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Analytical Modeling of Inactivity Timer in IEEE 802.16m Sleep Mode
Sunggeun Jin, Member, IEEE, Xi Chen, Student Member, IEEE, and Daji Qiao, Member, IEEE

Abstract—IEEE 802.16m sleep mode employs a timer in order
to determine state transition conditions depending on traffic
arrivals destined for a Mobile Station (MS). However, accurate
analytical model is not provided yet. We reinvestigate the timer
operation and provide an accurate model for further studies.

Index Terms—IEEE 802.16m, power saving, sleep mode.

I. INTRODUCTION

IN IEEE 802.16m Wireless Metropolitan Area Networks
(WMANs), the sleep mode is designed to save energy when

a Mobile Station (MS) is serviced with lightly loaded and/or
realtime traffic. The 802.16m sleep mode has evolved from the
802.16 sleep mode, and hence it shares basic operation regard-
ing listening and sleep windows, where Mobile Station (MS)’s
transceiver is activated and inactivated, respectively [1], [2].
Accordingly, many studies have been made for the 802.16 and
802.16m sleep mode operations [3], [3]–[18]. However, the
802.16m sleep mode has a distinctive feature different from the
802.16 sleep mode. The listening window can be configured
to be extended in either case when more packets arrive during
ongoing packet transmission time or when an inactivity timer
is not expired as elaborated below. When the MS in the
listening window completes receptions of the packets buffered
at a Base Station (BS), it staying in the listening window may
initiate an inactivity timer in order to monitor new packet
arrivals. If a new packet arrives prior to the timer’s expiration,
the MS receives the packet, and thereafter restarts the timer.
Otherwise, it goes back to sleeping for energy saving with the
sleep window. Therefore, the duration of the listening window
increases each time a packet arrives prior to the expiration of
(re)started timer. The increment stops when no packet arrives
within the timer timeout. We call the time duration, where the
MS stays in the listening window, from first starting instant
of the timer to expiration instant due to absence of packet
arriving, inactivity timer life time.

However, recent works do not provide accurate analytical
models for the timer operation [4]–[6]. For example, according
to the 802.16m standard, when new packet arrives within a
timer timeout, the timer should stop to transmit new packet.
Only after the transmission, the timer restarts. However,
in [4]–[6], the authors assume that the timer does not stop so
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Fig. 1. An example for timer operation in the 802.16m WMANs.

that the transmission for the newly arrived packet is deferred
until the timer’s expiration. This operation is not compatible
with the 802.16m standard.

In this letter, we first provide accurate analytical model
for the inactivity timer life time in the 802.16m sleep mode.
For simplicity, we only focus on the timer operation in order
to rectify analytical models of recent works so that we do
not deal with the issues regarding packet transmission delay
and power saving efficiency. It implies that we handle the
inactivity timer without the packet transmission times since
packet transmission times do not influence inactivity timer
operations. This letter is organized as follows: in Section II,
we explain the timer operation in the 802.16m sleep mode. In
Section III, we introduce new analytical model for the timer
operation. Also, we prove that the analytical model is correctly
derived by comparing numerical results with the simulation
results. Section IV concludes this letter.

II. TIMER OPERATION

The 802.16m standard specifies that the sleep mode MS
should periodically wake up to monitor new packet arrivals
every sleep cycle. The sleep cycle is divided into listening and
sleep windows. In the listening window, the MS can receive
the traffic indication message, i.e., AAI-TRF-IND, indicating
the existence of pending packets destined for the MS. If the
indication message indicates the existence of pending packets,
the MS stays awake to receive the packets. After completion of
the packet receptions, the MS can extend the listening window
by starting the timer in order to wait for another packet
arriving. The listening window may increase consecutively
whenever a new packet arrives within the timer timeout. Upon
the timer’s expiration, the MS begins the sleep window by
inactivating its transceiver. However, the 802.16m standard
specifies that the listening window cannot increase beyond the
sleep cycle. The lengths of listening window, sleep window
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and sleep cycle are negotiated at the beginning of the sleep
mode.

Fig. 1 shows an exemplary sleep mode operation with
the inactivity timer in the 802.16m WMANs. This figure
shows that the 802.16m BS buffers arriving packets during the
sleep window and forwards these packets to the MS during
the subsequent listening window. After completion of the
buffered packet transmissions, the MS begins the inactivity
timer in order to wait for a new packet arrival. In this figure,
the listening window extends three times by restarting the
inactivity timer, and thereafter the MS enters the sleep window
following the listening window upon the expiration of the
inactivity timer.

III. ANALYTICAL MODEL

For proper analysis, we assume that packet arrival intervals
are exponentially distributed with expectation of 1/λ. The
timer’s timeout value is assumed to be constant as specified
in the 802.16m standard. In Fig. 1, random variables tA and
tT represent packet arrival interval and timer’s timeout value,
respectively. Due to the memoryless property of the expo-
nential distribution, it is satisfied that Pr(tA > tb + tT |tA >
tb) = Pr(tA > tT ), where random variable tb indicates packet
transmission time. It implies that inactivity timer life time
extends with probability 1 − Pr(tA > tT )(= Pr(tA ≤ tT )).
For this reason, we denote random variable satisfying tA ≤ tT
with t̂A. Also, we can recognize that t̂A follows a truncated
exponential distribution. Similarly, random variable t̂T satis-
fies the condition that tT < tA. We denote the probability
density function (pdf) for random variable tA and tT with
fA(t) and fT (t), respectively. The timer expires only when
packet arrival interval is longer than timer’s timeout value.
Therefore, the timer expiration probability is derived by:

Pr(tA > tT ) =

∫ ∞

0

∫ tA

0

fA(tA)fT (t)dtdtA

=

∫ ∞

0

∫ tA

0

λe−λtAfT (t)dtdtA

= λ

∫ ∞

0

e−λtA

∫ tA

0

fT (t)dtdtA

= F ∗
T (λ), (1)

where F ∗
T (λ) is Laplace transform function of pdf fT (t). The

timer continues to restart until its expiration. Therefore, we
have the probability ϕi that the timer restarts i times by:

ϕi =
(
1− F ∗

T (λ)
)i
F ∗
T (λ), (2)

where i ≥ 0. From this equation, we can have inactivity timer
life time tE by:

tE =

∞∑
i=0

ϕi

i∑
k=1

t̂
(k)
A + t̂T , (3)

where t̂
(k)
A ’s are mutually independent random variables with

the same distribution as t̂A. A truncated distribution can be
denoted by a conditional distribution, and random variable
tA is independent to random variable tT . Therefore, we have
Laplace transform function for random variable t̂A by:

E[e−st̂A ] =

∫ ∞

0

∫ tT

0

e−st̂Aft̂A(t̂A)dt̂Adt̂T

=

∫ ∞

0

∫ tT

0

e−stAftA(tA|tA ≤ tT )dtAdtT

=
1

1− F ∗
T (λ)

∫ ∞

0

∫ tT

0

λe−stAe−λtAfT (tT )dtAdtT

=
1

1− F ∗
T (λ)

∫ ∞

0

λ

s+ λ
fT (tT )

(
1− e−(λ+s)tT

)
dtT

=
1

1− F ∗
T (λ)

λ

s+ λ

(
1− F ∗

T (s+ λ)
)
. (4)

Similarly, when tT < tA, the timer expires. Therefore, we
have Laplace transform function for random variable t̂T by:

E[e−st̂T ] =

∫ ∞

0

e−st̂T ft̂T (t̂T )dt̂T

=

∫ ∞

0

e−stT ftT (tT |tT < tA)dtT

=
1

F ∗
T (λ)

∫ ∞

0

∫ ∞

tT

fA(tA)e
−stT fT (tT )dtAdtT

=
1

F ∗
T (λ)

∫ ∞

0

e−stT fT (tT )

∫ ∞

tT

fA(tA)dtAdtT

=
1

F ∗
T (λ)

∫ ∞

0

e−stT e−λtT fT (tT )dtT

=
1

F ∗
T (λ)

F ∗
T (s+ λ). (5)

From Eqs. (2)-(5), we derive Laplace transform function for
random variable tE by:

E[e−stE ] = E[e−st̂T ]

∞∑
i=0

ϕi

(
E[et̂A ]

)i

=
1

F ∗
T (λ)

F ∗
T (s+ λ)

∞∑
i=0

ϕi

( 1

1− F ∗
T (λ)

λ

s+ λ

×
(
1− F ∗

T (s+ λ)
))i

= F ∗
T (s+ λ)

∞∑
i=0

(
1− F ∗

T (s+ λ)
)i( λ

s+ λ

)i

=
1− (

1− F ∗
T (s+ λ)

)
1− λ

s+λ

(
1− F ∗

T (s+ λ)
)

×
∞∑
i=0

( λ

s+ λ

(
1− F ∗

T (s+ λ)
)i(

1− λ

s+ λ

×(
1− F ∗

T (s+ λ)
)

=
F ∗
T (s+ λ)

1− λ
s+λ

(
1− F ∗

T (s+ λ)
) . (6)

Herein, we obtain the pdf for random variable tE from
Eq. (6), and then apply the pdf to the expectation derivation
considering the sleep cycle. The pdf ftE (t) for random vari-
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Fig. 2. Probability density function fγ(i,λ)(t) when λ=0.1, T = 5, and
1 ≤ i ≤ 4.

able tE is derived by:

ftE (t) = L−1
{
E[e−stE ]

}

=

∞∑
i=0

L−1
{
e−(s+λ)T

( λ

s+ λ

)i(
1− e−(s+λ)T

)i}

=
∞∑
i=0

L−1
{( λ

s+ λ

)i

×
i∑

j=0

(
i

j

)(− 1
)j
e−(s+λ)T

(
e−(s+λ)T

)j}

=

∞∑
i=0

e−λT
i∑

j=0

(
i

j

)
(−1)j

(
e−λT

)j

×fγ(i,λ)
(t− (j + 1)T )1t≥(j+1)T

=

∞∑
i=0

e−λT f(i,λ)(t). (7)

Note that we expand this equation by using binomial
theorem that (x + y)i =

∑i
j=0 x

jyi−j . In this equation,
γ(i,λ) represents random variable following a gamma distri-
bution with expectation i/λ. Its Laplace transform function

F ∗
γ(i,λ)

(s) =
(

λ
s+λ

)i

and the pdf is denoted with fγ(i,λ)
(t).

We use the property of Laplace transform for the derivation
of this equation by:

L−1
{
F ∗
γ(i,λ)

(s)e−jTs
}
= fγ(i,λ)

(t− jT )1t≥jT . (8)

For simplicity, we define f(i,λ)(t) =∑i
j=0

(
i
j

)
(−1)j

(
e−λT

)j
fγ(i,λ)

(t− (j + 1)T )1t≥(j+1)T .
Eq. (7) is complete. However, practically this equation

requires high computing power for accurate calculations. In
order to avoid exhausting computations, we approximate this
equation. Fig. 2 shows how f(i,λ)(t) varies according to i.
In this figure, we observe f(i,λ)(t) converges to a normal
distribution as i increases. The central limit theorem [19]
explains sum of independent random variables converges to a
normal distribution as illustrated in this figure. For this reason,
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Fig. 3. Inactivity timer life times for the 802.16m sleep mode operation
when λ = 0.1.

we approximate Eq. (7) by:

ftE (t) ≈
I−1∑
i=0

f(i,λ)(t) +

∞∑
i=I

ϕifν(i,λ)(t− T ), (9)

where ν(i,λ) is a random variable for normal distribution of
which expectation and variance are denoted with iE[t̂A] and
VAR(t̂A), respectively. fν(i,λ)(t) represents pdf for random
variable ν(i,λ). I is an arbitrary number large enough for the
central limit theorem. In our evaluations, I = 5. E[t̂A] and
VAR(t̂A) are given by:

E[t̂A] =
1

λ

(1− (
λT + 1

)
e−λT

1− e−λT

)
, (10)

VAR(t̂A) =
2

λ2

(1− (
(λT )2/2 + λT + 1

)
e−λT

1− e−λT

)
.(11)

Finally, we can obtain expected inactivity timer life time for
the 802.16m WMANs by:

E[tE ] =

∫ TC

0

tftE (t)dt+ TC

(
1−

∫ TC

0

ftE (t)dt
)
, (12)

Fig. 3 illustrates analysis and simulation results. Well-
matched results prove that analytical equations are correctly
derived. As shown in this figure, we find that inactivity timer
life time increases according to the sleep cycle, inactivity
timer value, and packet arrival rate. In this figure, we also
observe inactivity timer life times are bounded by sleep cycles.
However, we need to obtain exact inactivity timer life times
for exact performance evaluations.

IV. CONCLUSION

We provide an accurate analytical model regarding inactiv-
ity timer life time. The proposed equations are expected to be
used for further studies relying on numerical analysis of sleep
mode operations.
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