Notes 9: Impedance of Overhead Lines 
9.0 Introduction

The series impedance of any conductor has two parts to it – resistance and reactance. We will discuss resistance briefly first and then spend significant effort in considering the reactance.

9.1 Resistance

The DC resistance is computed according to 
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where ρ is the resistivity, l is the conductor length, and A is the cross-sectional area of the conductor.

There are three effects which cause the value used in power system studies to be differ from RDC. There are

1. Temperature: The resistivity is affected by the temperature and this in turn affects the DC resistance. The influence of temperature on resistivity is captured by the following equation:
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where all values of temperature T are given in degrees centigrade. The parameter α ranges from 0.0034-0.004 for copper and from 0.0032-0.0056 for aluminum.

2. Stranding: The effective length is affected by stranding because of spiraling, which tends to increase the DC resistance. This influence is captured by the following equation:
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where β is a function of the number of strands and the relative pitch. The relative pitch is given by d/2c, where d and c are as illustrated in Fig. 1 for a single cycle of a strand.
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Fig. 1

3. Skin effect: This influence is from the alternating magnetic field set up by the alternating current in the conductor. The field interacts with the current flow to cause more flow at the periphery of the conductor. This results in a nonuniform current density and therefore more losses and higher effective resistance. The increase in resistance from this influence depends only on the conductor material and the frequency. 
9.2 Impedance
Recall from previous notes that, if the sum of all of the currents is zero, then the flux linkages for the kth conductor, is
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where Dkj is the distance between conductors k and j and r’k is the GMR for conductor k.  Both Dkj and r’k must be given in the same units (typically feet or meter). The units of flux linkage is weber-turns/meter.
Define the following
:
· Self inductance, 
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· Mutual inductance: 
[image: image7.wmf]kj

j

kj

kj

D

I

L

1

ln

2

0

p

m

l

=

=


(6)

Both self and mutual inductances are given in units of h/m.

Here λkk and λkj are the flux linking with conductor k from the current in conductors k and j, respectively, allowing eq. (4) to be written as
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where 
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Now recall Faraday’s Law, which says that the voltage across inductance is the time-derivative of the flux linkages. Considering the currents in (8) and (9) are phasors, we recall that differentiation of a phasor results in multiplication of that phasor by jω, where ω is the radial frequency of the time varying quantity described by the phasor. Thus, from eqs. (8) and (9), we have:
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Here Vkk is the voltage drop in conductor k due to its self inductance and Vkj is the drop in conductor k due to its mutual inductance with conductor j.
Defining 
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we can rewrite eqs. (10) and (11) as
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9.3 Units

Consider the multiplier outside the logarithm of eqs. (12) and (13). 
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Assuming ω=377 and converting to Ω/mile:
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Therefore, eqs. 12 and 13 are:
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9.4 Ground path

It is sometimes the case that ground is used as the neutral conductor to carry currents resulting from unbalanced conditions. Even if a neutral conductor is provided, the ground return will still exist as a circuit in parallel to the neutral. And so it is of interest to account for the ground return.

A simple case may be observed in Fig. 2.
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Fig. 2

Fig. 2 shows 2 conductors carrying currents Ii and Ij to ground at one end. The composite current Id (d for “dirt”) returns through the ground. The earth is considered to have a uniform resistivity and to be of infinite extent. The current Id in the ground spreads out over a large area, seeking the lowest resistance return path and satisfying Kirchoff’s law to guarantee an equal voltage drop in all paths [2].
The reference voltage, assumed to be at potential 0, is indicated at the left of Fig. 2. Because of the current Id, the two grounded points (indicated by large solid dots) to the left and to the right of Fig. 2 are not at the same potential.
Note the presence of the 

· series impedances in the phases 
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· mutual impedances between phases 
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· mutual impedances between each phase and ground, 
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· series impedance in the ground, 
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· phase voltages to ground, Vig, Vjg.
The voltage Vig can be expressed in terms of these impedances using KVL, by equating Vig to the voltage summed around the right side of the loop, starting at the left-hand-side of 
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(Recall that mutually induced voltages are positive at the dotted side of the “induced” inductor for currents flowing into the dotted side of the “inducing” inductor.)

[image: image29.wmf](

)

d

id

j

ij

i

ii

j

dj

i

di

d

dd

ig

I

Z

I

Z

I

Z

I

Z

I

Z

I

Z

V

+

+

+

+

+

-

=




(20)
Collecting terms in eq. (20), we have:
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From KCL, we see that
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Substitution of eq. (22) into eq. (21) yields:
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Collecting terms, we have:
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(24)
Define the “primitive” self and mutual impedances of the line as:
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Thus, eq. (24) becomes
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(27a)

We may express Vjg as we just did for Vig, using the procedure from eq. (20)-(27), which results in:
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(30a)

The implication of eqs. (27a) and (30a) are that if we use impedances as given in eqs. (25, 26, 28c and 29), we may represent the grounded configuration of Fig. 2 as if the earth is a perfect conductor an infinite distance from the two phase conductors, i.e., that it has zero impedance to current flow and no mutual coupling with the phases. This situation is illustrated in Fig. 3.
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Fig. 3
Implicit in the diagram of Fig. 3 is an assumption that 
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. Reference to eq. (26), (29) shows that is true if 
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. By reciprocity of mutual inductances in a linear, passive network, 
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We may also have the situation that the line is divided into segments, as shown in Fig. 4. 
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Fig. 4

In the case of Fig. 4, we have that


[image: image49.wmf](

)

(

)

ig

j

ij

i

ii

ig

V

I

Z

I

Z

V

¢

+

+

=

ˆ

ˆ




(27b)
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(30b)
We now desire to write the primitive impedances in a more compact form. Let’s expand eq. (25) using eqs. (18, 19):
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(31)

Rearranging to have resistive terms together and inductive terms together, eq. (31) is:
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(32)
Combining logarithms containing subscript “d” (which means it is brought in by the effect of the earth return), we obtain:
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Similarly, we use eqs. (18, 19) to expand eqs. (26,28,29) to obtain:
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It is interesting that the mutual terms given by eqs. (34, 36) have resistance.

The problem with eqs. (34-36) is that as of this moment in our work, we have no basis to say what should be resistance, distances, & GMR having “d” subscript in the above.
This is because the ground conductor that we theorized does not really exist in the nice “lumped” manner that we modeled. Rather, it is highly distributed in all dimensions throughout the earth.
Johnny Carson is the well-known and appreciated comedian and “Tonight-Show” host that recently passed away. 

Another Johnny Carson (actually “John” Carson) is equally well known and appreciated among the power engineering circles, because he solved this very fundamental problem in 1923 and published it in 1926 [3]. It was later modified and extended by others [4].
9.5 Carson’s Equations
Carson’s idea to obtain the terms with the “d” subscript was to use the method of images. This is similar to when you studied capacitance in electromagnetics.

We will not go through this derivation but will instead give the results of the so-called “modified” Carson’s equations. They are:
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In eqs. (37, 38), f is the frequency (always 60 Hz in North America) and ρ is the resistivity of the earth. Typical values of ρ for different types of ground conditions are given in Table 1 [2].
Table 1

	Earth condition
	ρ (ohm-meter)

	Sea Water
	0.01-1.0

	Swampy ground
	10-100

	Average damp earth
	100

	Dry earth
	1000

	Pure slate
	107

	Sandstone
	109


It is common to use ρ=100 if information about the earth condition is unavailable.

Substituting eqs. (37,38) into eqs. (33, 34) results in:
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9.6 Primitive impedance matrix
All of our work so far was based on just 2 overhead lines. Let’s consider a general case of having 3 phase conductors and 3 neutral conductors (we will see when we look at underground cables that such a configuration is possible). We will see that this case will easily collapse to the more common arrangements for overhead lines.
So this arrangement has 6 conductors. The matrix of primitive impedances will then be dimension 6x6, where the diagonals are computed using eq. (39) and the off-diagonals are computed using eq. (40).
The matrix will appear as in eq. (41).
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The primitive impedance matrix is used to relate voltages and current in the same way as eqs. (27b, 30b) (see Fig. 4), resulting in
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(42)

Question: Write down the primitive impedance matrix for a 3-phase distribution line having a single neutral conductor, as illustrated in Fig. 5.
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Fig. 5

Equation (42) is partitioned so that we can write it as:
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(43)
where the primitive impedance matrix of eq. (43) is given by: 
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In eqs. (43,44), subscript “p” stands for “phase” and “n” for “neutral.”

We may assume that the neutral conductor is at zero potential everywhere, and so eq. (43) becomes:
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(45)

9.7 Kron Reduction

Consider the following matrix equation:
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We can write this as separate equations: 
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Let’s eliminate the variable z from the top equation. This is accomplished by multiplying the bottom equation by -bd-1 and adding it to the top equation. 

This results in
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(48)
Factoring out y from the first two terms and noting the third and fourth terms go to 0, we have:
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(49)
Conclusion: we can eliminate the second variable (z) from our equation set if we force to zero the element in the first row, second column (b).

Note: If the bottom element in the left-hand-side is zero, then the operation to accomplish our purpose will not change the top element in the left-hand-side (x).

Let’s see if we can do this same thing to eq. (45), repeated here for convenience:
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Again, factoring out the common multiplier in the first two terms and noting that the third and fourth terms go to 0, we have:
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� Eqs. (5), (6) contain an “error of dimension” since the logarithmic arguments have the dimension of (length)-1. They must therefore be considered individually as mathematical artifices that attain physical meaning only when appearing together, in which case the dimensionality error disappears (as shown at the end of the last set of notes) [1].
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