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Abstract

Information flow and non-interference have recently
become very popular concepts for expressing both in-
tegrity and privacy properties. Because of the enormous
potential of transmitting information using probabilis-
tic methods of cryptography, interest arose in capturing
probabilistic non-interference. We investigate the no-
tion of intransitive probabilistic non-interference in re-
active systems, i.e., downgrading of probabilistic infor-
mation and detection of probabilistic information flow
by one or more involved third parties. Based on concrete
examples, we derive several definitions that comprise
cryptography-related details like error probabilities and
computational restrictions. This makes the definitions
applicable to systems involving real cryptography. De-
tection of probabilistic information flow is significantly
more complicated to define if several third parties are
involved because of the possibilities of secret sharing.
We solve this problem by graph-theoretic techniques.

1 Introduction

Information flow and in particular non-interference
have become powerful possibilities for expressing both
privacy and integrity requirements. Mainly, definitions
for non-interference can be categorized by two aspects.
The first aspect is the complexity-theoretic background
addressed, i.e., whether we consider non-deterministic
behavior (also called possibilistic), or the more fine-
grained probabilistic flow of information. The second
aspect is the particular point of view of what should be
regarded as non-interference. Early definitions of non-
interference were always based on transitive flow poli-
cies, i.e., they follow the intuition that if a user shall
not be able to influence another user directly, it shall
also not be able to influence it by involving additional

users, called third parties. However, the use of such poli-
cies has been quite limited in practice, as important con-
cepts like information filters, channel control, or explicit
downgrading cannot be captured. Therefore the notion
of intransitive non-interference arose to deal with these
issues.

We present the first definitions for intransitive prob-
abilistic non-interference. Our definitions are very gen-
eral in several ways: They are designed for reactive sce-
narios. We do not only consider perfect non-interference
as in Gray’s commonly accepted definition of proba-
bilistic non-interference (which is restricted to transitive
flow policies), but we further allow error probabilities.
Further, our definitions comprise complexity-theoretic
reasoning like polynomially bounded adversaries. Be-
cause of the last two points, we are confident that this
work is a major step in relating cryptography to the no-
tion of information flow.

Compared with prior definitions handling intransitive
flow policies (for a non-probabilistic definition of flow),
probabilistic behaviors are much more difficult to cap-
ture because two pieces carrying absolutely no infor-
mation about a secret in the probabilistic sense, might
reveal the entire secret when joint. This causes severe
problems if multiple third parties are involved as the se-
cret might be sent via different parties using this concept
of secret sharing. Dealing with aspects of this kind is the
topic of this work.

Outline. We start with a brief overview of the underly-
ing model of asynchronous reactive systems, and intro-
duce flow policies as the formal concept of expressing
information flow, along with motivation for intransitive
flow policies (Section 2). Our main contributions are
novel definitions, which can cope with intransitive poli-
cies for a probabilistic definition of information flow,
even in the presence of cryptographic techniques (Sec-
tion 3). Relating an intransitive notion of flow and cryp-
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tography (even more generally, probabilism) was out of
scope of prior approaches. As the most common ap-
plication of intransitive flow policies, we show in Sec-
tion 4 how probabilistic downgrading can be captured
using our ideas of the previous section. Moreover, we
show that our definitions are preserved under simulata-
bility, which is a common concept in cryptography (Sec-
tion 5). This significantly simplifies the proof that a sys-
tem fulfills a non-interference property, since simulata-
bility helps to get rid of cryptography-related details like
error probabilities and computational restrictions. We
show this for an example in Section 6. We conclude this
article by discussing related work (Section 7) and sum-
marizing our results (Section 8).

2 Preliminary Definitions and Ideas

In this section, we give an introduction to informa-
tion flow in general, before we turn our attention to in-
transitive flow in subsequent sections. In Section 2.1
we briefly introduce the model for asynchronous reac-
tive systems on which we base our definitions of non-
interference. In Section 2.2 we introduce flow poli-
cies and briefly review the definition of computational
probabilistic non-interference for transitive flow poli-
cies [2], which serves as the foundation of our up-
coming definitions. The problem of probabilistic non-
interference with intransitive flow policies is addressed
in Section 2.3.

2.1 General System Model for Reactive Sys-
tems

In this section we briefly recapitulate the model
for probabilistic reactive systems in asynchronous net-
works, including computational aspects as needed for
cryptography, from [21]. All details of the model which
are not necessary for understanding are omitted; they
can be looked up in the original paper.

Usually one considers real systems consisting of a
set M̂ of machines {M1, . . . , Mn}, one for each user.
The machine model is probabilistic state-transition ma-
chines, similar to I/O automata as introduced in [12].
For complexity every automaton is considered to be im-
plemented as a probabilistic Turing machine; complex-
ity is measured in the length of its initial state, i.e., the
initial worktape content (often a security parameter k,
given in unary representation).

Communication between different machines is done
via ports. Similar to the CSP-Notation [8], output and
input ports are written as p! and p?, respectively. The
ports of a machineM are denoted by ports(M). Connec-
tions are defined implicitly by naming convention, i.e.,

port p! sends messages to p?. To achieve asynchronous
timing, a message is not sent directly to its recipient, but
first stored in a special machine p̃ called a buffer and
waits to be scheduled. If a machine wants to schedule
the i-th message held in p̃, it must have the correspond-
ing clock-out port p�!, and it sends i at p�!. The i-th
message is then forwarded by the buffer and removed
from the buffer’s internal list. Most buffers are either
scheduled by a specific master scheduler or the adver-
sary, i.e., one of those has the corresponding clock-out
port.

Formally, a structure is a pair (M̂ ,S ), where M̂ is
a finite set of machines with pairwise different machine
names and disjoint sets of ports, and S ⊆ free(M̂ ), the
so-called specified ports, are a subset of the free ports of
M̂ .1 Roughly speaking the ports of S guarantee certain
services to the users. A structure is completed to a con-
figuration by adding a set of machinesU and a machine
A, modeling users and the adversary. Themachines inU
connect to the specified ports S , while A connects to the
remaining free ports S̄ of the structure and can interact
with the honest users.

Scheduling of machines is done sequentially, so there
is exactly one active machine M at any time. If this ma-
chine has clock-out ports, it can select the next message
to be scheduled as explained above. If that message ex-
ists, it is delivered by the buffer and the unique receiv-
ing machine is the next active machine. If M tries to
schedule multiple messages, only one is taken, and if it
schedules none or the message does not exist, the special
master scheduler is scheduled.

This means that a configuration has a well-defined
notion of runs, also called traces or executions. For-
mally a run is essentially a sequence of steps, and each
step is a tuple of the name of the active machine in this
step and its input, output, and old and new local state. As
the underlying state-transition functions of the individ-
ual machines are probabilistic, we also get a probability
space on the possible runs. We call it runconf ,k for a
configuration conf and the security parameter k.

One can restrict a run r to a machine M or a set of
machines M̂ by retaining only the steps of these ma-
chines; this is called the view of these machines. Simi-
larly, one can restrict a run to a set S of ports by retain-
ing only the in- or outputs at the chosen ports from the
steps where such in- or outputs occur. This is denoted
by r�M and r�M̂ and r�S , respectively. For a configu-
ration conf , we obtain corresponding random variables
over the probability space of all possible runs; for the

1A port is free if its corresponding port is not in the system. These
ports are available for the users and the adversary. By free(M̂ ) we
abbreviate the precise notation free([M̂ ]) from [21], which indicates
that the free ports are taken at the other end of the buffers.
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view of a machine or machine set they are denoted by
view conf ,k(M) and view conf ,k(M̂ ), respectively.

2.2 Flow Policies

Flow policies specify restrictions on the information
flow within a system. They presuppose the existence
of security domains S, between which information flow
should either be permissible or forbidden.

Definition 2.1 (General Flow Policy) A general flow
policy is a graph G = (S, E) with a non-empty set S
and E ⊆ S × S. For (s1, s2) ∈ E , we write s1 ❀ s2,
and s1 
❀ s2 otherwise. Furthermore we demand s ❀ s
for all s ∈ S. ✸

Here s1 ❀ s2 means that information may flow from
s1 to s2, whereas s1 
❀ s2 means that it must not. If
we want to use a general flow policy for our purpose,
we have to refine it so that it can be applied to a struc-
ture (M̂ ,S ) of the underlying model. The intuition is
to define a graph on the possible protocol participants,
i.e., the users and the adversary. However, to be inde-
pendent of the details of the actual user and adversary
machines, we represent users by the ports they connect
to in the structure (M̂ ,S ), and the adversary by the re-
maining free ports of the structure. Thus our flow policy
only depends on the specified ports S .

Definition 2.2 (Flow Policy) Let a structure (M̂ ,S ) be
given, and let Γ(M̂ ,S) = {Si | i ∈ I} denote a partition
of S for a finite index set I. Hence∆(M̂ ,S) := Γ(M̂ ,S)∪
{S̄} is a partition of free(M̂ ). A flow policy G(M̂ ,S) of

the structure (M̂ ,S ) is now defined as a general flow
policy G(M̂ ,S) = (∆(M̂ ,S), E(M̂ ,S)). ✸

We write G, ∆, and E instead of G(M̂ ,S), ∆(M̂ ,S), and
E(M̂ ,S) if the underlying structure is clear from the con-
text.

The relation 
❀ is the non-interference relation of
G. Hence SH 
❀ SL for two port sets SH,SL ∈ ∆
means that no information must flow from the user con-
nected to the ports SH to the user connected to the ports
SL. For transitive flow policies, we recently introduced
a probabilistic definition suited for cryptographic pur-
poses (i.e., comprising computational restrictions, error
probabilities, etc.) in [2]. Roughly, if we consider a
non-interference requirement SH 
❀ SL, then the user H
(which is connected to SH by naming convention, using
the notation of [2]) gets a randomly distributed bit b at
the start of the run and should try to transmit this bit to
L (connected to SL). The user L then outputs a bit b∗, its
guess of the bit b. To model this, the distinguished users
have special ports for receiving the initial bit and for

H

T

L/

Figure 1. Standard intransitive flow policy,
consisting of three users H, L and T

outputting their guess, respectively. Formally, to close
the configuration, special machines are added that pro-
duce the bit b and consume the bit b∗ at ports pH bit! and
p∗L bit?, respectively, connected to the special ports of the
users H and L. Moreover, a specific fair master sched-
uler is added to the configuration because if the adver-
sary were allowed to schedule it could always achieve
probabilistic information flow. The resulting configura-
tions are called non-interference configurations for SH

and SL and typically denoted by conf n in
H,L . We call the

set of them Confn in
H,L,I(M̂ ,S ).2

Then the underlying structure is defined to fulfill the
non-interference requirement SH 
❀ SL in the compu-
tational sense iff for all non-interference configurations
for SH and SL, the probability of a correct guess b = b∗

is only negligibly greater than pure guessing; see [2] for
a rigorous definition, also of a perfect and a statistical
case. For readability, we identify users and the specified
ports they connect to, i.e., we might writeH 
❀ L instead
of SH 
❀ SL etc. in the following.

2.3 The Problem with Intransitive Flow Poli-
cies

For intransitive flow policies, however, the definition
sketched in Section 2.2 is meaningless. Consider the
flow policy shown in Figure 1, which can be seen as the
standard flow policy for intransitive information flow.

Obviously, the non-interference relation H 
❀ L can-
not be achieved according to the above definition if in-
formation flow from H to L is possible via T. Although
these kinds of policies do not match our intuition of a
satisfiable flow policy at first glance, they can be inter-
preted as conditional information flow capturing lots of
typical situations in real life. For instance consider a
user that wants to send certain documents to the printer.
Assume that the system administrator has set up some
nice predefined functions for printing documents, aug-
menting them with special company-related frames, or
some internal handling of possible errors. Then a typical
intransitive flow policy could say that information flow

2Here and in some further places we change some notation of [21,
2] from so-called systems to structures. These systems contain sev-
eral possible structures, derived from an intended structure with a trust
model. Here we can always work with individual structures.
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Figure 2. Flow policy for the secretary ex-
ample. All missing edges are of the form
❀, i.e., flow is allowed.

from the user to the printer should not be possible unless
these special services have been used, so some condition
on information flow is imposed here. In the next section,
we examine several further examples with the goal of
investigating arbitrary probabilistic behaviors. The ex-
amples motivate different points of view of intransitive
probabilistic non-interference, resulting in different pos-
sible definitions.

Naming convention. Throughout the following, we
consider users H and L such that H 
❀ L should hold
unless explicitly state otherwise. The remaining users
are usually called third parties and named T1, . . . , Tn or
simply T if there is only one.

3 Examples and Definitions

In this section, we investigate what probabilistic non-
interference means for intransitive flow policies, result-
ing in several possible definitions, each one motivated
by a concrete example.

3.1 Example: Secretary

Consider a small company selling goods or services
over the Internet. Ordinarily, its CEO (chief executive
officer) C does not want to be disturbed by customers,
and thus all normal correspondence is handled by a sec-
retary S. However, some specific good customers are al-
lowed to contact the CEO directly; we denote the others
by B for “bad” customers. This corresponds to the in-
formation flow graph of Figure 2 for one good customer
G and one bad customer B. This is a typical example
where indirect information flow from B to C via the sec-
retary S is certainly allowed. Further, “bad” customers
that know a good customer can also bypass the secretary
by having the good customer vouch for them. For dig-
ital communication, we may want to enforce this flow
policy by cryptographic authentication and filtering, see
Section 6.

3.2 Blocking Non-Interference

How do we express this notion of intransitive infor-
mation flow? According to our intuition, we would like
to model that B can only influence C if B has help from
either S or G. Equivalently, we can define that for all C
and all B, there exists an S and a G such that the consid-
ered information flow is prohibited in the resulting con-
figuration. This means that the secretary might refuse
to put the customer through to C and G might refuse to
help. This yields our first definition of intransitive non-
interference, which we call blocking non-interference.
We first make it for precisely this flow policy, and gen-
eralize it below.

Definition 3.1 (Blocking Non-Interference for One Pol-
icy) Let the flow policy G = (∆, E) of Figure 2 for a
structure (M̂ ,S ) be given. We say that (M̂ ,S ) fulfills
the blocking non-interference requirement

a) perfectly (written (M̂ ,S ) |=block intrans
perf G) iff for

all B, C there exists S, G such that for all non-
interference configurations conf n in

B,C = (M̂ ,S ,

{B, C, S, G}, A) ∈ Confn in
B,C,I(M̂ ,S ) of this struc-

ture the inequality

P (b = b∗ | r ← runconf n in
B,C ,k;

b := r�pB bit!;

b∗ := r�p∗
C bit?

) ≤ 1
2

holds. (Typically it is then = 1
2 , but C might de-

stroy its guessing chances by not outputting any
Boolean value.)

b) statistically for a class SMALL of functions
((M̂ ,S ) |=block intrans

SMALL G) iff for all B, C there ex-
ists S, G such that for all non-interference con-
figurations conf n in

B,C = (M̂ ,S , {B, C, S, G}, A) ∈
Confn in

B,C,I(M̂ ,S ) of this structure the inequality

P (b = b∗ | r ← runconf n in
B,C ,k;

b := r�pB bit!;

b∗ := r�p∗
C bit

?) ≤ 1
2

+ s(k)

holds for some s ∈ SMALL. SMALL must be
closed under addition and with a function g also
contain every function g′ ≤ g.

c) computationally ((M̂ ,S ) |=block intrans
poly G) iff for

all polynomial-time B, C there exists polynomial-
time S, G such that for all polynomial-time non-
interference configurations conf n in

B,C = (M̂ ,S ,
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Figure 3. Flow policy with five third parties.
All missing edges are the form 
❀, i.e., flow
is not allowed. Users T1 and T2 form a cut
for H and L.

{B, C, S, G}, A) ∈ Confn in
B,C,I(M̂ ,S ) of this struc-

ture the inequality

P (b = b∗ | r ← runconf n in
B,C ,k;

b := r�pB bit!;

b∗ := r�p∗
C bit

?) ≤ 1
2

+ s(k)

holds for some s ∈ NEGL, the set of all negligible
functions.3

We write “|=block intrans” if we want to treat all cases to-
gether. ✸

In the upcoming definitions, we will only define statis-
tical fulfillment, as perfect fulfillment is comprised by
the class SMALL = {0}. Similarly, computational ful-
fillment is statistical fulfillment for the class SMALL =
NEGL with the further restriction to polynomial-time
configurations.

More generally, we can consider n third parties
T1, . . . , Tn instead of S and G. The obvious exten-
sion of our above definition to this case would be to
replace the statement “there exists S, G” with “there ex-
ists T1, . . . , Tn” without any further work. Although
this yields a meaningful definition, we can significantly
strengthen it as follows: We no longer demand that all
users should try to prohibit information flow between
H and L, because this is fairly unrealistic. Instead we
demand that certain subsets of the third parties are suc-
cessful in interrupting the connection. Obviously, this
cannot work for arbitrary subsets; we need that for each
path from H to L in the flow graph, at least one node of
the path is contained in this subset. According to graph
theory, we then call the subset a cut for H and L of the
given flow graph. An example is shown in Figure 3.

Definition 3.2 (Cut) Let a flow graph G = (∆, E) be
given. Then a cut for two nodes M1, Mn ∈ ∆ is a set

3We have s ∈ NEGL iff for all positive polynomials Q ∃n0 ∀n >
n0 : s(n) < 1

Q(n)
.

Ĉ ⊆ ∆ of nodes that cut all paths from M1 to Mn. I.e.,
let GĈ := (∆Ĉ , EĈ ) with ∆Ĉ := ∆ \ Ĉ and EĈ :=
{(M, M′) | (M, M′) ∈ E ∧ M, M′ 
∈ Ĉ}. Then M1 and
Mn should lie in unconnected components of GĈ , i.e.,
there should be no sequence M2, . . . , Mn−1 such that
(Mi, Mi+1) ∈ EĈ for j = 1, . . . , n − 1. ✸

Using cuts, we can now give a general definition of
blocking non-interference (using the general conven-
tion of H 
❀ L again). It states that whatever users
Ti1 , . . . , Til

might do to “help” H to transmit the bit,
the remaining users Tj1 , . . . , Tjt can still prohibit infor-
mation flow, provided that they are a cut for H and L.

Definition 3.3 (Blocking Non-Interference) Let a flow
policy G = (∆, E) for a structure (M̂ ,S ) be given, con-
sisting of H, L, and third partiesT1, . . . , Tn. We say that
(M̂ ,S ) fulfills the blocking non-interference require-
ment ((M̂ ,S ) |=block intrans

SMALL G) iff for all H, L and for all
cuts Ĉ for H and L, there exist users {Tj1 , . . . , Tjt} :=
Ĉ such that for all non-interference configura-
tions conf n in

H,L = (M̂ ,S , {H, L, T1, . . . , Tn}, A) ∈
Confn in

H,L,I(M̂ ,S ) of this structure the inequality

P (b = b∗ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b∗ := r�p∗
L bit?

) ≤ 1
2

+ s(k)

holds for a function s ∈ SMALL. ✸

Unfortunately, our above definition is too coarse-
grained to capture the full range of probabilistic behav-
iors. It mainly states that the secretary can interrupt the
entire connection, while in reality the secretary should
be able to see the content of an attempted information
flow and judge whether the CEO will want to see it or
not. We will deal with that next.

3.3 Example: Firewall

As another well-known example, consider a firewall
guarding some honest users from malicious adversaries.
Here the firewall should prohibit any negative influence
from outside, so the firewall itself has to detect when
a specific information flows to the user. Moreover,
probabilism shows up if we consider cryptographic fire-
walls, i.e., firewalls whose filtering functions are based
on cryptographic authentication. Here the firewall main-
tains a set of “allowed” users and checks each incoming
message for a signature belonging to that specific set.
All other messages are discarded. This motivates a new
definition of non-interference, which is based on the no-
tion of recognizing when information flow occurs.
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Figure 4. Sketch of the definition of recog-
nition non-interference for the flow policy
of Figure 1. The bits b∗ and b′ are guesses
at b.

3.4 Recognition Non-Interference

Similar to the previous example we first develop our
ideas for a simple policy, the one with only three users
of Figure 1. Intuitively, our definition states that if there
is information flow from H to L, then the user T can also
recognize this flow if it wants to, i.e., it could also guess
the initial bit b with non-negligible advantage. We call
this notion recognition non-interference. It is shown in
Figure 4.

The notion that an arbitrary given machine T “could”
guess a bit is formalized by a machine D, called a dis-
tinguisher, which outputs the bit based only on the in-
formation the third party T got during the run, i.e., the
view of T. More formally, a machine D is called a dis-
tinguisher if it only performs one single (probabilistic)
transition resulting in precisely one non-empty output
that only contains one bit. As the view of T in a run r
is written r�T, this probabilistic assignment of the bit b′

is written b′ ← D(r�T, 1k). The second input 1k repre-
sents the security parameter k; it is given in unary rep-
resentation because polynomial-time is measured in this
security parameter.

Definition 3.4 (Recognition Non-Interference for One
Policy) Let the standard flow policy of Figure 1 for a
structure (M̂ ,S ) be given. Then (M̂ ,S ) fulfills the
recognition non-interference requirement for this policy
iff for all non-interference configurations conf n in

H,L =
(M̂ ,S , {H, L, T}, A) ∈ Confn in

H,L,I(M̂ ,S ) the following
holds: If

P (b = b∗ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b∗ := r�p∗
L bit

?) ≥ 1
2

+ ns(k)

holds for ns(k) 
∈ SMALL, then there exists a distin-

guisher D and a function ns ′ 
∈ SMALL such that

P (b = b′ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b′ ← D(r�T, 1k)) ≥ 1
2

+ ns ′(k).

For the computational case, the distinguisher has to be
polynomial-time. ✸

We can extend our definition with arbitrary predicates
pred(·, ·) on the functions ns and ns ′ to model concrete
complexity. For instance, fulfillment for the predicate
pred(ns ,ns ′) := (ns ≤ ns ′) ensures that the advantage
of the distinguisher is at least as good as the advantage
of the user L.

The above definition works fine as long as we only
consider one possible path from H to L where informa-
tion flow is allowed to occur. Consider our secretary
example of the previous section where B has two pos-
sible ways of sending information to C. Assume that it
wants to transmit a codeword m ∈ Σ∗ (e.g., the bit b).
Instead of sending the codeword in cleartext over one of
these paths, B divides it into two parts such that none of
them gives any information on the codeword on its own.
The standard construction is to choose a random string
m∗ of the same length as m and to send m ⊕ m∗ via
S and m∗ via G. If C receives both messages, she can
easily reconstruct the original codeword by computing
(m ⊕ m∗) ⊕ m∗, but neither S nor G can notice that the
codeword has been sent. This principle can be extended
to arbitrary users and trust models by the common con-
cept of secret sharing [26].

As we can see, a probabilistic definition of informa-
tion is very fine-grained, and cryptographic primitives
like secret sharing even ensure that pieces carrying no
information at all may be combined to provide the full
amount of secret knowledge.

In our example, the joint view of S and G is suffi-
cient to determine the desired information. More gen-
erally, the solution for arbitrary flow graphs is again to
consider a cut in the flow graph, cf. Definition 3.2. The
joint view of the machines contained in the cut should
be sufficient to determine whether or not the specific in-
formation has been sent. This yields a more general def-
inition of recognition non-interference, based on n third
parties T1, . . . , Tn.

Definition 3.5 (Recognition Non-Interference) Let a
flow policy G = (∆, E) for a structure (M̂ ,S ) be given.
Then (M̂ ,S ) fulfills this policy G iff for all H, L and for
all non-interference configurations conf n in

H,L = (M̂ ,S ,

{H, L, T1, . . . , Tn}, A) ∈ Confn in
H,L,I(M̂ ,S ) the follow-
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ing holds: If

P (b = b∗ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b∗ := r�p∗
L bit?

) ≥ 1
2

+ ns(k)

holds for ns 
∈ SMALL, then for all cuts Ĉ for H, L,
there exists a distinguisher D and a function ns ′ 
∈
SMALL such that

P (b = b′ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b′ ← D(r�Ĉ , 1k)) ≥ 1
2

+ ns ′(k).

For the computational case, the distinguisher has to be
polynomial-time. ✸

The definition can be extended to predicates on ns ,ns ′

like Definition 3.4.

3.5 Example: Dealing with Public-Key Opera-
tions

Definition 3.5 is very general. However, if we look
closely, we see that it is too strict for many cases. Recall
our example of the secretary. Assume that the machine
of the CEO is guarded by a cryptographic firewall that
only allows messages from the secretary and the good
customers to pass. However, if the CEO is malicious
and wants to receive information from outside that the
secretary cannot recognize, she can do so by creating
a public key of an asymmetric encryption system and
broadcast it to the bad customers. It does not matter
whether or not the secretary and the good customers no-
tice the transmission of this key. Now the bad customer
simply encrypts its bit b and sends it to the CEO via the
secretary. The secretary cannot guess the bit b with non-
negligible probability using this information, or he could
break the underlying encryption scheme. Thus this im-
plementation with a cryptographic firewall does not ful-
fill Definition 3.5.

The problem here is that the knowledge of the secre-
tary and the CEO is not shared, i.e., only the CEO has
the secret key to decrypt incoming messages.

The problem can be solved by either prohibiting that
the CEO outputsmessages to outside users, which seems
fairly unrealistic, or by letting the secretary know the se-
crets of the CEO. The second possibility is quite realis-
tic for this kind of example, as the CEO probably does
not want to be influenced by bad customers, and hence
shares a lot of knowledge with her secretary already by
letting him screen her mail. Such a CEO that wants to be

rand
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Figure 5. Sketch of recognition non-
interference for trusted recipients for the
flow policy of Figure 4.

protected will surely not create a public encryption key
on her own and spread it over the net. We model this by
additionally giving the distinguisher the content of the
random tape of C, where C is considered as a probabilis-
tic Turing machine. We can thus keep the distinguisher
non-interactive. This is illustrated in Figure 5.

3.6 Recognition Non-Interference for Trusted
Recipients

This example yields a less strict definition of recog-
nition non-interference, which we call recognition non-
interference for trusted recipients. In the following, we
denote the content of the random tape of a probabilis-
tic Turing machine M in a run r by randomr(M), and
similarly for sets.

For arbitrary policies things again become a bit more
complicated. If we want to prove H 
❀ L, and if we
have a cut Ĉ with respect to H and L, then we need the
random tapes of all users “between” the cut and L. More
formally, this means that for a given cut Ĉ in a flow
policy, the random tape of a user Ti is needed iff Ti and
L lie in the same component of the graph after removing
the cut from the graph. We denote the set of these users
by TĈ .

Definition 3.6 (Recognition Non-Interference for
Trusted Recipients) Let a flow policy G = (∆, E) for
a structure (M̂ ,S ) be given. Then (M̂ ,S ) fulfills the
recognition non-interference requirement for trusted
recipients for this policy G iff for all H, L and for all
non-interference configurations conf n in

H,L = (M̂ ,S ,

{H, L, T1, . . . , Tn}, A) ∈ Confn in
H,L,I(M̂ ,S ) the follow-

ing holds: If

P (b = b∗ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b∗ := r�p∗
L bit?

) ≥ 1
2

+ ns(k)
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holds for ns 
∈ SMALL, then for all cuts Ĉ for H, L,
there exists a distinguisher D and a function ns ′ 
∈
SMALL such that

P (b = b′ | r ← runconf n in
H,L ,k;

b := r�pH bit!;
b′ ← D(r�Ĉ , randomr(TĈ ), 1k))

≥ 1
2

+ ns ′(k).

For the computational case, the distinguisher has to be
polynomial-time. ✸

The definition can be extended to predicates on ns ,ns ′

like Definition 3.4.

4 Downgrading of Information

Requiring that no information flow at all shall occur
is too strict for many practical purposes. As a typical ex-
ample consider the model of Bell-LaPadula, consisting
of several groups of users along with a total relation ≥
on the groups. Here H1 ≥ H2 for two groups H1 and
H2 means that no information should flow from H1 to
H2. This corresponds to a flow graph with Hi 
❀ Hj

iff Hi ≥ Hj . Assume for instance that the groups Hi

are ascending military ranks. As people of higher rank
are allowed to learn more secret information, no infor-
mation shall flow to people of lower rank. So far, this
can be expressed nicely using our above examples and
definitions. However, this also means that an officer is
not allowed to send any message to its soldiers. This
problem is typically solved in practice by allowing in-
formation to be downgraded.

A typical way of downgrading is that a trusted user
may do it. In the military example, an officer may tra-
ditionally be trusted to classify information correctly by
attaching paper labels to it. Similarly, he may explic-
itly attach labels to digital inputs, e.g., H (high) or L
(low) to each input m. This situation is not restricted to
trusted human users, but also applies to trusted processes
“above” the currently considered system. This system
may be a multi-level network or a distributed operat-
ing system, and certain applications may be allowed to
operate on multiple levels, including downgrades. The
security to be defined is that of the underlying system,
without knowing details of the trusted applications.

Security for this case essentially means that a low
user L should only get information from H via the sys-
tem if that information was explicitly downgraded by H.
Thus, if L can guess a bit b that H knows, a distinguisher
should exist that can also guess that bit, based only on
the explicitly downgraded information. This is sketched
in Figure 6.

H D

(H/L, m)

b

M
^

L

b*b'

L-part

Figure 6. Downgrading by trusted user H.
The untrusted user L should learn nothing
from H via the system except what can be
derived from H’s downgraded information
alone.

We first define our downgrading syntax, and then the
non-interference notion.

Definition 4.1 (Downgraded information) Let a struc-
ture (M̂ ,S ) and a subset H ⊆ S of its specified ports
be given. Let r be a run of a configuration of (M̂ ,S ).
Then the downgraded information at ports H in r, writ-
ten downH (r), is defined by further restricting r�H to
input ports, and to inputs that are pairs (L, m) of the
constant L and an arbitrary message m. ✸

Definition 4.2 (Intransitive probabilistic non-
interference with downgrading) Let a flow policy
G = (∆, E) with ∆(M̂ ,S) := {Si | i = 1, . . . , n} ∪ {S̄}
for a structure (M̂ ,S ) be given, and let one port set
H = Si be given as that of the trusted user H. Then
(M̂ ,S ) fulfills the policy G if the following holds
for all H, L with H 
❀ L, and all non-interference
configurations conf n in

H,L ∈ Confn in
H,L,I(M̂ ,S ): If

P (b = b∗ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b∗ := r�p∗
L bit

?) ≥ 1
2

+ ns(k)

with ns(k) 
∈ SMALL, then there exists a distinguisher
D and a function ns ′(k) 
∈ SMALL such that

P (b = b′ | r ← runconf n in
H,L ,k;

b := r�pH bit!;

b′ ← D(downH (r), 1k)) ≥ 1
2

+ ns ′(k).

For the computational case, the distinguisher has to be
polynomial-time. ✸

The definition can be extended to predicates on ns,ns ′

like Definition 3.4.
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5 Intransitive Non-Interference and Simu-
latability

In this section we investigate how intransitive non-
interference behaves under simulatability. In a nutshell,
we show that the relation “at least as secure as”, which
is the cryptographic analog of secure implementation,
does not destroy the properties from our definitions. As
defining a cryptographic system usually starts with an
abstract specification of what the system should do, pos-
sible implementations have to be proven to be at least
as secure as this specification. The abstract specification
usually consists of a monolithic idealized machine con-
taining neither cryptographic details nor probabilism.
Thus, its properties can typically be validated quite eas-
ily by formal proof systems, e.g., formal theorem prov-
ing or even automatic model checking. Hence it would
simplify life a lot if these propertieswould automatically
carry over to the real system. This is already known
for transitive non-interference [2]. In the following, we
show that it is also true for recognition non-interference
for trusted recipients (Definition 3.6). A similar preser-
vation theorem also holds for the remaining definitions,
but we omit the proofs due to space constraints.

Simulatability essentially means that whatever might
happen to honest users U of the real structure (M̂1,S )
can also happen to the same honest users with the ideal
structure (M̂2,S ), i.e., with the abstract specification.
The structures have identical sets of specified ports.
Formally speaking, for every configuration conf 1 of
(M̂1,S ) there is a configuration conf 2 of (M̂2,S ) with
the same users yielding indistinguishable views of U in
both systems [30]. This is written (M̂1,S ) ≥sec (M̂2,S )
(spoken “the real structure is at least as secure as the
ideal structure”). The indistinguishability of the views
of U is denoted by view conf 1

(U ) ≈ view conf 2
(U ).

The following theorem states that an intransitive non-
interference property is in fact preserved under the rela-
tion “at least as secure as”.

Theorem 5.1 (Preservation of Recognition Non-
Interference for Trusted Recipients) Let a flow policy
G = (∆, E) for a structure (M̂2,S ) be given, such
that this structure fulfills Definition 3.6 for this policy.
Furthermore, let a structure (M̂1,S ) ≥sec (M̂2,S ) be
given. Then (M̂1,S ) also fulfills Definition 3.6 for the
flow policy G. This holds for the perfect, statistical, and
computational case. ✷

Proof. First, G = (∆, E) is a well-defined flow pol-
icy also for (M̂1,S ) because the two structures have the
same set of specified ports. (This was the reason to de-
fine the partition ∆ of all free ports via a partition Γ of
the specified ports.)

We now show that (M̂1,S ) fulfills recognition non-
interference for trusted recipients for the policy G =
(∆, E).

Let arbitrary users H, L, a cut Ĉ for H, L, and a
non-interference configuration conf n in

H,L,1 = (M̂1,S ,

{H, L, T1, . . . , Tn}, A) ∈ Confn in
H,L,I(M̂1,S ) be given.

Because of (M̂1,S ) ≥sec (M̂2,S ), there exists a con-
figuration conf H,L,2 = (M̂2,S , {H, L, T1, . . . , Tn}, A′)
such that view conf n in

H,L,1
({H, L, T1, . . . , Tn}) ≈

view conf H,L,2
({H, L, T1, . . . , Tn}). Recall that the

set U := {H, L, T1, . . . , Tn} of users remains un-
changed in simulatability. It is easy to see that conf H,L,2

is again a non-interference configuration by inspection
of the precise definition in [2]. Hence, we call it
conf n in

H,L,2 in the following.
For the statistical case, assume that L outputs the

bit b correctly with probability at least 1
2 + ns1(k) for

ns1 
∈ SMALL in the configuration conf n in
H,L,1. We have

to show that there exists a distinguisher D1 that can out-
put the bit b with a similar probability, given the view of
the users in the cut Ĉ and the random tapes of TĈ with
TĈ being the set of users that lie in the same component
of the graph as L after applying the cut Ĉ .

Because of view conf n in
H,L,1

(U ) ≈ view conf n in
H,L,2

(U ),
there also exists ns2 
∈ SMALL such that the prob-
ability of a correct guess of L in conf n in

H,L,2 is at least
1
2 +ns2(k). This follows with the definition of statistical
indistinguishability, which states that the statistical dis-
tance δ := |∆(view conf n in

H,L,1,k(U ), view conf n in
H,L,2,k(U ))|

is in SMALL. The predicate b = b∗ is a function of
such a view of U , and by a well-known lemma the sta-
tistical distance between a function of two random vari-
ables is bounded by the statistical distance between the
random variables themselves (see [2]), i.e., here by δ.
Now assume for contradiction that the probability of a
correct guess of L in conf n in

H,L,2 is at most 1
2 + s1(k) for

s1 ∈ SMALL. This would imply s1 + δ ≥ ns2, in
contradiction to the fact that SMALL is closed under
addition and under making functions smaller.

As (M̂2,S ) fulfills G by precondition, this result
about L’s guessing ability in the second structure implies
that there exists a distinguisher D2 that, given the view
of the users in the cut, view conf n in

H,L,2,k(Ĉ ), and the ran-
dom tapes of TĈ , can output the bit b with probability at
least 1

2 + ns ′2(k) with ns ′2 
∈ SMALL. Now we define
the distinguisher for the first structure to be D1 := D2.
This is possible because the input ofD2 only contains in-
formation collected by the users (their views and random
tapes), whose types are unchanged in simulatability. By
the same indistinguishability argument as above we see
that D1, given view conf n in

H,L,1,k(Ĉ ) and the random tape
of TĈ , can also output the bit b with probability at least
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1
2 + ns ′1(k) with ns ′1 
∈ SMALL. This finishes the
proof for the statistical case.

The proof for the perfect case follows with
SMALL := {0}. For the computational case we use
SMALL := NEGL. Here the contradiction proofs
showing that if the guessing probabilities of L and
D := D1 = D2, respectively, were significantly differ-
ent in the real and ideal structure, the structures would
be distinguishable, is a bit different: One defines a
polynomial-time distinguishing machine D∗ (not to be
confused with D) in a standard way: On input a view
of the users, it computes what L or D would guess and
whether this is correct, and accordingly guesses whether
it has got a view from the real or the ideal structure. This
guess is correct with probability significantly greater
than 1

2 by the closure properties of the class SMALL.

The omitted proofs of the corresponding preserva-
tion theorems for recognition non-interference (without
trusted users) and for downgrading are completely anal-
ogous, and that of blocking non-interference is even eas-
ier, with only one usage of indistinguishability.

6 Security of Implementations with a
Cryptographic Firewall

To illustrate the usefulness of the preservation theo-
rem of the previous section, we now examine the realiza-
tion of intransitive flow policies by cryptographic fire-
walls, which we mentioned in several examples above.
A precise description of a firewall as such, i.e., a cryp-
tographic realization, was given in [2]; only the final fil-
tering rules were specific for transitive policies. Hence
we only give an informal description here, and only for
the secretary example.

The real firewall is a structure (M̂ ,S ) with M̂ :=
{Mi | i ∈ {c, s, g}} and where S contains two ports for
each machine Mi for inputs from and outputs to user I.
A machine Mb for the bad customers would also belong
to the intended structure, but as one cannot trust all bad
customers to use correct machines, the actual structure
joins that machine with the adversary machine A. This
is sketched in Figure 7.

The machines Mi perform secure message transmis-
sion, i.e., on input (send, m, j) from their respective
user, they sign the message with their secret signature
key along with the identity of the sender and the recipi-
ent, encrypt it with the public key of j, and send it to ma-
chineMj over an insecure network. When Mj receives a
message from the network, it decrypts it and verifies the
signature. If this fails, it discards the message, else it ap-
plies its filtering rules. Here Mc only accepts messages

M
s

M
c

M
b
?

B S C

D

view

rand

b'

b b*

A

Figure 7. Sketch of the firewall system for
the secretary example. The bar in ma-
chine Mc denotes the filtering function.
The good customers G and their machine
Mg are connected like S and Ms. A correct
machine Mb may or may not be present.

from Ms and Mg, i.e., outputs them to its user C, while
Ms and Mg accept messages from all machines. Note
that the correctness of this test depends on the preceding
signature test.

We want to prove that the structure (M̂ ,S ) fulfills
the policy from Figure 2 in the computational case ac-
cording to Definition 3.6. As a proof for the real struc-
ture (M̂1,S ) would be quite complicated and error-
prone, we apply the preservation theorem to get rid of
cryptography-related details. In [2], an abstract speci-
fication (M̂2,S ) of the cryptographic firewall was pre-
sented and it was proved that the real structure is as se-
cure as the ideal structure. Hence we can use this for
our purposes. Roughly, instead of sending encrypted
and signed messages over an insecure network, the ab-
stract firewall just stores the messages in an internal ar-
ray and delivers them at the appropriate scheduling re-
quests. The internal test whether a message to C should
be delivered is considerably simplified since the abstract
firewall knows the sender of a message by construction:
It can simply let messages from S andG through, but not
from B. Thus, no information can flow directly from B
to C in this ideal structure.

Now assume that C outputs the bit b correctly with
probability at least 1

2 + ns(k) for ns 
∈ SMALL. The

only possible cut is Ĉ := {S, G}. Thus we define a
distinguisher for the abstract structure as follows, given
the view of S and G in a run and the random tape of C:
It simulates the user C by using C’s input information,
which the distinguisher knows as it must come from S
or G (note that no information at all can flow from B
to C directly), and the content of C’s random tape. More
precisely, the machineD proceeds through the joint view
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of S and G. For each output that is directed to C, it calls
the state transition ϕC of C with the current position on
the random tape. If the function ϕC outputs a bit b∗ at
port p∗C bit!, the distinguisher outputs this bit as its own
guess, i.e., b′ := b∗. Otherwise, it updates the position
on the random tape of the simulated machine C to the
first unused position, and continues proceeding through
the view. It is easy to see that the distinguisher simulates
the precise behavior of the machine C, since every input
of C must have come from S or G.

Using the preservation theorem (Theorem 5.1), this
property carries over to the concrete implementation, us-
ing cryptographic primitives and comprising error prob-
abilities, without any further work.

Remark. The construction of D is so easy because di-
rect information flow from B to C is completely prohib-
ited, not just up to a negligible error probability. If we
had performed this proof for the real system, we would
have had to deal with certain runs where direct flow in-
deed occurred, namely those whereB succeeded in forg-
ing a signature of S or G. These runs cannot be properly
simulated by the distinguisher as it lacks the incoming
information of C in this case. One possibility to deal
with that is to collect these runs in so-called error sets,
and to show afterwards that the aggregated probability
of these runs is still negligible, or the underlying cryp-
tography could be broken. Although this technique is
common in simulatability proofs (e.g., see [21]), we do
not want to bother with it when proving non-interference
for particular applications. Hence our preservation the-
orem is indeed very useful.

7 Related Literature

Initiated by the deterministic definition of Goguen
and Meseguer [5], the notion of non-interference for
transitive policies was extended by many articles, with
definitions for possibilistic and non-deterministic sys-
tems [27, 15, 9, 29, 19, 16, 31, 4, 13].

Although the notion of probabilistic non-interference
was already introduced in 1992 by Gray [7], probabilis-
tic information flow has rather been overlooked for quite
some time. However, because of the tremendous devel-
opment of cryptography, new interest arose in capturing
what information flow means in the context of cryptog-
raphy. Laud [11] defined real computational secrecy for
a sequential language, and presented a calculus. How-
ever, only encryption is covered so far, i.e., other impor-
tant concepts like authentication, pseudo-number gener-
ators, etc. are not considered. Moreover, the definition
is non-reactive, i.e., it does not comprise continuous in-
teraction between the user, the adversary, and the sys-

tem, which is a severe restriction to the set of consid-
ered cryptographic systems. Volpano [28] investigated
which conditions are needed so that one-way functions
can be used safely in a programming language, but he
did not express non-interference, but the secrecy of a
specific secret. Abadi and Blanchet [1] introduced type
systems where asymmetric communication primitives,
especially public-key encryption can be expressed, but
these primitives are only relative to a Dolev-Yao abstrac-
tion [3], i.e., the primitives are idealized so that no com-
putational non-interference definition is needed. For a
discussion why the Dolev-Yao abstraction is not justi-
fied by current cryptography, see [20]. Recently, we in-
troduced the notion of computational probabilistic non-
interference [2]. This definition is based on a fully reac-
tive setting, comprises error probabilities and computa-
tional restrictions, and hence allows for analyzing infor-
mation flow for general cryptographic primitives. How-
ever, this definition, as all the previous ones, was de-
signed specifically for transitive information flow poli-
cies.

For intransitive policies, no prior work for a proba-
bilistic definition of flow exists to the best of our knowl-
edge. For deterministic systems, Goguen and Meseguer
proposed a definition of intransitive information flow
based on an unless construct [6]. This definition serves
as an extension of the original definition of Goguen and
Meseguer [5] for transitive flow policies. However, this
unless construct did not meet the intuitive requirements
of intransitive flow, as it accepted many intuitively in-
secure systems as being secure. The first satisfactory
formal definition of intransitive flow was proposed by
Rushby [24], followed by definitions by Pinsky [22]
and recently by Roscoe and Goldsmith [23]. Today,
Rushby’s approach to information flow for intransitive
policies seems to be the most popular one for deter-
ministic systems as case studies have shown its fea-
sibility for real applications [25]. Besides these def-
initions for deterministic systems, Mantel presented a
new approach for intransitive flow that is suited for non-
deterministic systems [14]. However, since all these def-
initions are based on non-probabilistic systems, they are
not suited to capture probabilistic behaviors, and in par-
ticular cryptographic applications. Our definitions solve
this problem as they can be used to capture intransitive
non-interference for systems involving arbitrary crypto-
graphic primitives.

Finally, we briefly address downgrading of informa-
tion as the most common application of intransitive flow.
The problem of many of the above definitions is that
they are overly restrictive, preventing many useful sys-
tems from being built. This led to the approach of
downgrading certain information so that it may subse-
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quently leak from the system [18, 32]. The amount
of leaked information can in some cases be rigorously
defined using information-theoretic techniques [17, 10].
As prior approaches of downgrading are specific to non-
probabilistic systems, our definition is the first that cap-
tures downgrading for probabilistic information flow.

8 Conclusion

Despite the recent interest in linking information flow
and probabilism, no probabilistic formalism existed to
capture intransitive flow policies. In particular this cre-
ated a major gap between information flow and applica-
tions based on cryptographic primitives. In this article,
we tried to bridge this gap by proposing definitions for
intransitive flow for probabilistic systems, in particular
blocking non-interference, recognition non-interference,
and the weaker recognition non-interference for trusted
recipients. The first definition is incomparable with the
other two, and typically one of each type should be ful-
filled. Further, we have defined downgrading, in other
words the correct handling of mixed inputs by a system.

We took care that our definitions can indeed be ful-
filled by cryptographic primitives by capturing error
probabilities, computational restrictions, and fully reac-
tive systems. In situations where several third parties
might be involved in an intransitive flow, we had to con-
sider how cuts of the flow graph block the flow or join
their knowledge to detect information flow. This illus-
trates a major difference between the probabilistic and
the non-probabilistic approach, pointing out why the no-
tion of probabilistic information flow is much more fine-
grained.

We have finally shown that intransitive non-
interference properties proved for abstract specifications
carry over to concrete implementations without any fur-
ther work, provided that the implementations are cor-
rect according to the simulatability definitions of mod-
ern cryptography.
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