequency deviation back to 0.  
 

The change to the speed-changer motor would 
be  accomplished by the supplementary control. 
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2.0 Last comments on AGC  
 

Someone asked me about applying the root 
locus method as in Example 11.3 of text. Root 

locus is a procedure for analysis of stability, that 
you would not have learned unless you took EE 

475, and so I choose not to cover this. 
 

Hint on Problem 11.3: At the bottom of page 
390, the text says: “The reader is invited to 

check that with iPi DK
~

/1  and iiPi DMT
~

/ , Figure 

11.10 represents (11.22) in block diagram form. 

In Figure 11.10 we have Δωi as an output and 
ΔPMi as an input and can close the power control 

loop by introducing the turbine-governor block 
diagram shown in Figure 11.4.”  

This will result in the following block diagram. 
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