Line Models and SIL
1.0 Introduction
In these notes, I present different line models that are used, and I also make some comments on Examples 4.2 and 4.3 leading to discussion of surge impedance loading, and finally I give a hint for problem 4.21.
2.0 Simplified models (Section 4.5)
We recall two things. First, we have the so-called “exact” transmission line equations:
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Second, we may represent a transmission line using a π-equivalent model, shown below, if we use Z’ and Y’/2, where

[image: image3.emf] 

I Z  

I Y1   I Y2  

I 1  

V 2  

I 2  

Y ’ /2  

V 1  

Y ’ /2  

Z ’  


Fig. 1
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(4)
Note that the two are equivalent, i.e., use of the π-equivalent transmission model with Z’ and Y’ is equivalent to using eqs. (1), (2).

Question: When is it OK to use the π-equivalent transmission model with Z and Y (instead of Z’ and Y’)?

(Recall Z=zl, Y=yl where l is line length).

Let’s look at eqs. (3), (4) in more detail. They tell us that Z’≈Z and Y≈Y’ when
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To see when this happens, let’s look up in a good math table how to express sinh(x) and tanh(x) as a Taylor’s series. I used [
, p. 58-59] to find that:
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Using these in eqs. (5) and (6), we get:
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(7)
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(8)

For both of these equations, they become true as the higher-order terms in the numerator get small relative to the first term in the numerator. This happens for small |γl|, which occurs for small line length l.  
So when |γl| is small, it is quite reasonable to use Z’=Z=zl and Y’=Y=yl. 
Consider a lossless line, i.e., a line for which r=0 in z=r+jx and g=0 in y=g+jb. (Note that for inductive series elements and capacitive shunt elements, that x and b will be positive numbers when defined with positive signs in z and y). Then
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For transmission lines, g=0 always. So
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In the lossless case, r=0, and we get 
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For a lossless line (γ=jβ), it is possible to show that γ=jβ=j0.0000013/meter [
, pg 211] is quite typical for most transmission lines. For a 100 mile-long line:
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Then:
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which shows that 

· sinh(γl)≈γl 

· tanh(γl/2)≈ γl/2 

as required.

The loss of accuracy from the approximation in these cases can be seen from:
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The text recommends that lines longer than 150 miles should use Long-Line model, but [2] recommends that lines longer than about 100 miles should use the Long-Line model.
Lines below about 100 miles may use Z=zl and Y=yl. Doing so results in the Medium-Length model, sometimes also referred to as the nominal π-equivalent model.

A final model suggested by the text is the short-length model, for lines shorter than 50 miles. This is the same as the Medium-Length model except Y is neglected altogether. This makes sense from the point of view that the “parallel-plate capacitor” in this case, can be considered to have short length, and thus a small area of the “plates.”
3.0 Surge impedance loading
Recall our definition of characteristic impedance ZC as:
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Example 4.2 considers a transmission line terminated in its characteristic impedance, per Fig. 2 (the long-line model is used).
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Fig. 2
One result of the analysis in Example 4.2 is to show that the “complex power gain” (the ratio of the power flowing out of the line to the power flowing into the line) is given by:
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(12)
where α is the attenuation constant (γ=α+jβ).
This says that when a line is terminated in ZC, the complex power gain (actually loss) is purely real. 
The implication of this is that the line (when terminated in ZC), only affects the real power (decreases it) but does not affect the reactive power at all. 

Consider reactive power implication: 

( Whatever reactive power flows out of the line (and into the load) also flows into the line. So a line terminated in ZC has a very special character with respect to reactive power: the amount of reactive power consumed by the series X is exactly compensated by the reactive power supplied by the shunt Y, for every inch of the line! 
Another result of Example 4.2 is:


[image: image23.wmf]l

e

V

V

a

-

=

1

2





(13)

It is the case that α is always non-negative. This means that eαl>1 and 0<e-αl<1.0, and therefore |V2|<|V1|. So when the line is terminated in ZC, |V2| will always be less than or equal to |V1|.
But what if the line is lossless? As shown by eq. (10), we see that α=0.
Referring back to eq. (13), this means that:
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This is a remarkable thing. If we terminate a lossless line in ZC, the voltage profile along the line will be flat! In other words, the voltage along the line will everywhere have the same magnitude. 

So |V2|=|V1| for lossless line terminated in ZC. 
Note also that lossless implies 
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So ZC is purely real for the lossless case.

So for lossless line terminated in ZC, since ZC is purely real, then only real power is delivered to it, and since the line is lossless, this same real power is delivered from the source. Therefore:
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The characteristic impedance is clearly an important parameter. It is also commonly referred to in the industry as the surge impedance. And the power flowing into it, per eq. (16), is called the surge impedance loading, denoted by PSIL, i.e.,
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Equation (17) gives SIL in terms of per-phase power (and line-to-neutral voltage). The text also gives it in terms of 3-phase power (and line-to-line voltage) as:


[image: image28.wmf]C

ll

SIL

Z

V

P

2

1

3

=

f







(18)

Surge impedance and SIL are given for typical overhead 60 Hz three-phase transmission lines in Table 1 [
, 
].
Table 1

	Vrated 
(kV)
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	69
	366-400
	12-13

	115
	380*
	35

	138
	366-405
	47-52

	161
	380*
	69

	230
	365-395
	134-145

	345
	280-366
	325-425

	500
	233-294
	850-1075

	765
	254-266
	2200-2300

	1100
	231
	5238


* Estimated
4.0 Line limits (Section 4.9)
Fig. 3 is a well-known conceptual curve that captures some attributes of transmission lines (note that the numbers are typical and limits for any particular line may vary). 

Note the vertical axis is given as a percentage of SIL, simply because SIL provides a convenient characteristic of a transmission line that captures an attribute related to its power handling capability as a function of its physical construction. However, SIL does not capture the influence of length on power handling capability.
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Fig. 3

These attributes are:

· Power limit decreases with line length
· Short lines are limited mainly by thermal problems.
· Medium length lines tend to be limited by voltage-related problems.

· Very long lines tend to be limited by stability problems.
5.0 Complex power expression
This material combines Sec. 4.6, 4.8, 4.9.
Consider the long transmission line of Fig. 4. The voltages at the ends are specified as:
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The series impedance is
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Fig. 4

The complex power transferred into the line from bus 1 is:
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But IZ can be expressed as:
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Substitution of (22) into (21) yields:


[image: image38.wmf](

)

*

2

1

*

2

1

1

12

2

/

Y

V

Z

V

V

V

S

¢

+

÷

ø

ö

ç

è

æ

¢

-

=



(23)

Distributing the V1 through, we obtain:
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(24)

where θ12= θ1- θ2. Eq (24) is the same as eq. 4.29, pg. 104 in the text except eq. (24) also includes the effect of the sending-end line-charging, as represented by the last term.
6.0 Circle diagrams

If we ignore the last term in eq. (24), which means assuming no charging capacitance, and if we assume Z’=Z, i.e., for the “short-line model,” eq. (24) becomes:
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Using Z*=|Z|e-j∟Z, we get
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(24a)
We may repeat this same process to obtain power from the other direction as
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The power flowing into the receiving bus from the line is then just –S21, or
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 (24b)

We can then define the following:
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which are all constants if we assume the voltages are fixed.

Then eqs. (24a) and (24b) become:
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(24c)
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Eqs. (24c) and (24d) characterize sending end and receiving end complex power as a function of the angle between the buses, θ12.
C1 and C2 are the centers of circles having radii |B|=|V1||V2|/|Z|. 

Figure 4.7 illustrates circle diagrams. The text makes 6 observations about these that I encourage you to review, among which are:

#5: Transmission is strengthened by increasing voltages (generator field windings) and decreasing reactance (series compensation)
#6: Strong coupling between P-flow and θ12 and between Q-flow and |V|.
7.0 An alternative development

We want simple expressions for P12 and Q12.
Recall eq. (3) above, repeated here:
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In the lossless case, γ=jβ, so eq. (3) is


[image: image48.wmf]2

sin

cos

sin

cos

2

sinh

'

l

j

l

l

j

l

Z

e

e

Z

l

j

Z

Z

C

l

j

l

j

C

C

b

b

b

b

b

b

b

+

-

+

=

-

=

=

-


( 
[image: image49.wmf]l

jZ

Z

C

b

sin

=

¢






(25)

Likewise, we can derive, in lossless case:
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(26)

Here, C is total line capacitance. Eq. (25), (26) are same as (4.46), (4.45) in text, p. 115, and we see that Z’ and Y’ are pure reactances and susceptances, respectively, i.e., Z’=jX and Y’=jB.
Conjugating eq. (25) and (26), we get:
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Recall eq. (24):


[image: image53.wmf](

)

*

2

1

*

2

1

*

2

1

12

2

/

12

Y

V

Z

e

V

V

Z

V

S

j

¢

+

¢

-

¢

=

q


(24)

Substitution of eqs. (27), (28) into the expression for S12, eq. (24), we get:
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Bringing the j of the first term into the numerator and canceling the two negative signs of the second term results in:
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8.0 Real power
The first and last terms of eq. (30) are purely imaginary and so do not affect real power. Let’s look more closely at the second term:
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(31)
Of this term, we see that the real part is the sinθ12 term. Since this is the only real part of eq. (30), it must be true that:
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It is generally the case that voltage magnitudes at either end of a line are not very different (and when the line is lossless and terminated in ZC, they are
exactly the same – see eq. (14) above). If we assume that |V2|=|V1|, then:
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Recalling eq. (17), repeated here:


[image: image59.wmf]C

SIL

Z

V

P

2

1

=







(17)

we see that eq. (33) can be re-written as:


[image: image60.wmf]l

P

P

SIL

b

q

sin

sin

12

12

=








(34)

Although approximate, eq. (34) is very useful for getting a “back-of-the-envelope” sense of what voltages are required in order to accommodate a given power transfer level, as observed in problem 4.21 of the homework assignment. If you take a position as a transmission planner, you might find this expression handy.

Problem 4.21:
Transient instability problems can occur when the angular separation between voltage phasors at either end of a transmission line, denoted by θ12=θ1-θ2 becomes large. 

So when does θ12 become large? 

Note that in eq. (34) that PSIL and sinβl are constants for an already-constructed transmission line. 
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So θ12 directly determines (or is directly determined by) P12. 

As θ12 increases from 0° to 90°, the real power transfer P12 gets larger. Or, more properly, we can see that as P12 gets larger, θ12 increases from 0° to 90°.

So answer to question of When does θ12 become large? is: when P12 becomes large.

Problem 4.21 indicates that a practical limit for transmission lines on θ12 is 45° (actually, this is probably too large, a 30° limit is better, but we will use 45°).

It also indicates that the desired transfer level on a 300 mile-long line is 500 MW. Question is: what voltage levels can we consider?

This is a design (planning) problem.

The problem also indicates β=0.002/mile. 

Solving eq. (34) for PSIL yields:
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This is 3-phase power. Referring to Table 1 above, we see we need voltage level of at least 345 kV to accommodate this.
9.0 Reactive power

 Consider again eq. (30), repeated here:
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(30)

Now let’s consider the imaginary part. In doing so, we need to remember that the middle term contributes a real part, but it also contributes an imaginary part, as indicated by eq. (31), repeated here:
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Substituting eq. (31) into eq. (30), we have:
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(35)

Now taking only the imaginary part of (35):
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 (36)

Recall that the denominator of the first two terms is just |Z’| in the lossless case (see eq. (25) above). Therefore, we can write:
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(37)

Now let’s consider eq. (37) for the short line (and lossless) model. In this case, 

· Z’≈Z, and for lossless, |Z|=X
· C≈0.

So eq. (37) becomes:
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(38)

This should be familiar expression to you from EE 303. 
10.0 Voltage instability (Section 4.7)
We can also write the real power equation (32) for the short line model, as we have just done for the reactive power equation, using Z’=Z and |Z|=X, to get:
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(39)

Section 4.7 applies eqs. (38) and (39) to consider how the receiving end voltage magnitude varies with load. 

Assuming the (normalized) sending-end voltage is 1.0, the text derives:
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(40)

where 

· |V2| is the normalized voltage at the receiving end,

· PD is the receiving end real power load

· β=tanφ, where pf=cosφ (note β here is different from our previous use of it).
Equation (40) can be used to plot receiving end voltage |V2| as a function of receiving end demand PD.
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Fig. 4

Fig. 4 is similar to Fig. E4.9 in the text. This figure is a very basic figure for transmission planners and operators, who constantly worry about the implications of this figure. Why?
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