Newton Raphson
1.0 Introduction
The Newton-Raphson algorithm is an iterative method for solving nonlinear algebraic equations.
We provide a couple of simple numerical examples to begin.

2.0 Scalar case
Assume that f(x)=x2-5x+4. The goal is to find the zeros of f(x), i.e., find values of x that satisfy f(x)=0. 
This is an easy problem to solve since we can factor it to obtain f(x)=(x-4)(x-1)=0 and quickly see that solutions are x=4 and x=1. 

But if the expression of f(x) is much more complicated, then this factorization method may not work. In that case, we turn to iteration.

Assume that we have guessed a solution x(0) to the problem f(x)=0. Then f(x(0))(0 because x(0) is just a guess. But there must be some (x(0) which will make                f(x(0)+(x(0))=0. 
One way to study this problem is to expand the function f(x) in a Taylor series, as follows:
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(1)


If the guess is a good one, then (x(0) will be small, and if this is true, then ((x(0))2 will be very small, and any higher order terms (h.o.t.) in eq. (1), which will contain (x(0) raised to even higher powers, will be infinitesimal. As a result, it is reasonable to approximate eq. (1) as


[image: image2.wmf]0

)

(

'

)

(

)

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

=

D

+

»

D

+

x

x

f

x

f

x

x

f




(2)


Taking f(x(0)) to the right hand side, we have
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We may easily solve eq. (3) for (x(0) according to:
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Because f’(x(0)) in eq. (4) is scalar, it’s inverse is very easily evaluated using simple division so that:


[image: image5.wmf])

(

'

)

(

)

0

(

)

0

(

)

0

(

x

f

x

f

x

-

=

D






(5)


Equation (5) provides the basis for the update formula to be used in the first iteration of the scalar NR method. This update formula is:
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(6)
and from eq. (6), we may infer the update formula for any particular iteration as:
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(7)

Example:
Let’s return to the problem of finding x such that f(x)=x2-5x+4=0. This function may be easily factored to find the roots as x*=4,1. 

Let us now illustrate how the NR method finds one of these roots. We first need the derivative: f”(x)=2x-5. Assume we are bad guessers, and try an initial guess of x(0)=6. The following provides the first two iterations:

1. f(x(0))=f(6)=62-5(6)+4=10

2. f’(x(0))=f’(6)=2(6)-5=7

3. (x(0)= -f(x(0))/f’(x(0))= -10/7=-1.429

4. x(1)=x(0)+(x(0)=6+(-1.429)=4.571

1. f(x(1))=f(4.571)=2.03904

2. f’(x(1))=f’(4.571)=4.142

3. (x(1)=-f(x(1))/f’(x(1))

=-2.03904/4.142=-0.492284

4. x(2)=x(1)+(x(1)=
=4.571+(-0.492284)=4.0787

One more iteration yields x(3)=4.002. Fig. 1 illustrates how the first solution x(1) is found from the initial guessed solution x(0) during the first iteration of this algorithm.
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Fig. 1

Some questions:

1. What would the algorithm have done if the initial guess would have been x=-1? 
2. What would the algorithm have done if the initial guess would have been x=5/2?

3.0 Multidimensional Case:

Assume we have n nonlinear algebraic equations and n unknowns characterized by f(x)=0, and that we have guessed a solution x(0). Then f(x(0))(0 because x(0) is just a guess. But there must be some (x(0) which will make f(x(0)+(x(0))=0. 
Again, we expand the function f(x) in a Taylor series, as follows:
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These equations may be written more compactly as


[image: image13.wmf]0

...

)

)(

(

'

'

2

1

)

(

'

)

(

)

(

2

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

=

+

D

+

D

+

=

D

+

x

x

f

x

x

f

x

f

x

x

f

Assuming the guess is a good one such that (x(0) is small, then the higher order terms are also small and we can write
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(8)


One reasonable question to ask at this point is: “Just what is f’(x(0)) ?” 
That is, what is the derivative of a vector-valued function of a vector? 
Since we have n functions and n variables, we could compute a derivative for each individual function with respect to each individual unknown, like (fk(x)/(xj, which gives the derivative of the kth function with respect to the jth unknown. Thus, there will be a number of such derivatives equal to the product of the number of functions by the number of unknowns, in this case, n(n. 

It is convenient to store all of these derivatives in a matrix. This matrix has become quite well-known as the Jacobian matrix, and it is often denoted using the letter J. But how should the n(n derivatives be stored in this matrix J?

The rows of J should be ordered in the same order as the functions, that is, the kth row should contain the derivatives of the kth functions. 

In eq. (8), since the product f’(x(0)) (x(0) must provide a correction to the function f(x(0)+(x(0)), i.e., since (f(x(0))=f’(x(0)) (x(0), it must be the case that elements of any row of the matrix J must be ordered so that the term in the jth column contains a derivative with respect to the jth unknown of the vector x. 

The reasoning in the last paragraph suggests that we write the Jacobian matrix as:
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In eq. (8), taking f(x(0)) to the right hand side, we have 
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or, in terms of the Jacobian matrix J, we have:
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(11)


Solving eq. (11) for (x(0), we have:
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Equation (12) provides the basis for the update formula to be used in the first iteration of the multi-dimensional case. This update formula is:
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and from eq. (13), we may infer the update formula for any particular iteration as:


[image: image20.wmf])

(

)

(

1

)

(

)

(

)

(

)

1

(

i

i

i

i

i

x

f

J

x

x

x

x

-

+

-

=

D

+

=


(14)


Example: 
Solve the following two equations algebraically and using NR:

2x12+x1x2-x1-2=0, 

x12 -x2=0

The steps for the algebraic solution are to first solve both equations for x2, resulting in x2=(-2x12+x1+2)/x1 and x2=x12. Equating these expressions for x2, and manipulating, results in a cubic x13+2x12-x1-2=0. This expression may be factored as:                 (x1-1)(x1+1)(x1+2)=0, and we see that the solutions to the cubic in x1 are 1, -1 and –2.  Plugging these values for x1 back into either expression for x2 yields, respectively, 1, 1, and 4, and therefore there are 3 solutions to the problem; (x1, x2)=(1,1), (-1,1), (-2,4).

Now let’s solve this same problem using NR.

Define functions f1(x1,x2)=2x12+x1x2-x1-2 and f2(x1,x2)=x12-x2. Then the Jacobian matrix is:
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Let’s act like we do not know the solution and guess at (x1(0), x2(0))=(0.9,1.1). Then the Jacobian J, evaluated at this guessed solution, is 
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Inverting the Jacobian results in:
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We also need to evaluate:
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We now update the solution using eq. (14):
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Note that the update is
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We see that the first update results in a solution that is very close to the actual solution of (1,1). This good performance is due to the fact that we made a good initial guess. 

4.0 Problems of large dimensions

For problems of relatively small dimension, where the inverse of the Jacobian is easily obtainable, eq. (14) is an appropriate update formula. 
In general, however, as we have said, we should never invert a large matrix. 

Therefore, we will state the update formula a little differently, so that one can take advantage of LU decomposition (matrix factorization). To do this, rewrite eq. (14):
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(15)
where (x(i) is found from eq. (11), which is:

[image: image28.wmf])

(

)

(

)

(

i

i

x

f

x

J

=

D

-





(16)

Equation (16) is in the form of our familiar Ax=b, a set of linear equations. So eq. (16) can be efficiently solved by decomposing –J into its L and U factors and then solved using forward and backward substitution.
Example: Solve the previous example with LU decomposition.

Solution: From our previous work, we know the Jacobian, evaluated at                 x(0)=(x1(0), x2(0))=(0.9,1.1), is 
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and the function, evaluated at x(0), is
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Substituting into eq. (16), we obtain:
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Employing our LU decomposition procedure, we first construct the augmented matrix, and take the first step in building L.


[image: image32.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

-

__

8

.

1

0

7

.

3

   

;

29

.

0

1

8

.

1

29

.

0

9

.

0

7

.

3

L


Divide first row by 3.7 and then add multiples of it to second row to zero the element in position (2,1), which is now 1.8.
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Now divide the second row by –1.4378.


[image: image34.wmf]ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

-

4378

.

1

8

.

1

0

7

.

3

   

;

1036

.

0

1

0

0784

.

0

2432

.

0

1

L

And we see that
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Recall that we can skip the forward substitution step because our augmented matrix approach has already provided us with the w that would otherwise be obtained from solution of  
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 (but where here the vector of unknowns is Δx(0)):
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From the equation corresponding to the second row, we get:
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From the equation corresponding to the first row, we get:
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And so the solution is 
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(This result agrees with our conclusion at the bottom of page 12.) Now we can implement eq. (15), which is:


[image: image42.wmf])

(

)

(

)

1

(

i

i

i

x

x

x

D

+

=

+


5.0 Stopping criterion
The NR algorithm usually needs to iterate several times in order to obtain a satisfactory solution. How many times is enough? The NR algorithm must employ a stopping criterion in order to determine when the solution is satisfactory.  There are two ways to do this. 

· Type 1 stopping criterion: Test the maximum change in the solution elements from one iteration to the next, and if this maximum change is smaller than a certain predefined tolerance, then stop. This means to compare the maximum absolute value of elements in (x against a small number, call it (1. In example  (T7.3), (x = [-0.1036, 0.1036]T, so the maximum absolute value of elements in (x is 0.1036. If we had (1=0.15, we could stop. But if we had (1=0.05, we would need to continue to the next iteration. 

· Type 2 stopping criterion: Test the maximum absolute value in the function elements of the most current iteration f(x), and if this maximum value of elements in f(x) is smaller than a certain predefined tolerance, then stop. This means to compare the maximum absolute value of elements in f(x) against a small number, call it (2. In example (T7.3),                  f(x)=[-0.29, -0.29]T, so the maximum absolute value of elements in f(x) is 0.29. If we had (2=0.3, we could stop. But if we had (2=0.2, we would need to continue to the next iteration. This is the most common stopping criterion for power flow solutions, and the value of each element in the function is referred to as the “power mismatch” for the bus corresponding to the function. For type PQ buses, we test both real and reactive power mismatches. For type PV buses, we test only real power mismatches.
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