AGC 2
1.0 Introduction 

In the last set of notes, we developed a model of the speed governing mechanism, which is given below:
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(1)
In these notes, we want to extend this model so that it relates the actual mechanical power into the machine (instead of ΔxE), so that we can then examine the relation between the mechanical power into the machine and frequency deviation. 
What lies between ΔxE, which represents the steam valve, and ΔPM, which is the mechanical power into the synchronous machine?

2.0 Extended model
Your text (p. 381) does not go into great detail in regards to the turbine model but rather argues that it responds much like the speed governing system, which is a single time-constant system. 

Being a single time-constant system implies that there is only one pole (the characteristic equation has only one root). Thinking in terms of inverse LaPlace transforms, this means that the response to a step change in valve opening will be exponential (as opposed to oscillatory). In these notes, we simply confirm that this is the case.

Analytically, this means that the relation between the change in valve opening ΔxE and the change in mechanical power into the generator ΔPM is given by:
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(2)

Substituting (1) into (2) results in
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(3)

which is
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(4)
Let’s assume that KT and KG are chosen so that KTKG=1, then eq. (4) becomes:
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(5)

A block diagram representing eq. (5) is given in Fig. 1 (Fig. 11.4 in text).
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Fig. 1

3.0 Mechanical power and frequency

Let’s expand (5) so that
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(6)

Consider a step-change in power of ΔPC and in frequency of Δω, which in the LaPlace domain is:
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(7b)

Substitution of (7a) and (7b) into (6) results in:
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(8)

One easy way to examine eq. (8) is to consider ΔPM(t) for very large values of t, i.e., for the steady-state.
To do this, recall that the variable ΔPM in eq. (8) is a LaPlace variable. To consider the corresponding time-domain variable under the steady-state, we may employ the final value theorem, which is:
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(9)

Applying eq. (9) to eq. (8), we get:
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(10)
Therefore, when considering the relation between steady-state changes,
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(11)

This is eq. (11.6) in your text. 

Make sure that you understand that in eq. (11), ΔPM,  ΔPC, and Δω in eq. (11) are 

· Time-domain variables (not LaPlace variables)

· Steady-state values of the time-domain variables (the values after you wait along time)

Because we developed eq. (11) assuming a step-change in frequency, you might be mislead into thinking that the frequency change is the initiating change that causes the change in mechanical power ΔPM. 

However, recall Fig. 3 of AGC1 notes, repeated below for convenience as Fig. 2 in these notes.
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Fig. 2

The frequency change expressed by Δω in eq. (11) is the frequency deviation at the end of the simulation. The ΔPM in eq. (11), associated with Fig. 2, is 
· not the amount of generation that was outaged, 
· but rather the amount of generation increased at a certain generator in response to the generation outage.
So ΔPM and Δω are the conditions that can be observed at the end of a transient initiated by a load-generation imbalance. They are conditions that result from the action of the primary governing control. 

In other words, the primary governing control will operate (in response to some frequency deviation caused by a load-generation imbalance) to change the generation level by ΔPM and leave a steady-state frequency deviation of Δω.
Although we have not developed relations for ω, PM, and PC (but rather Δω, ΔPM, and ΔPC), lets assume we have at our disposal a plot of PM vs. ω for a certain setting of PC=PC1. Such a plot appears in Fig. 3. (The text makes the following assumption on pg 383 (I added the italicized text): “…the local behavior (as characterized by eq. (11)) can be extrapolated to a larger domain.”)
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Fig. 3

An important assumption behind Fig. 3 is that the adjustment to the generator set point, designated by PC=PC1, is done by a control system (as yet unstudied), called the secondary or supplementary control system, which results in ω=ω0. The plot, therefore, provides an indication of what happens to the mechanical power PM, and the frequency ω, following a disturbance from this pre-disturbance condition for which PM=PC1 and ω= ω0. 

It is clear from Fig. 3 that the “local” behavior is characterized by 
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If we were to change the generation set point to PC=PC2, under the assumption that the secondary control that actuates such a change maintains ω0, then the entire characteristic moves to the right, as shown in Fig. 4. 
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Fig. 4

We may invert Fig. 3, so that the power axis is on the vertical and the frequency axis is on the horizontal, as shown in Fig. 5.
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Fig. 5

Fig. 6 illustrates what happens when we change the generation set point from PC=PC1 to PC=PC2, 
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Fig. 6

It is conventional to illustrate the relationship of frequency ω and mechanical power PM as in Figs. 5 and 6, rather than Figs. 3 and 4. (Regardless, however, be careful not to fall into the trap that it is showing PM as the “cause” and ω as the “effect.” As repeated now in different ways, they are both “effects” of the primary control system response to a frequency deviation caused by a load-generation imbalance).  

From such a picture as Figs. 5 and 6, we obtain the terminology “droop,” in that the primary control system acts in such a way so that the resulting frequency “droops” with increasing mechanical power. 
The R constant, previously called the regulation constant, is also referred to as the droop setting. 
4.0 Units

Recall eq. (11), repeated here for convenience.
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(11)

With no change to the generation set point, i.e., ΔPC=0, then
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(12)

where we see that
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(13)

We see then that the units of R must be (rad/sec)/MW.

A more common way of specifying R is in per-unit, where we per-unitize top and bottom of eq. (13), so that:
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(14)

where ω0=377 and Sr is the three-phase MVA rating of the machine. When specified this way, R relates fractional changes in ω to fractional changes in PM.
It is also useful to note that 
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(15)

Thus, we see that per-unit frequency is the same independent of whether it is computed using rad/sec or Hz, as long as the proper base is used. 

Therefore, eq. (14) can be expressed as
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(16)

5.0 Example
Consider a 2-unit system, with data as follows:

Gen A: SRA=100 MVA, RpuA=0.05

Gen B: SRB=200 MVA, RpuB=0.05

The load increases, with appropriate primary speed control (but no secondary control) so that the steady-state frequency deviation is 0.01 Hz. What are ΔPA and ΔPB?
Solution: 
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Note!!! Since RpuA=RpuB (and since the steady-state frequency is the same everywhere in the system), we get ΔPpuA=ΔPpuB, i.e., the generators “pick up” the same amount of per-unit power (given on their own base).

But let’s look at it in MW:
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Conclusion: When two generators have the same per-unit droop, they “pick-up” (compensate for load-gen imbalance) in proportion to their MVA rating.
In North America, droop constants for most units are set at about 0.05 (5%). 

6.0 Multimachine case

Now let’s consider a general multimachine system having K generators. From eq. (16), for a load change of ΔP MW, the ith generator will respond according to:
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(17)

The total change in generation will equal ΔP, so:
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(18)

Solving for Δf results in
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(19)

Substitute eq. (19) back into eq. (17) to get:
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(20)

If all units have the same per-unit droop constant, i.e., Rpui=R1pu=…=RKpu, then eq. (20) becomes:
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(21)

which generalizes our earlier conclusion for the two-machine system that units “pick up” in proportion to their MVA ratings. This conclusion should drive the way an engineer performs contingency analysis of generator outages, i.e., one should redistribute the lost generation to the remaining generators in proportion to their MVA rating, as given by eq. (21).
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