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Abstract—This paper proposes LBA, a lifetime balanced data
aggregation scheme for asynchronous and duty cycle sensor
networks under an application-specific requirement of end-to-end
data delivery delay bound. In contrast to existing aggregation
schemes that focus on reducing the energy consumption and
extending the operational lifetime of each individual node, LBA
has a unique design goal to balance the nodal lifetime and thus
prolong the network lifetime more effectively. To achieve this goal
in a distributed manner, LBA adaptively adjusts the aggregation
holding time between neighboring nodes to balance their nodal
lifetime; as such balancing take place in all neighborhoods, nodes
in the entire network can gradually adjust their nodal lifetime
towards the globally balanced status. Experimental studies on a
sensor network testbed shows that LBA can achieve the design
goal, yield longer network lifetime than other non-adaptive and
nodal lifetime-unaware data aggregation schemes, and approach
the theoretical upperbound performance, especially when nodes
have highly different nodal lifetime.

I. INTRODUCTION

A. Motivations

In a sensor network, sensor nodes are usually powered by
small batteries with limited energy supplies. When applying
the network for long-time applications such as continuous
environmental monitoring, how to prolong the network lifetime
is of critical importance.

Through eliminating inherent redundancy in raw sensory
data, in-network data aggregation [1], [2] has been widely
applied as an effective technique to reduce communication cost
and extend the lifetime of a sensor network. With the data
aggregation mechanism, a node should be allowed to hold data
received or generated by itself for a while, aggregate the data
in bulk, and send out only the aggregated results. The extend to
which data volume can be suppressed highly depends on how
long a node can hold data before sending them out. Generally,
the longer can a node hold data, the more data can it suppress
and hence the higher is the communication efficiency. However,
holding data introduces extra data delivery delay. In many
sensor network applications, the value of sensory data could be
greatly depreciated or even become zero if the data is delivered
to the sink with a delay longer than a certain application-
specific delay bound. Therefore, the allowed holding time is
constrained by the application-specific requirement on end-to-
end data delivery delay.

It is important to make full use of the available but
constrained holding time for aggregation to prolong network
lifetime. This becomes especially demanding in the context
of multi-hop sensor networks. Along each multi-hop source-
to-sink path, the allowed holding time should be allocated to
all nodes appropriately to ensure the required end-to-end data
delivery delay is not violated along the path. Research [3] has
been conducted to optimize the distribution of holding time

according to the distribution of data traffic and the network
topology. However, non-uniform nodal lifetime, which is a
critical factor impacting network lifetime, has been neglected.

Due to various environment and system reasons, sensor
nodes in the same network may have various nodal lifetime. For
example, nodes with batteries of poorer quality, nodes that are
bottlenecks on a collection tree, and solar-rechargeable nodes
deployed to shady locales may have shorter lifetime than their
peers. As the energy depletion in a sensor node may cause
network disconnection or create coverage holes, which could
render the entire sensor network nonfunctional, many sensor
network applications [4]–[6] define the network lifetime as the
minimal nodal lifetime among all sensor nodes in the network.
Therefore, in order to prolong the network lifetime, it is critical
to prolong the lifetime of the shortest-nodal-lifetime nodes.

Despite the need for a multi-layer holistic approach to bal-
ance nodal lifetime and thus prolong the network lifetime, it is
necessary to design a data aggregation scheme that can take into
account the non-uniform nodal lifetime among nodes, attempt to
balance their nodal lifetime, and thus more effectively prolong
the network lifetime.

B. Related Works

Many in-network data aggregation protocols [7]–[9] have
been proposed, but the timeliness of the data delivery was not
a concern. Although Ye et al. [10] formulated the energy-delay
tradeoff problem as a semi-Markov decision process by depre-
ciating the data revenue as aggregation holding time increases,
no explicit end-to-end delivery delay bound was considered. To
bound end-to-end delivery delay, many existing works [11]–
[13] require time synchronization between neighboring nodes.
Solis et al. [11] employed the concept of cascading timeout
where a node’s aggregation timeout happens right before its
parent’s to achieve high aggregation degree with small delay
overhead. Xiang et al. [12] explored the joint data aggregation
and timeliness of data delivery problem, and proposed a utility-
based scheme called tPack to minimize the whole network
communication cost. Assuming a synchronized time-slotted
system, [13] formulated the energy-delay tradeoff problem as
an integer optimization problem. Different from these works,
our scheme does not require synchronization. Moreover, all
of the afore-mentioned works aim to minimize the energy
consumption, without considering the lifetime balance between
nodes which is critical in improving the network lifetime.

[3] investigated the problem of energy efficient data delivery
within a delay bound and proposed two distributed schemes
to balance energy consumption among sensor nodes. However,
the schemes work only in homogeneous networks (e.g., the
battery quality, radio energy consumption rate and initial nodal
energy are the same) whereas our scheme can deal with the
heterogenous situations. There have also been works [14],
[15] on optimizing aggregation tree structure. Our scheme is
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orthogonal to these works, because our scheme works under
any aggregation tree structure.

C. Contributions
In this paper, we present LBA, a low cost, asynchronous,

delay-constrained data aggregation scheme for duty cycle sensor
networks. LBA aims to prolong the network lifetime. The key
idea is to dynamically adjust the aggregation holding time
between two neighboring nodes and hence to balance their
nodal lifetime. As neighboring nodes keep balancing their nodal
lifetime, the nodal lifetime of all nodes in the entire network can
be balanced gradually and the network lifetime can be extended.

We have implemented and experimented LBA in a testbed
of 32 TelosB sensor nodes. Experimental results show that
LBA effectively achieves the design goal of balancing the
nodal lifetime, and prolongs the sensor network lifetime under
various network configurations, especially the heterogeneous
ones. Through theoretical analysis, we also proposed a network
lifetime upperbound. According to our evaluation results, LBA
can approach the lifetime upperbound especially when the
nodes have highly different nodal lifetime.

D. Organization
In the rest of the paper, Section II describes the system

model and problem definition. Sections III, IV and V present the
design overview, analytical study and detailed design. Section
VI reports the testbed implementation and experimental results.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
We study data aggregation in a sensor network, where each

sensor node could periodically generate and report sensory
data, and all the nodes form a collection tree rooted at the
sink. The nodes may not be time-synchronized or energy-
synchronized (i.e., their energy supplies and consumption rates
may not be uniform). The nodes are duty-cycled for energy
saving, which are typical when the network is deployed for
long-time monitoring. To build and maintain the data collection
tree, a routing protocol such as the collection tree protocol
(CTP) [16] may be employed. Underlying the routing protocol,
an asynchronous and duty cycle MAC protocol such as RI-
MAC [17] may be adopted.
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Fig. 1. System model.

A typical data aggregation process is shown in Figure 1. A
source node may not send out sensory data packet immediately
after it is generated; instead, the node may wait a certain
period of time (self-aggregation delay), attempting to aggregate

multiple data packets generated during the period and thus
reduce the amount of data sent to its parent node. Similarly, a
forwarding node may not forward a data packet immediately
after the reception. It may wait for another period of time
(forwarding-aggregation delay) in order to aggregate multiple
data packets received during the period. Consequently, the delay
involved in delivering a data packet from source to sink is
composed of a self-aggregation delay and multiple forwarding-
aggregation delays. In the rest of the paper, we denote the
average data generation rate at each node i as λi, and the
average forwarding-aggregation and self-aggregation delay at
node i as wi and w′i respectively.

We assume the total aggregation model [18] in data ag-
gregation; that is, an arbitrary number of data packets that are
available at the aggregation time can be suppressed into a single
data packet. Such model can be seen in many sensor network
applications. For example, in monitoring applications, users
often are more interested in the maximum, minimum or average
values, or the percentile statistics, of sensory data, rather than
the raw data themselves.

As we can see, the longer is the aggregation delay, the
more data packets can be aggregated and thus the higher is the
communication efficiency. However, monitoring applications
often also require that data delivery delay be lower than a certain
bound to assure timely awareness of the monitored environ-
ment. We assume the following generic delay requirement: at
least p percent of sensory data should be delivered to the sink
within time D after the data has been generated, where D and
p are application-specific parameters.

B. Problem Statement
Our design objective is to dynamically determine the

forwarding-aggregation and self-aggregation delays (i.e., wi and
w′i) for each node i to try to balance the lifetime of sensor nodes
and hence prolong the network lifetime, under the condition that
the data delivery delay requirement is satisfied. In this course,
the differences between nodes, for example, different nodal
energy levels, energy consumption rates and data generation
rates, should be considered. Specifically, the problem can be
formalized as follows:

Given:
T, {λi}, {ei}.

Objective:
maxmin{Li}

Subject to:
∀l, w′

l +
∑
i∈sl

wi ≤ Dp, where l is leaf

Output: {wi, w
′
i}.

Here, T is the collection tree topology, ei is the residual
energy and Li represents the nodal lifetime of node i. l is a
leaf node and sl denotes the path connecting the parent of l
and the sink in T . Dp represents the maximal allowed delay,
including both transmission and aggregation delay, along each
source-sink path such that at least p percent of the source’s
sensory data can reach the sink within D time. The calculation
of Li and Dp is to be presented in Section IV.

III. DESIGN OVERVIEW

Solving the above optimization problem in a centralized
manner is impractical as it requires each node to know the resid-
ual energy levels, data generation rates of all other nodes, and
the topology of the network. Acquiring these information could
incur high communication overhead because of potentially large
network scale and dynamic nature of the information. There-
fore, we approach the problem in a distributed and localized
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manner. Specifically, coordinations only take place between
neighboring parent-child nodes, which exchange information
with each other and coordinately adjust their aggregation delays.
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Fig. 2. Design overview.

As shown in Figure 2, the coordination is realized by
piggy-backing some small pieces of control information at the
end of the data and ACK packets exchanged between parent-
child nodes. Specifically, when sending out a data packet to
its parent, a node appends to the packet its estimated nodal
lifetime and some other information related to the adjustment
of aggregation delays. Upon receiving the packet, the parent
node pushes the packet into a queue while feeding the appended
information to the “Aggregation Controller” module. Based on
the information, the parent node adjusts its own wi, and appends
some information to the ACK to instruct its children nodes
on how to adjust their wi values. When the ACK reaches a
child node j, the node changes its wj and w′j accordingly.
This way, as every parent-child pair keeps attempting to balance
their nodal lifetime, the nodal lifetime of all nodes in the entire
network is also adjusted gradually towards the balanced status.

IV. ANALYTICAL STUDY

To provide a theoretical foundation to direct and evaluate
the performance of our design, we present extensive analysis in
this section. Specifically, we first provide a formulation of nodal
lifetime as a function of a node’s data input/output rates. Then,
the data I/O rates are formulated as functions of nodal data
generation rates, self-aggregation and forwarding-aggregation
delays. This is followed by the computation of the maximum
aggregation and transmission delays that all the nodes on a
source-sink path are allowed to introduce without violating
a certain application-specific data delivery delay requirement.
Based on the above analysis, we finally propose an algorithm
to compute an upperbound for the network lifetime through
intelligently determining the self-aggregation and forwarding-
aggregation delays for each node.

A. Nodal Lifetime
As our design targets to be applicable in time-asynchronous

duty cycle sensor networks, a time-asynchronous duty cycle
MAC protocol is assumed. In the analysis and detailed design
presented in this paper, we take RI-MAC [17], a well-known
asynchronous and duty-cycled MAC protocol, as an example.
Note that, our design can work with other MAC protocols, e.g.,
X-MAC [19], A-MAC [20], after replacing the nodal lifetime
analysis module of RI-MAC with that of the alternative MAC
protocol.

For self-containedness, the sketch of RI-MAC is illustrated
in Figure 3. In this protocol, each node periodically wakes up
for time ϕ every interval Tr to check if there is any incoming
packet intended for the node. After turning on its radio, a node
immediately broadcasts a beacon, announcing its readiness for
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Fig. 3. The sketch of RI-MAC protocol. Tr is the receiver’s beacon interval,
ϕ is the receiver’s channel checking period and τ is the time needed by the
sender and receiver to exchange a data packet and the corresponding ACK.

receiving packets. If a node has packet to send (e.g., node S in
Figure 3) it turns on its radio if it is off, and keeps the radio on
to wait for the beacon from the intended receiver (e.g., node R
in Figure 3). Upon receiving the expected beacon, S sends out
its data immediately, which will be acknowledged by R with
an ACK after R has received the data. Then, S turns off its
radio, while R and any other sender who has pending packet
intended for R can start transmission. If there are no more
incoming/outgoing packets, R turns off its radio and goes to
sleep. Further, due to the lossy nature of the wireless channels,
a sender may need several transmission attempts to successfully
send out a packet. Let ETXi denote the expected transmission
attempts1 at node i. Let m denote the maximum number of
transmission trials before a sender gives up its transmission
attempt until the next time it receives beacon from its intended
receiver. Then, we can estimate the nodal lifetime Li as follows:

ei

((Tr(⌈
ETXi

m ⌉ − 1
2 ) + τ(ETXi%m))λ′

i +
ϕ
Tr

+ τ
∑

j∈Ci
λ′
j)P

. (1)

Here, P is the energy consumption rate when a node’s radio
is on, λ′i denotes the data output rate of node i, and τ is the
time to send or receive a data packet.

∑
j∈Ci

λ′j denotes the
data input rate at node i, where Ci is the set of i’s children
and λ′j is the data output rate of node j. A node could be both
a sender and a receiver. As a sender, the node waits Tr

2 on
average for its receiver to wake up and then consumes time τ
for each transmission attempt until the number of unsuccessful
attempts reaches m, in which case it waits for another Tr and
then repeats the transmission attempts. Hence, with average
number of attempts ETXi for each data packet, the overall
energy consumption for the successful transmission of a data
packet is Tr(⌈ETXi

m ⌉ − 1
2 ) + τ(ETXi%m). As a receiver, the

node wakes up for time ϕ every interval Tr, and spends time
τ
∑

j∈Ci
λ′j on receiving data packets. Hence, the denominator

of Eq. (1) estimates the energy consumption rate at node i.
Note that, we here only estimate the energy consumption for
communication, which is usually the most significant part of
nodal energy consumption. It can be easily extended to include
the energy consumption for other reasons such as sensing and
computation.

B. Nodal Data Input/Output Rates

To facilitate theoretical analysis and evaluation of our de-
sign, we assume sensory data packets are generated at node i
with the intervals following an exponential distribution of mean
1/λi, and therefore the flow of sensory data packets generated
by a node follows a Poisson distribution of mean λi.

1Note that routing protocols such as CTP [16] in sensor networks have
provide mechanisms for automatical measuring ETXi for node i. We therefore
do not describe how to measure ETXi in this paper.
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Our design also intentionally shapes the data packet flows
after aggregations to follow the Poisson distribution. Particu-
larly, if node i is a leaf node, it maintains a timer A′i which
fires every time interval W ′i , where W ′i is a random variable
following the exponential distribution with mean w′i. If node i
is a non-leaf node, it maintains a timer Ai which fires every
time interval Wi, where Wi is a random variable following
the exponential distribution with mean wi. Every time when
the timer (A′i or Ai) fires, data packets are aggregated into a
single packet and then sent to its parent node; if there is no data
packet to send when the timer fires, a dummy packet is sent to
ensure that the output data flow follows Poisson distribution.
As described below, our scheme adopts a simple enhancement
to keep the overhead low by reducing the dummy packets as
much as possible.

Based on the above assumption and mechanism, we next
formulate the nodal average data output rate (denoted as λ′i for
each node i) as a function of its data input rate (i.e.,

∑
j∈Ci

λ′j
where Ci is the set of children nodes of i), its own data
generation rate (i.e., λi) and its own forwarding-aggregation
and self-aggregation delays (i.e., wi and w′i). Note that a node’s
data input rate is the sum of the data output rates of its children;
hence, we do not need a separate analysis for data input rate.

When a node is a pure source, its self-aggregation delay w′i
(i.e., the maximal time it can wait to aggregate its own sensory
data without violating the delay requirement) can be computed
as follows:

w
′
i = Dp −

∑
k∈si

(wk + dk)− di, (2)

where di denotes the average transmission delay at node i. That
is, the sum of aggregation and transmission delays of all nodes
on the path from node i to the sink should not exceed Dp, the
maximum aggregation and transmission delay that any source-
sink path is allowed to introduce. The output rate of node i is
simply 1

w′
i

if one packet (aggregated data or dummy) is sent
every time timer A′i fires. However, when the average data
generation interval 1

λi
is greater than w′i, a large number of

dummy packets may be generated. To reduce the bandwidth
waste under this scenario, we instead allow each data packet to
be sent out immediately after its generation. With this simple
enhancement, the number of dummy packets is reduced and the
data output rate of node i, denoted as λs

i , becomes:

λ
s
i =

{
λi : w′

i ≤ 1
λi

;
1
w′

i
: otherwise. (3)

Generally, when node i is a pure forwarder or both forwarder
and source, it can use timer Ai by default to regulate output data
flow, and the output data rate would be 1

wi
. However, when the

data packets are received or generated by the node in an interval
greater than wi, many dummy packets will have to be sent. To
save bandwidth, the following optimization can be applied:
• If packets from descendant nodes arrive at node i with an

average interval greater than wi, timer Ai is not needed.
In this case, there are following three subcases:

– If the arrival interval of packets from descendants is
no greater than w′i, then the packets can be sent in the
following way. Whenever a packet from descendants
arrives at i, it is aggregated with any un-sent packets
generated by i, and the aggregation result is sent to
the parent node.

– If the arrival interval of descent packets is greater than
w′i and node i’s self-generated packets arrive at an
interval no smaller than w′i, then any packet (no matter
it is from descendants or self-generated) is forwarded
to the parent node whenever it arrives at i.

– Otherwise, timer A′i is set to fire every interval W ′i
where W ′i is a random variable following the expo-
nential distribution of mean w′i. Packet aggregation
and transmission rules are as follows. Whenever a
descendant packet arrives at i, it is aggregated with
any un-sent self-generated packets, and the aggrega-
tion result is then sent to the parent node. Whenever
timer A′i fires, all packets held at node i are aggregated
and the aggregation result is sent to the parent node;
if there is no un-sent packet at i, a dummy packet is
sent to the parent.

• Otherwise, timer Ai is used, and the default way for packet
aggregation and sending is applied.

To summarize, node i’s data output rate λ′i can be calculated
as follows:

λ
′
i =



∑
j∈Ci

λ′
j : wi ≤ 1∑

j∈Ci
λ′
j
≤ w′

i

λi +
∑

j∈Ci
λ′
j : w′

i ≤ 1
λi

, w′
i ≤ 1∑

j∈Ci
λ′
j

1
w′

i
+

∑
j∈Ci

λ′
j : w′

i > 1
λi

, w′
i ≤ 1∑

j∈Ci
λ′
j

1
wi

: otherwise.

(4)

With the above optimization, the data output flow from i still
follows the Poisson distribution.

C. Lowerbound of a Subtree’s Data Output Rate
Based on the above analysis of nodal data output rates, we

next present a lowerbound of a subtree’s data output rate in the
following Lemma 4.1. Note that the result is also to be used in
computing the performance upperbound.

Lemma 4.1: Let Ti denote a subtree rooted at i, and wi and
w′i be the forwarding-aggregation and self-aggregation delays
of node i respectively. Then a lowerbound of the data output
rate of Ti, denoted as λ̂′i is as follows.

λ̂
′
i =


∑

j∈Ti
λj : w′

i ≤ 1∑
j∈Ti

λj
;

1
w′

i
: otherwise.

(5)

Proof: (sketch) There are totally two cases as in the
following.

Case I: w′i ≤ 1∑
j∈Ti

λj
. For this case, we prove by con-

tradiction that the data output rate of Ti cannot be less than∑
j∈Ti

λj . Suppose the output rate is lower than the value,
then some data should have been suppressed at some node.
Suppose node k ∈ Ti is such a suppressing node but none of
its descendants can suppress data. The overall data generation
rate at the subtree rooted at Tk is

∑
j∈Tk

λj , which is no greater
than

∑
j∈Ti

λj ; i.e.,

1∑
j∈Ti

λj

≤
1∑

j∈Tk
λj

. (6)

Also due to wk ≤ w′i, w
′
k ≤ w′i and w′i ≤ 1∑

j∈Ti
λj

, it holds
that

wk ≤ max{wk, w
′
k} ≤

1∑
j∈Tk

λj

≤
1∑

j∈Ck
λ′
j

. (7)

Further, it is obvious that
∑

j∈Tk
λj ≥ λk; together with

Eq. (7), it holds that

w
′
k ≤ max{wk, w

′
k} ≤

1∑
j∈Tk

λj

≤
1

λk

. (8)

According to Equations (4), (7) and (8), it follows that λ′k =
λk +

∑
j∈Ck

λ′j , where, as no descendant of k suppresses data,∑
j∈Ck

λ′j =
∑

j∈Ck

∑
l∈Tj

λl. Therefore, λ′k =
∑

j∈Tk
λj ;

i.e., the number of data packets does not decrease, which is a
contradiction.
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Case II: w′i > 1∑
j∈Ti

λj
. In this case, the data output

rate of Ti is 1
w′

i
when wi is set to w′i; that is, totally A =∑

j∈Ti
λj − 1

w′
i

amount of data is suppressed. We can show
that, in other settings, the amount of suppressed data cannot
exceed A. Specifically, suppose nodes j1, j2, · · · , jn in Ti can
suppress data. Then the amount of suppressed data is at most
A′ =

∑
j∈Ti

λj −
∑n

k=1
1

wjk
, according to Eq. (10). Also

note that, for each k = 1, · · · , n, wjk ≤ w′jk ≤ w′i; hence,∑n
k=1

1
w′

jk

≥ 1
w′

i
. Therefore, A′ ≤ A.

D. Maximum Total Aggregation and Transmission Delay Al-
lowed for Each Source-Sink Path

Suppose the application-specific data delivery requirement
is that at least p percent of data should be delivered to the
sink within time D after being generated. The maximum
total aggregation and transmission delay that all the nodes on
a source-sink path are allowed to introduce is estimated as
follows. Let

i0 → i1 → · · · → in → sink (9)

be a path from leaf node i0 to the sink, and dj be the trans-
mission delay at node ij . Then, the maximum total aggregation
and transmission delay allowed for all nodes on the path is

Dp = −
D −

∑n
j=0 dj

ln(1− n
√
p)

. (10)

The rationale is explained by the following Lemma 4.2 and its
proof.

Lemma 4.2: If the maximum delay allowed for a source-
sink path defined in Eq. (9) is as Eq. (10) and the transmission
delay at node ij is dj , then at least p percent of the data can
arrive at the sink within time D after being generated.

Proof: For any j = 1, · · · , n, let us define

Dj = (D −
n∑

k=0

dk)
wij

w′
i0

+
∑n

k=1 wik

+ dj . (11)

As the forwarding-aggregation delay interval Wij at node ij
follows the exponential distribution of mean wij , the percentage
of packets experiencing delay no more than Dj at node ij is

1− e
−

Dj−dj
wij = 1− e

−
D−

∑n
k=0 dk

w′
i0

+
∑n

k=1
wik . (12)

Let
D0 = (D −

n∑
k=0

dk)
w′

i0

w′
i0

+
∑n

k=1 wik

+ d0. (13)

Similarly, we can get the percentage of packets generated by
node i0 that experiences delay no more than D0 at node i0 is

1− e
−D0−d0

w′
i0 = 1− e

−
D−

∑n
k=0 dk

w′
i0

+
∑n

k=1
wik . (14)

Hence, the percentage of packets generated by source i0 and
experiencing delay no more than

∑n
j=0 Dj = D during their

trips to the sink is

(1− e
−D0−d0

wi0 )

n∏
j=1

(1− e
−

Dj−dj
wij ) = (1− e

−
D−

∑n
j=0 dj

w′
i0

+
∑n

j=1
wij )

n
, (15)

according to Eq. (11) and (13).
Furthermore,

w
′
i0

+

n∑
j=1

wij
≤ Dp = −

D −
∑n

j=0 dj

ln(1− n
√
p)

. (16)

Combining Eq. (16) into Eq. (15), we have

(1− e
−

D−
∑n

j=0 dj

w′
i0

+
∑n

j=1
wij )

n
> (1− e

ln(1− n√p)
)
n

= p. (17)

E. Performance Upperbound
In this section, we develop an algorithm (formally presented

in Algorithm 1) to compute the performance upperbound, based
on the nodal lifetime model built in Sections IV-A and IV-B,
the output data rate lowerbound analyzed in Section IV-C, and
the maximum allowed end-to-end delivery latency computed in
Section IV-D. The algorithm adopts the binary search approach
to seek the maximum nodal lifetime that can be achieved by
every node through attempting all legal ways of aggregation
delay distribution which does not violate the delay requirement.
In the computation, we have introduced several relaxations:
• Perfect channel condition has been assumed for each link;

i.e., for each node i, ETXi is always set to 1.
• When computing the output data rate for a node i using

Eq. (4), its data input rate is assumed to be the sum of the
lowerbounds of its children subtrees’ output rates, where
the result presented in Lemma 4.1 is applied. Hence, the
computed output data rate for node i is also a lowerbound.

• When computing the nodal lifetime of a node i using
Eq. (1), its data input rate is also assumed to the sum
of the lowerbounds of its children subtrees’ output rates.

Algorithm 1 Computation of the Performance Upperbound
Input: {ei}, {λi}, Dp, T
Output: network lifetime upperbound L̂

1: low ← ϵ, up←∞
/* low/up is the lower/upper bound of the network lifetime */

2: target← low
/* target is the maximum achievable network lifetime */

3: calculate Dp according to Lemma 4.2
4: while up− low > ϵ do
5: wsink ← 0, w′

sink ← Dp

6: reacheable← false
7: for each node i in the pre-order traversal of T do
8: for wi from 0 to Dp −

∑
k∈si

wk with step σ do
9: calculate λ̂′

i according to Eq. (4) and (5) with wi

10: if ei

((
Tr
2

+τ)λ̂′
i
+

ϕ
2Tr

+τ
∑

j∈Ci
λ′
j
)P
≥ target then

11: reacheable← true
12: break
13: if reacheable = false then
14: up← target
15: target← low+up

2
16: else
17: low ← target
18: target← (up =∞)?2 ∗ low : low+up

2
19: return low

V. DETAILED DESIGN

The scheme operates in two phases: initial phase and
adaption phase.

A. Initial Phase
After the collection tree has been built (i.e., the routing

process has completed), each node i needs to compute the initial
values of wi and w′i. For this purpose, our scheme requires each
on-tree node i to know (i) the maximum allowed aggregation
and transmission delay Dp, (ii) the average transmission delay
di for transmitting a data packet from itself to its parent, and
(iii) how many hops (Hi) it is away from its furthest descendant.
Knowing these information but unaware of either the data rates
or energy levels of individual nodes, our scheme intends to
distribute the maximum allowed aggregation delay (i.e., Dp

minus transmission delays) in a fair manner. Specifically, the
initial value wi can be determined using the following protocol:
• Denote D̄i the maximal allowed delay for the subtree

rooted at node i. Hence, the sink has D̄sink = Dp and
sends it to its children.
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• Upon receiving D̄i from parent node i, node j acts as
follows:

– If node j is non-leaf (i.e., Hj > 0), it sets wj =
D̄i

Hj+1 − dj and w′j = D̄i − dj . Then, it sets D̄j =

D̄i − D̄i

Hj+1 and sends D̄j to its children.
– If j is a leaf, it sets wj = w′j = D̄i − Tr

2 as it does
not forward any data and sets w′j = D̄i − Tr

2 .
The three pieces of information needed by each node can be
obtained in the following ways.
• The sink can compute and broadcast to all on-tree nodes

Dp after the tree has been built. Note that, the sink can
get the average per-hop transmission delay and the length
of the longest branch on the tree through querying the
nodes on the tree. Using these information, together with
the application-specified parameters D and p, the sink can
compute Dp by using Eq. (10).

• For the routing and route maintenance purposes, it is
typical that neighboring nodes are required to exchange
beacons periodically to know the expected number of
transmission needed for successful delivery of a packet
over a link (i.e., ETX). With the knowledge of ETX , it is
easy to estimate per-transmission delay. Particularly, if the
underlying MAC protocol is RI-MAC with period Tr and
the ETX of the link from node i to its parent is denoted
as ETXi, then the expected per-packet transmission delay
for i is Tr(⌈ETXi

m ⌉ − 1
2 ) + τ(ETXi%m) as in Eq. (1),

where Tr and m are parameters in RI-MAC.
• To help a non-leaf node know how many hops it is away

from its furthest leaf node, a simple method is as follows.
Each data packet sent from a leaf node is piggy-backed
with a field H which is initiated to 0. As the packet
is forwarded hop-by-hop upwards, the value in the field
is incremented. By observing the H values of forwarded
packets for a certain period of time, each non-leaf node i
can obtain its Hi.

B. Adaption Phase
In this phase, each node interacts with its parent unless its

parent is the sink; it also interacts with its children nodes unless
it is a leaf node. In both types of interaction, the node and its
parent or children need to adjust their forwarding-aggregation
and self-aggregation delays, attempting to gradually balance
their lifetime. The behaviors of a node in such interactions
are different depending on whether it acts as a parent (i.e.,
interacting with its children) or a child (i.e., interaction with it
parent). As a basic difference, a child node j needs to report to
its parent its current lifetime (Lj), forwarding-aggregation delay
(wj), self-aggregation delay (w′j), data output rate (λ′j) and
data input rate (

∑
k∈Cj

λ′k). To save communication overhead,
these information can be piggy-backed to data packets sent
to its parent. As a parent node, on the hand, needs to make
decision on how to adjust the forwarding-aggregation and self-
aggregation delays of its own and its children, and notify the
decision to its children. More specifically, the parent and child
behaviors are described as follows.

1) Behaviors of a Parent Node: Figure 4 illustrates the
behaviors of node i as a parent node. When receiving a
data packet from its child node j, parent node i extracts Lj ,
wj , w′j , λ′j and

∑
k∈Cj

λ′k. Every a certain time interval,
the parent node is triggered by a timer to start checking the
lifetime difference between itself and its children, which may
be followed by adjustments of the aggregation delays when
necessary. Particularly, only if the lifetime difference between
node i and the its shortest-lifetime child is greater than a certain

threshold α, the adjustments are performed. The timer interval
and the threshold α are both adjustable system parameter that
should be appropriately set, not too large or too small, in order
to not miss the opportunity of lifetime balance or introduce
unnecessary trashes.

Receive a data packet 

from child node j

Append to 

ACK and send it 

to child node j

Append to ACK and 

send it to child node j

Extract wj, wj’, Lj, j and k Cj k’ from 

the packet and update corresponding 

children information

Li > minj Ci{Lj} + ?

= min( , wi)

wi
tmp

= wi –

wi = wi
tmp

Li < minj Ci{Lj} – ?

= min(n , wi)

wi
tmp

= wi –

wj
tmp

= wj + for all j Ci

w’j
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= w’j + for all j Ci

Li
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tmp

= wi + 

wj
tmp
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Append to 
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Y
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n = 1
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Y
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Y

N

N

n = n + 1

Y

Timer fires

Fig. 4. Flowchart of adjusting wi when node i acts as a parent node.

When it is necessary to adjust aggregation delays, there are
two cases as follows.
• Case I: Node i has longer lifetime than its shortest-lifetime

child (i.e., Li > minj∈Ci Lj+α). In this case, the scheme
will attempt to increase the lifetime of the shortest-lifetime
child. Letting ∆ = min(δ, wi), where δ is a small value,
the following adjustments are applied.

– For node i: wi = wi −∆ and w′i remains unchanged.
– For every child node j of node i: wj = wj +∆ and

w′j = w′j +∆.
The adjustment strategy is based on the following obser-
vations. From Equation( 4), we can see that λ′j is a non-
increasing function of wj and w′j . Particularly, λ′j remains
unchanged if w′j ≤ 1

λj
and wj ≤ 1∑

k∈Cj
λ′
k

; it increases

otherwise. If λ′j decreases, as node j’s input rate does
not change, node j’s lifetime will be increased according
to Equation (1). If λ′j does not change, wj and w′j will
be further increased in the follow-up adjustment rounds.
Hence, at least one of the conditions of w′j ≤ 1

λj
and

wj ≤ 1∑
k∈Cj

λ′
k

will be eventually broken, and then node

j’s lifetime can be extended.
• Case II: Node i has shorter lifetime than each child (i.e.,

Li < minj∈Ci Lj − α). In this case, the scheme will
attempt to increase the lifetime of node i.
According to Equation (1), node i’s lifetime is affected
by two factors: its data output rate λ′i and data input rate∑

j∈Ci
λ′j . To extend lifetime, node i may increase its wi

to reduce its data output rate; on the other hand, its children
j ∈ Ci will have to reduce their wj values to satisfy
the delay requirement. resulting in an increased input rate∑

j∈Ci
λ′j . The combination of the above two effects may
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or may not lead to lifetime increase. Similarly, decreasing
wi and increasing wj for each child i will decrease its data
input rate but may increase its data output rate, which may
or may not lead to lifetime increase.
Due to the above uncertainty, the scheme will not im-
mediately increase (or decrease) its wi or ask its chil-
dren to decrease (or increase) their aggregation delays
as in the previous case. Instead, it tries the possible
increase/decrease strategies, estimate their effects on its
lifetime locally, until an effective strategy has been found
or all possible strategies have been tried. If an effective
strategy is found, i.e., a ∆ (which could be positive or
negation) is found such that adding ∆ to wi and subtracting
it from wj of every child j will result in a lifetime increase
in node i, the strategy will be applied on node i and ∆
will be sent to the children nodes.

2) Behaviors of a Child Node: As shown in Figure 5, a
child node simply updates its wi and w′i according to its parent
node’s instruction.

Receive an ACK 

from parent node
Extract from ACK

wi = wi + 

wi’ = wi’ + 

Update aggregation 

timer interval

Fig. 5. Flowchart of adjusting wi when node i acts as a child node.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

Our proposed LBA scheme has been implemented in
TinyOS 2.1.0 as a middleware component, which takes 248
bytes of RAM and 9180 bytes of ROM for a tree network
where each non-leaf node has 10 children nodes on average.
This component sits between the application and routing layers.
If it is disabled, data from the application layer is sent down
to routing layer transparently; otherwise, self-generated data
from application layer and received sensory data from routing
layer are aggregated inside it, and the aggregated data will be
sent to the routing component after the aggregation timer fires.
CTP [16] is adopted as the routing layer protocol to build the
data collection tree and RI-MAC [17] is used as the MAC layer
protocol. RI-MAC is a receiver-initiated protocol for low duty
cycled sensor networks, its energy consumption model matches
with our lifetime estimation model analyzed in Section IV-A.

In the implementation, there are three types of existing mes-
sages required by different components and we take advantage
of the availability of these messages to enable the aggregation
information exchange with the minimum overhead. In each data
message, the aggregation information including nodal lifetime,
self-data generation interval, aggregation interval, incoming
and outgoing intervals are piggybacked, and a parent node
can collect these information of its child node when data
communication happens between them. In each ACK message
(software ACK used in RI-MAC), the updated aggregation
interval value is added to notify the child node. In a receiver’s
beacon (required by RI-MAC), the parent node’s lifetime is
added.

B. Testbed Experiment Results

1) Setup: We evaluate the performance of the proposed
adaptive assignment scheme (denoted as LBA in figures) in
terms of network lifetime and end-to-end data delivery delay.
The results are compared to the theoretical upperbound which
is computed using Algorithm 1 (denoted as UPPER in figures)
and the following two aggregation schemes:

• PTL (pushing aggregation delays to leaves): aggregation
delays are only assigned to leaf nodes; the aggregation
delays do not change after assignment. The delay assign-
ment is implemented as follows. After tree has been built,
the sink broadcasts to all nodes on the tree the maximum
allowed aggregation and transmission delay Dp; then, each
leaf node i takes Dp − di (recalling di is its average
transmission delay) as its aggregation delay.

• AVG (average assignment of aggregation delays): aggre-
gation delays are assigned to nodes as in the initial phase
of our proposed scheme; but the aggregation delays do not
change after assignment.

We set up a testbed network of 32 TelosB motes, forming
a tree topology shown in Figure 6, where Node 0 is the sink
(i.e., root). RI-MAC parameter Tr and the average data packet
generation interval at source nodes are both set to 1 second,
RI-MAC parameters ϕ and τ are 40 milliseconds. The end-
to-end delivery requirement D changes from 20s to 140s, and
p = 80%. At the beginning of each experiment, the initial nodal
energy level is uniform or non-uniform. When the initial energy
level is uniform, each sensor node’s battery is in the full energy
level; when it is non-uniform, some nodes start with 1/4, 1/2
or 3/4 of the full energy level, while others still start with the
full energy level. To save experiment time, the full energy level
is set to 200 Joules which can support a mote running for 45
minutes at 100% radio duty cycle.
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Fig. 6. Network topology in testbed experiments.

2) Performance Under Uniform Initial Energy Distribution:
Figures 7 and 8 show the performance evaluation results when
the initial energy levels of nodes are uniform.

a) When all nodes are data sources: As shown in
Figure 7(a), the network lifetime achieved by LBA and AVG is
significantly higher than that of PTL. This is not surprising
because PTL does not allow nodes to aggregate data they
forward while LBA and AVG allow nodes to aggregate data
generated or forwarded by them. Due to the uniform distribution
of nodal energy level, LBA and AVG do not have significant
different performance. Indeed, as shown in Figures 7(c) and
7(d), both schemes result in small deviation in nodal lifetime
among all nodes, which indicates that the strategy of fairly
and statically assigning aggregation delay adopted by AVG can
already achieve good performance and therefore LBA does not
bring much extra benefit. Figure 7(b) shows the CDF of end-to-
end delay when LBA is applied. As can be seen, the end-to-end
delay requirements can be met.

b) When only leaf nodes are data sources: As shown
in Figure 8(a), the network lifetime achieved by LBA and
AVG is still significantly higher than that of PTL. The results
show that self-aggregation does not fully exploit the aggregation
opportunities. Data packets resulted from self-aggregations can
be further aggregated at joint points of multiple branches on the
tree, and such opportunities can be seized by LBA and AVG.
Also due to the uniform distribution of initial nodal energy
level, the performance superiority of LBA over AVG is still
small. However, as we can see from Figure 8(c) and 8(d), LBA
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can balance nodal energy levels more effectively than AVG,
which explains the longer lifetime achieved by LBA.
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Fig. 7. Performance comparison when all nodes generate data packets. [Note:
(c) and (d) plot the standard deviation and average of nodal residual energy
when the first node dies.]
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Fig. 8. Performance comparison when only leaf nodes generate data packets.
[Note: (c) and (d) plot the standard deviation and average of nodal residual
energy when the first node dies.]

3) Performance Under Non-uniform Initial Energy Distri-
bution: The network lifetime is affected by the degree of
deviation in nodal lifetime, which is in turn affected by the
degree of deviation in nodal residual energy level. Hence, we
also evaluate the performance of aggregation schemes when
the initial nodal energy levels are different among nodes.
Particularly, in the experiments, we randomly chose a certain
percentage of nodes to start working at a lower energy level
than others who are with full initial energy level.

a) Performance comparison: Figure 9 demonstrates that
LBA can achieve larger network lifetime improvement over
both AVG and PTL in this scenario.

As the performance superiority of AVG over PTL has been
obvious from previous experiments, we here focus on explain-
ing the difference between LBA and AVG. With LBA and AVG,
nodes start with the same distribution of aggregation delays,
and the distribution of delays is unaware of the difference
in nodal residual energy level or nodal lifetime. With AVG,
the distribution of delays does not change after the initial

distribution. Hence, if significantly differences of nodal residual
energy (and hence lifetime) are present among the nodes,
nodes with the lowest nodal lifetime will die much earlier
than those with longer nodal lifetime, leading to shortened
network lifetime. On the other hand, LBA can dynamically
adapt the distribution of aggregation delays among nodes such
that nodes with lower nodal lifetime can gain more aggregation
delays from those of higher nodal lifetime, leading to balanced
distribution of nodal lifetime among nodes and hence prolonged
network lifetime.
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Fig. 9. Performance comparison under non-uniform initial nodal energy. [Two
nodes start with a low energy level equal to 1/4 of the full energy level while
others start with the full energy level.]

b) A working trace: To better understand how LBA
prolongs the lifetime of low energy (and hence short lifetime)
nodes in the network, Figure 10 shows the changing trace
of aggregation delays and nodal energy of all nodes on the
path from node 28 to the sink. We can find that when node
8 starts working with only 1/4 of the full energy, its own
aggregation delay keeps increasing while its ancestor’s (node
3) and successors’ (node 16) keep dropping accordingly. When
node 16’s aggregation delay reaches 0, it gains aggregation
delay from its subtree (nodes 21, 24 and 28) to compensate
node 8. In other words, node 8 can get help not only from
its direct parent or child directly, but also from other nodes
in the network indirectly. As a result, node 8’s energy drops
slowly compared to all other nodes on the path, and the network
lifetime is significantly extended.
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Fig. 10. Trace of aggregation delays and nodal energy [Node 8 starts with a
low energy level equals to 1/4 of the full energy level while others start with
the full energy level. D = 35 s, p = 80%.]

c) Impact of the degree of deviation in nodal energy
levels: To evaluate the impact of the different degrees of
deviation in nodal energy levels, we conduct two sets of
experiments.

In the first set, we fix the initial energy level of each low-
initial-energy node to 1/4 of the full energy while varying the
number of such low-initial-energy nodes in the 32-node network
same as the above. As shown in Figure 11(a), as the number
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of low-initial-energy nodes increases, the performance of AVG
and PTL does not change much because the lifetime they can
achieve can be affected by even a single such low-initial-
energy node. The performance of LBA, however, decreases
as the number of low-initial-energy nodes increases. This is
because, with limited amount of total aggregation delays, less
compensation can be obtained by each low-initial-energy node
as the number of such nodes increases.

In the second set of experiments, we fix the number of
low-initial-energy nodes while varying the initial energy level
from 75% to 25% of the full energy. As can be observed from
Figure 11(b), as the energy level decreases, the performance
of AVG and PTL drops much faster than that of LBA. This
is because the network lifetime achieved by AVG and PTL is
bounded by the shortest-nodal-lifetime node; but with LBA,
the nodal lifetime of such nodes can be increased through
re-distribution of aggregation delays. Though the decrease of
initial energy level demands more re-distribution efforts and
thus can decrease the network lifetime, the decrease is shared
among the nodes and thus the decreasing speed is slow.
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Fig. 11. Impact of the degree of deviation in nodal energy levels. [D = 35 s,
p = 80%].

4) Performance Under Spatial and Temporal Various Data
Generation Rates: We evaluate the performance under a more
realistic situation where the data generation rates vary during
the network operational time. Specifically, in this experiment,
each node changes its data generation interval randomly in a
specified range after generating every 100 packets. Figure 12
shows the lifetime achieved by three compared schemes as
the data generation interval varies in different ranges, where
a “1-Xs” label on the X-axis means the range is from 1 to X
seconds. As we can see, the performance of LBA is always
significantly higher than that of AVG and PTL when the data
generation interval range changes. This indicates that LBA can
work adaptively to the changes in data generation rates.
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Fig. 12. Performance comparison under various data generation rates. All
nodes are data sources and the end-to-end delay requirement D is 35s with
p = 80%. Two nodes in the network start working with 1/4 of the full energy
while others start with full energy.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a lifetime balanced data aggregation
scheme LBA for asynchronous duty cycle sensor networks.
Through adaptively adjusting the aggregation holding time
between neighboring nodes, LBA can effectively improve the

nodal lifetime of nodes of lower energy supplies and/or higher
energy consumption and thus prolong the network lifetime,
which has been verified by extensive experimental evaluations
based on a sensor network testbed. Some issues are left open
for future research. For example, when the topology of data
collection tree is highly dynamic, how to deliver high perfor-
mance with low overhead is a practical and interesting problem
that needs further investigation. Besides, how to combine LBA
with energy-aware routing and MAC layer protocols and do
the cross-layer optimization for network lifetime prolonging is
another direction of future work.
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