Fast Power Flow Methods
1.0 Introduction
What we have learned so far is the so-called “full-Newton” power flow algorithm. The full-Newton is perhaps the most robust algorithm in the sense that it is most likely to obtain a solution for “tough” problems. For example, solving a large power flow case from a “flat” start is usually considered to be a “tough” problem, and as a result, it is best to do that with a full Newton.
But many times, the problem is not so “tough,” and in that case, the so-called fast decoupled algorithm is also effective in getting the solution, there is no loss of accuracy, and it is much faster. A common situation where fast-decoupled algorithm is attractive is when you have solved the case, and then you want to re-solve the case (using a “hot” start) to analyze the effect of some not-so-dramatic change.

There are still other situations where speed is paramount, but accuracy is not. For example, in on-line analysis of 50,000 contingencies, we may want to only filter the contingencies that have potential to result in problems, and then perform full analysis on those set.
2.0 The fast decoupled power flow
We observed in the example of the previous set of notes (Example 10.6) that the Jacobian matrix

[image: image1.wmf]ú

û

ù

ê

ë

é

=

22

21

12

11

J

J

J

J

J

(1)
has a special characteristic in that the elements of the off-diagonal submatrices J12 and J21 are usually very small relative to the elements of the diagonal submatrices J11 and J22. (In fact, in the first iteration of a flat start, when we assume all angles are 0, the elements of the off-diagonal matrices are 0).
The reason for this can be seen in the expressions for the Jacobian elements:

[image: image2.wmf](

)

)

sin(

)

cos(

)

(

21

q

p

pq

q

p

pq

q

p

q

p

pq

B

G

V

V

x

Q

J

q

q

q

q

q

-

+

-

-

=

¶

¶

=

(2)

[image: image3.wmf](

)

2

1

2

21

)

sin(

)

cos(

)

(

)

(

p

pp

n

k

k

p

pk

k

p

pk

k

p

p

pp

p

p

p

pp

V

G

B

G

V

V

V

G

x

P

x

Q

J

-

þ

ý

ü

î

í

ì

-

+

-

=

-

=

¶

¶

=

å

=

q

q

q

q

q

(3)

[image: image4.wmf](

)

)

sin(

)

cos(

)

(

12

q

p

pq

q

p

pq

p

q

p

pq

B

G

V

V

x

P

J

q

q

q

q

-

+

-

=

¶

¶

=

(4)

[image: image5.wmf](

)

p

pp

n

k

k

p

pk

k

p

pk

k

p

p

p

pp

p

p

p

p

pp

V

G

B

G

V

V

V

V

G

V

x

P

V

x

P

J

+

þ

ý

ü

î

í

ì

-

+

-

=

+

=

¶

¶

=

å

=

1

12

)

sin(

)

cos(

1

)

(

)

(

q

q

q

q

(5)

Notice that every term in all of the above expressions are either (a) multiplied by a “G” or (b) multiplied by a “sin”. The overall terms are small because, for transmission:

· conductance G tends to be small and

· angular differences across circuits tend to be small, resulting in small “sin” terms.

These observations are consistent with our understanding that P is not very sensitive to voltage magnitude (i.e., small
[image: image6.wmf]q

p

V

x

P

¶

¶

)

(

 and
[image: image7.wmf]p

p

V

x

P

¶

¶

)

(

), and Q is not very sensitive to angle (i.e., small
[image: image8.wmf]q

p

x

Q

q

¶

¶

)

(

 and
[image: image9.wmf]p

p

x

Q

q

¶

¶

)

(

).

We can take advantage of these observations in the following way. Instead of using the exact Jacobin, let’s assume that all elements of the off-diagonal submatrices are in fact 0 and remain 0 throughout the entire Newton-Raphson algorithm. In other words, let’s just use the following Jacobian:

[image: image10.wmf]ú

û

ù

ê

ë

é

=

22

11

0

0

J

J

J

T

(6)
Note what this does to our update equation:

[image: image11.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

-

-

-

-

D

-

=

D

Q

P

x

J

j

j

)

(

)

(

(7)

Substituting (6) into (7), we have:

[image: image12.wmf])

(

)

(

)

(

22

11

0

0

j

j

Q

P

V

J

J

j

T

ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

-

-

-

-

D

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

-

-

-

-

D

ú

û

ù

ê

ë

é

q

(8)
Performing the indicated matrix multiplication, we obtain:

[image: image13.wmf])

(

)

(

)

(

11

j

j

j

P

J

D

-

=

D

q

(9)

[image: image14.wmf])

(

)

(

)

(

22

j

j

j

Q

V

J

D

-

=

D

(10)

These equations are the same as eqs. (10.51a) and (10.51b) in the text, except that here, there are negatives signs out front of the real and reactive mismatch vectors on the right-hand-side.
The reason for the difference is that I have defined the mismatch as “calculated-specified” (e,g,
[image: image15.wmf]k

k

P

x

P

-

)

(

 and
[image: image16.wmf]k

k

Q

x

Q

-

)

(

) instead of “specified-calculated” (e.g.,
[image: image17.wmf])

(

x

P

P

k

k

-

 and
[image: image18.wmf])

(

x

Q

Q

k

k

-

). The text does the opposite (see eq. (10.37) at top of page 345).

Equations (9) and (10) have the following remarkable feature: real power equations are decoupled from the voltage magnitudes, and reactive power equations are decoupled from the angles. The implication is that either one of equations (9) and (10) may be solved independent of the other one!

Our power flow algorithm remains exactly as it was before, with the only exception being in Step 4.

1. Specify:

· All admittance data (series Y, charging capacitance, transformer taps, & shunts)
· Pd and Qd for all buses (whether PV, PQ, or swing)
· Pg and |V| for all PV buses

· |V| for swing bus, with (=0(

2. Set the iteration counter j=0. Use one of the following to guess the initial solution.

· Flat Start: Vk=1.0 (0(for all buses.

· Hot Start: Use the solution to a previously solved case for this network.

3. Compute the mismatch vector for x(j), denoted as f(x). In what follows, we denote elements of the mismatch vector as (Pk and (Qk corresponding to the real and reactive power mismatch, respectively, for the kth bus (which would not be the kth element of the mismatch vector for two reasons: one reason pertains to the swing bus and the other reason to the fact that for type PQ buses, there are two equations per bus and not one). This computation will also result in all necessary calculated real and reactive power injections. Perform the following stopping criterion tests:

If |(Pk|< (P for all type PQ & PV buses and

If ||(Qk|< (Q for all type PQ buses,

Then go to step 5

Else

Go to step 4.
4. Find an improved solution as follows:

· Evaluate the Jacobian J at x(j). Denote this Jacobian as J(j)
· Solve for (x(j) by applying LU decomposition to:

[image: image19.wmf])

(

)

(

)

(

11

j

j

j

P

J

D

-

=

D

q

[image: image20.wmf])

(

)

(

)

(

22

j

j

j

Q

V

J

D

-

=

D

· Compute the updated solution vector as x(j+1)= x(j)+ (x(j).

· Return to step 3 with j=j+1.

5. Stop.

How to see that the fast-decoupled (FDC) algorithm is faster than the full Newton?

· In full Newton, step 4 computes

[image: image21.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

-

-

-

-

D

-

=

D

Q

P

x

J

j

j

)

(

)

(

The Jacobian has dimension (2N-1-NG).
· In the above algorithm, J11 has dimension (N-1), and J22 has dimension (N-NG).
For example, if we have 20000 buses and 2000 generators, then the Jacobian in the full Newton has dimension of 37,999, but the FDC algorithm Jacobians will have dimension of 19,999 and 18,000, respectively.

It is known that the speed of LU decomposition is a function, approximately linear, of the number of elements. The number of elements in the full Newton is (37,999)2=1.44E9, whereas in the FDC algorithm it is (19,999)2+(18,000)2=7.24E8. Therefore the above version of the FDC algorithm will be about twice as fast per iteration as the full Newton.

However, because the Jacobian gives the “direction” to move the solution in each iteration, we do suffer a loss in accuracy per iteration, and therefore we may need more iterations to obtain the final solution.

Given these two opposing forces (less time per iteration and more iterations), it is usually the case that the FDC algorithm is between 1.5 and 2 times faster than the full Newton.

But what about accuracy? We have said that the FDC algorithm will be less accurate per iteration. Does that imply that it will provide a less accurate solution once it stops iterating?
The answer to this question depends on the stopping criterion. Note that in the above FDC algorithm, the stopping criterion is given in Step 3, and it is exactly the same as the stopping criterion used in the full Newton algorithm. That is, both algorithms are computing the mismatch as
[image: image22.wmf]k

k

P

x

P

-

)

(

 and
[image: image23.wmf]k

k

Q

x

Q

-

)

(

, and
[image: image24.wmf])

(

x

P

k

 and
[image: image25.wmf])

(

x

Q

k

 are computed with the full real and reactive power flow equations, respectively, in both algorithms.

It is very important to recognize that the approximation in FDC algorithm is applied to the Jacobian matrix but NOT the power flow equations used to compute the elements of the mismatch vector.

The conclusion that we can make here is that A POWER FLOW SOLUTION OBTAINED BY FDC ALGORITHM IS JUST AS ACCURATE AS A POWER FLOW SOLUTION OBTAINED BY A FULL NEWTON.

3.0 FDC algorithm: enhancements

We may simplify the FDC algorithm still further, making it still faster (but less accurate) per iteration by working with the expressions of the Jacobian elements for J11 and J22.

In what follows, we provide more in-depth development to text pg. 353.

Consider the terms
[image: image26.wmf]11

pq

J

. If we neglect G and under small angle approximation (so that sin(θp-θq)≈0 and cos(θp-θq)≈1):

[image: image27.wmf](

)

pq

q

p

q

p

pq

q

p

pq

q

p

q

p

pq

B

V

V

B

G

V

V

x

P

J

-

=

-

-

-

=

¶

¶

=

)

cos(

)

sin(

)

(

11

q

q

q

q

q

(11)

Now consider the terms
[image: image28.wmf]11

pp

J

.

[image: image29.wmf](

)

2

1

2

11

)

cos(

)

sin(

)

(

)

(

p

pp

k

p

pk

k

p

pk

n

k

k

p

p

pp

p

p

p

pp

V

B

B

G

V

V

V

B

x

Q

x

P

J

-

þ

ý

ü

î

í

ì

-

-

-

-

=

-

-

=

¶

¶

=

å

=

q

q

q

q

q

(12)
Again, using small Gpk and small angle approximation, the above is

[image: image30.wmf]2

1

11

)

(

p

pp

pk

n

k

k

p

p

p

pp

V

B

B

V

V

x

P

J

-

þ

ý

ü

î

í

ì

=

¶

¶

=

å

=

q

(13)
We will now make use of an assumption that the voltage profile is “flat,” i.e., |Vk|=|Vp|. Then:

[image: image31.wmf]ú

û

ù

ê

ë

é

-

þ

ý

ü

î

í

ì

=

-

þ

ý

ü

î

í

ì

=

-

þ

ý

ü

î

í

ì

=

¶

¶

=

å

å

å

=

=

=

pp

n

k

pk

p

pp

p

pk

n

k

p

p

pp

pk

n

k

p

p

p

p

pp

B

B

V

B

V

B

V

V

B

B

V

V

x

P

J

1

2

2

1

2

2

1

11

)

(

q

(14)
Now consider the summation in the curly brackets.

[image: image32.wmf]pn

p

p

pp

p

p

p

p

n

k

pk

B

B

B

B

B

B

B

+

+

+

+

+

+

+

=

+

-

=

å

...

...

1

,

1

,

2

1

1

(15)

Recall that from definition of Y-bus elements:
· k≠p: Bpk=-bpk(bpk=-Bpk
· k=p:

Bpp=bp1+bp2+…+bp,p-1+bp+bp,p+1+…+bpn
and using the relation from the first bullet:

 =-Bp1-Bp2-…-Bp,p-1​+bp-Bp,p+1-…-Bpn (16)
where bp is sum of all shunt susceptance

at bus p.

Substituting this last expression (16) for Bpp into (15), we obtain:

[image: image33.wmf](

)

p

pn

p

p

pn

p

p

p

p

p

p

p

p

p

p

p

n

k

pk

b

B

B

B

B

b

B

B

B

B

B

B

B

=

+

+

+

-

-

-

+

-

-

-

-

+

+

+

+

=

+

+

-

-

=

å

...

...

...

...

1

,

1

,

1

,

2

1

1

,

2

1

1

(17)
Substituting (17) into (14), we obtain:

[image: image34.wmf][

]

pp

p

p

p

p

pp

B

b

V

x

P

J

-

=

¶

¶

=

2

11

)

(

q

(27)

We could perform the subtraction in (27) using (16) to see that the term is just the negative of the sum of all non-shunt branches connected to bus p.

However, bp is typically very small compared to Bpp so that neglecting bp is quite accurate, resulting in:

[image: image35.wmf]pp

p

p

p

pp

B

V

x

P

J

2

11

)

(

-

=

¶

¶

=

q

(28)
Likewise, under assumptions of flat voltage profile and small angle, we can show that:

[image: image36.wmf](

)

pq

p

q

p

pq

q

p

pq

p

q

p

pq

B

V

B

G

V

V

x

Q

J

-

=

-

-

-

=

¶

¶

=

)

cos(

)

sin(

)

(

22

q

q

q

q

(29)

[image: image37.wmf]pp

p

p

pp

p

p

p

p

pp

B

V

V

B

V

x

Q

V

x

Q

J

-

=

-

=

¶

¶

=

)

(

)

(

22

(30)
Summarizing eqs. (11), (28), (29), and (30), we have:

[image: image38.wmf]pq

q

p

q

p

pq

B

V

V

x

P

J

-

=

¶

¶

=

q

)

(

11

(11)

[image: image39.wmf]pp

p

p

p

pp

B

V

x

P

J

2

11

)

(

-

=

¶

¶

=

q

(28)

[image: image40.wmf]pq

p

q

p

pq

B

V

V

x

Q

J

-

=

¶

¶

=

)

(

22

(29)

[image: image41.wmf]pp

p

p

p

pp

B

V

V

x

Q

J

-

=

¶

¶

=

)

(

22

(30)
Noting that the Jacobian matrix has no equations or variables for bus 1 (the swing bus), and assuming we will have J11 and J22 terms for all buses in the network (not exactly true, since we will not have reactive power flow equations for type PV buses – so this is equivalent to assuming no type PV buses), we define the B’ matrix as:

[image: image42.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

nn

n

n

n

n

B

B

B

B

B

B

B

B

B

B

...

...

...

...

'

3

2

3

33

32

2

23

22

M

M

M

M

(31)
where this matrix may be obtained from the Y-bus by simply stripping off the first row and first column (assuming the swing bus is #1) and taking the imaginary part of all elements.

Using the B’-matrix of eq. (31), then, eqs. (11), (28), (29), and (30) may be written more compactly as:

[image: image43.wmf][

]

[

]

V

B

V

J

¢

-

=

11

(32)

[image: image44.wmf][

]

B

V

J

¢

-

=

22

(33)

where

[image: image45.wmf][

]

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

n

V

V

V

V

K

M

M

M

M

M

M

M

K

0

0

0

0

3

2

(34)

Recalling eqs. (9) and (10):

[image: image46.wmf])

(

)

(

)

(

11

j

j

j

P

J

D

-

=

D

q

(9)

[image: image47.wmf])

(

)

(

)

(

22

j

j

j

Q

V

J

D

-

=

D

(10)

and substituting (32-33) into (9-10), we obtain:

[image: image48.wmf][

]

[

]

)

(

)

(

j

j

P

V

B

V

D

-

=

D

¢

-

q

(35)

[image: image49.wmf][

]

)

(

)

(

j

j

Q

V

B

V

D

-

=

D

¢

-

(36)

Multiplying both sides by -1 results in:

[image: image50.wmf][

]

[

]

)

(

)

(

j

j

P

V

B

V

D

=

D

¢

q

(37)

[image: image51.wmf][

]

)

(

)

(

j

j

Q

V

B

V

D

=

D

¢

(38)

Equations (37) and (38) differ from eqs. (10.57a) and (10.57b) in the text because the mismatch vectors are defined differently here.

Whereas I have defined the mismatch as “calculated-specified” (e,g,
[image: image52.wmf]k

k

P

x

P

-

)

(

 and
[image: image53.wmf]k

k

Q

x

Q

-

)

(

) instead of “specified-calculated” (e.g.,
[image: image54.wmf])

(

x

P

P

k

k

-

 and
[image: image55.wmf])

(

x

Q

Q

k

k

-

). The text does the opposite (see eq. (10.37) at top of page 345).

There are two more changes which prove useful in terms of capturing additional computational efficiency (more speed).
The first change is an approximation: let the second [V] in eq. (37) be the identity matrix. The book indicates that the basis for this change is that we are assuming a “flat” voltage profile. This does not tell the whole story. The basis for this change is that voltages are “flat” and typically close to 1.0.

Making this change in eqs. (37) and (38) results in

[image: image56.wmf][

]

)

(

)

(

j

j

P

B

V

D

=

D

¢

q

(39)

[image: image57.wmf][

]

)

(

)

(

j

j

Q

V

B

V

D

=

D

¢

(40)

The second change is to pre-multiply both equations by [V]-1. This change results in

[image: image58.wmf][

]

)

(

1

)

(

j

j

P

V

B

D

=

D

¢

-

q

(41)

[image: image59.wmf][

]

)

(

1

)

(

j

j

Q

V

V

B

D

=

D

¢

-

(42)

Since [V] is diagonal, [V]-1 is

[image: image60.wmf][

]

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

-

n

V

V

V

V

1

0

0

1

0

0

1

3

2

1

K

M

M

M

M

M

M

M

K

(43)

Multiplication of (43) by the mismatch vectors is:

[image: image61.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

D

D

D

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

n

n

n

n

V

P

V

P

V

P

P

P

P

V

V

V

M

M

K

M

M

M

M

M

M

M

K

3

3

2

2

3

2

3

2

1

0

0

1

0

0

1

(44)

[image: image62.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

D

D

D

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

n

n

n

n

V

Q

V

Q

V

Q

Q

Q

Q

V

V

V

M

M

K

M

M

M

M

M

M

M

K

3

3

2

2

3

2

3

2

1

0

0

1

0

0

1

(45)

Based on (44) and (45), eqs. (41) and (42) become:

[image: image63.wmf]P

V

P

V

P

V

P

B

j

n

n

j

~

)

(

3

3

2

2

)

(

D

=

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

=

D

¢

M

q

(46)

[image: image64.wmf]Q

V

Q

V

Q

V

Q

V

B

j

n

n

j

~

)

(

3

3

2

2

)

(

D

=

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

=

D

¢

M

(47)

where the notation of the far right-hand-side in (46) and (47) is from the text.
Three comments remain:

1. Effect of voltage controlled buses: We previously assumed (page 15) that we would have no type PV buses. Since this assumption will almost never hold, we must determine how to handle PV buses. If a bus is PV, then we do not represent the reactive power flow equation, and we do not use the bus’s voltage as an unknown. This change will have no effect on eq. (46), but it will affect eq. (47). To account for PV buses in eq. (47), we need to

· Remove the row and column corresponding to this bus in B’.
· Remove the element corresponding to this bus in
[image: image65.wmf]Q

~

D

.
We will call the resulting matrix B’’.

2. Where’s the speed-up? We still retain the speed up of the previous FDC algorithm, which is due to the fact that the LU-decomposition is faster per iteration as a result of the decoupling (and corresponding reduction in total matrix elements). The method described here provides additional speed-up from two sources:
· The B’-matrix need not be reevaluated in each iteration, and so we save the time of evaluating Jacobian matrix elements.

· Because the left-hand-side of eqs. (46) and (47) are constants, we need perform LU-decomposition only once. Given the L and U factors, we need to only perform forward and backward substitution for each different right-hand-side.

3. Algorithm: I indicated the power flow algorithm is exactly the same as in the full-Newton, but there is a minor difference in that Step 3 (page 7) and Step 4 (page 8) can be alternated, as follows:

a. Step 3a: Compute mismatch of
[image: image66.wmf]P

~

D

 using
[image: image67.wmf])

1

(

-

D

j

q

 and
[image: image68.wmf])

1

(

-

D

j

V

.

b. Step 4a: Solve eq. (46) for
[image: image69.wmf])

(

j

q

D

.

c. Step 3b: Compute mismatch of
[image: image70.wmf]Q

~

D

 using
[image: image71.wmf])

(

j

q

D

 and
[image: image72.wmf])

1

(

-

D

j

V

.

d. Step 4b: Solve eq. (47) for
[image: image73.wmf])

(

j

V

D

.

e. Step 3c: Perform stopping criterion tests:

If |(Pk|< (P for all type PQ & PV buses and

If |(Qk|< (Q for all type PQ buses,

Then go to step 5

Else

[image: image74.wmf])

(

)

(

)

1

(

j

j

j

q

q

q

D

+

=

+

[image: image75.wmf])

(

)

(

)

1

(

j

j

j

V

V

V

D

+

=

+

Return to step 3 with j=j+1.
The reason why this improves speed is because the update on voltages are done with using a “step-size” based on the most recent update on angles.
4.0 DC Power Flow
Return to equation (46), repeated here for convenience:

[image: image76.wmf]P

V

P

V

P

V

P

B

j

n

n

j

~

'

)

(

3

3

2

2

)

(

D

=

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

=

D

M

q

(46)

Now assume all voltages are 1.0. Then eq. (46) becomes:

[image: image77.wmf]P

P

P

P

P

P

P

B

j

n

j

n

j

D

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

D

D

D

=

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

=

D

)

(

3

2

)

(

3

2

)

(

0

.

1

0

.

1

0

.

1

M

M

q

(48)

So, equation (48) becomes:

[image: image78.wmf]P

B

j

D

=

D

)

(

q

(49)

This equation, when solved just once (j=1) for Δθ(1), and with a “flat-start” solution, implies that θ=0+Δθ(1)=Δθ(1), and, if we assume that this solution is the correct one, then in other words,

[image: image79.wmf]P

P

P

P

B

-

=

-

=

D

=

)

0

(

q

(50)

where P(0) are the real power flow equations for buses 2 to N evaluated at θ(0)=0 (i.e., the flat start), and P are the real power flow injections into each bus 2 to N. Therefore,

[image: image80.wmf]P

B

=

-

q

(51)

This gives all of the angles for the network with a single solution to a set of linear equations. Then, the real power flows can be computed with

[image: image81.wmf])

(

j

k

kj

kj

B

P

q

q

-

=

(52)
which is the power flowing across a circuit connected between buses k and j under conditions of (a) neglecting resistance, (b) small angle approximation, and (c) all voltage magnitudes are 1.0.

This is only change in algorithm!!

PAGE
21

_1193462392.unknown

_1193623514.unknown

_1224325982.unknown

_1224326024.unknown

_1224326051.unknown

_1224326118.unknown

_1224326500.unknown

_1224326584.unknown

_1224326494.unknown

_1224326110.unknown

_1224326045.unknown

_1224326009.unknown

_1224326016.unknown

_1224326001.unknown

_1193628608.unknown

_1193630309.unknown

_1224325949.unknown

_1224325963.unknown

_1193653989.unknown

_1193825980.unknown

_1193826032.unknown

_1193654171.unknown

_1193630310.unknown

_1193629954.unknown

_1193629992.unknown

_1193628805.unknown

_1193628723.unknown

_1193628793.unknown

_1193625077.unknown

_1193626131.unknown

_1193625054.unknown

_1193471063.unknown

_1193480676.unknown

_1193481624.unknown

_1193594340.unknown

_1193480685.unknown

_1193480655.unknown

_1193480669.unknown

_1193471116.unknown

_1193480438.unknown

_1193469436.unknown

_1193469973.unknown

_1193471053.unknown

_1193470455.unknown

_1193469740.unknown

_1193468135.unknown

_1193468332.unknown

_1193468093.unknown

_1193456814.unknown

_1193458457.unknown

_1193462382.unknown

_1193458469.unknown

_1193458033.unknown

_1193458347.unknown

_1193458441.unknown

_1193458060.unknown

_1193457788.unknown

_1193457595.unknown

_1193456516.unknown

_1193456774.unknown

_1193456795.unknown

_1193456739.unknown

_1193455261.unknown

_1193456505.unknown

_1192610032.unknown

_1192860766.unknown

_1192609990.unknown

_1158351396.unknown

