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Abstract

Many previous works on floorplanning with non-rectangular modules [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12] assume that the modules are pre-designated to have particular non-rectangular shapes, e.g., L-shaped,
T-shaped, etc. However, this is not common in practice because rectangular shapes are more preferable
in many designing steps. Those non-rectangular shapes are actually generated during floorplanning in
order to further optimize the solution. In this paper, we study this problem of changing the shapes and
dimensions of the flexible modules to fill up the unused area of a preliminary floorplan, while keeping
the relative positions between the modules unchanged. This feature will also be useful in fixing small
incremental changes during ECO modifications. We formulate the problem as a mathematical program.
The formulation is such that the dimensions of all the rectangular and non-rectangular modules can be
computed by closed form equations in

�������
time where

�
is the total number of edges in the constraint

graphs. As a result, the total time for the whole shaping and sizing process is
�����
	����

time where
�

is the number of iterations on the Lagrangian Relaxation Subproblem. Experimental results show that
the amount of area re-used is 3.7% on average while the total wirelength can be reduced by 0.43% on
average because of the more compacted result packing.

1 Introduction

A lot of previous works have then been reported on floorplanning with non-rectangular blocks [2, 6, 3,
4, 7, 8, 9, 5, 10, 11, 12, 13]. The papers [14, 6] extend the Polish expression representation for slicing
floorplans to handle L-shaped and T-shaped modules. The works on non-slicing floorplans are mostly based
on the Bounded Sliceline Grid (BSG) structure [3, 4, 7, 8, 9] or the Sequence Pair (SP) representation [5,
11, 10, 12]. Most of these works explore the rules to restrict the placement of the rectangular sub-blocks
of a rectilinear module, so that these sub-blocks will be placed adjacent to one another in an appropriate
way to form back its original rectilinear shape in the final packing. However, in all these previous works, it
is assumed that some modules are pre-designated to have particular non-rectangular shapes, e.g., T-shaped
or L-shaped, etc., but this is not common in practice since rectangular shapes are more preferable in many
designing steps. They are easier to be managed not only in floorplanning, but also in downstream pin
assignment, placement, routing and timing analysis. Non-rectangular shapes are often considered only
when their shapes can improve the floorplan solution.

We can perform a preliminary floorplan design with all the soft-blocks in rectangular shapes at the
beginning. After a preliminary floorplan is obtained based on the important criteria like interconnect delay,
routing congestion and area, etc., we can allow the flexible modules to change in shapes and dimensions
slightly to further improve the floorplan solution as a post-processing step, while keeping the relative spatial
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relationships between the modules unchanged. By keeping the adjacency and closeness relationship between
the modules unchanged, the effects of this step on the original optimization in interconnect is little while
the area usage can be improved by allowing the flexible modules to change in shapes in the best fit way to
fill up the unused area. The total interconnect length can usually be reduced by this post-processing step
because of the more compacted result packing. It is true that re-using all the empty spaces may not be good
sometimes because empty spaces will be useful for buffer insertion or for other routing purposes. However,
the selection of soft modules and empty spaces can be made by the users according to their needs and our
method allows the users to further optimize a floorplan solution in a flexible way. This technique will also
be useful in fixing small and incremental changes during ECO modifications.

In this paper, we formulate the problem as a mathematical program on floorplanning. Moh et. al [15]
formulated the floorplanning problem as a geometric program and find its global minimum using some
standard convex optimization techniques. Murata et. al [16] extend the work of [15] to non-slicing floorplan
and try to reduce the number of variables and functions when formulating the problem so as to improve the
efficiency. However, the execution time of their method to find an exact solution is still very long, and they
consider soft rectangular modules only. In our formulation, all the flexible modules can change in dimension
under their area and aspect ratio (width to height ratio) constraints. Those lying in the neighborhood of an
empty space can change in shape (to become non-rectangular) to fill up the unused area in the best fit
way. We use the Lagrangian relaxation technique [17, 18] to solve the problem. The formulation is such
that the dimensions of all the rectangular and non-rectangular modules can be computed by closed form
equations in ������� time where � is the total number of edges in the constraint graphs. As a result, the
total time for the whole shaping and sizing process is �����
	���� time where � is the number of iterations
on the Lagrangian Relaxation Subproblem. The paper [16] has also used convex-programming to solve the
floorplanning problem with soft blocks and pre-placed blocks.

We tested our method using some MCNC benchmarks. For each data set, a preliminary floorplan is first
generated with an objective to optimize both the interconnect cost and total chip area. We then apply our
mathematical programming technique to change the flexible modules in shapes and dimensions to fill up the
empty spaces.

The rest of this paper is organized as follow: We will define the problem in the next section. Section
three will give an overview of our approach and our formulation of the problem as a mathematical program.
We will explain in details the Lagrangian relaxation technique and the optimality conditions to help solving
the problem efficiently in section four. Experimental results will be shown in section five, and remarks and
conclusion will be given in the last section.

2 Problem Definition

In this problem, we are given a preliminary floorplan design, and our goal is to change the shapes and di-
mensions of some flexible modules to fill up the empty spaces, while keeping the module areas constant and
the original spatial relationships between the modules unchanged. A simple example is shown in Figure 1.
In this example, the packing on the left is a given preliminary floorplan and our goal is to change the shapes
and dimensions of the flexible modules to fill up the empty spaces. The final packing is shown on the right
in which module 2 and 7 becomes L-shaped after this post-processing step. There are two kinds of input
modules: hard modules and soft modules. A hard module is a module whose dimension is fixed. A soft
module is one whose area is fixed but its shape and dimension can be changed as long as its aspect ratio (and
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the aspect ratio of its sub-blocks if there is any) is within a given range. We are given � modules of areas���
,
���

, ...,
���

, their aspect ratio bounds � 	 ��
����� , � 	 ��
����� , ..., � 	 ��
����� and their initial dimensions. (In case
of a hard module, its minimum and maximum aspect ratio will be the same.) We are also given the netlist
information: ����� ��
 ����� ��
�������
 ������� and the relative positions of the I/O pins � ��
 � ��
�������
 �! along the boundary
of the chip. For each net ������" where #%$'&($ � , we are given its weight, the I/O pin and the set of modules
it is connected to.

(a) Preliminary floorplan. Deadspace = 2.78%

2

3

4

5
6

7

8

9
1

0

(b) After sizing and shaping. Deadspace = 0%

1

2

3
4

5

6

8

9 0

7

Figure 1: A simple example of changing the shapes and dimensions of flexible modules to fill up empty
spaces.

A packing of a set of modules is a non-overlap placement of the modules. We measure the area of a
packing as the area of the smallest rectangle enclosing all the modules. A feasible packing is a packing in
which the widths and heights of all the modules and their sub-blocks (if there is any) satisfy their aspect
ratio constraints and their area constraints. For example, if a soft module & is L-shaped, the dimensions of its
two sub-blocks can be changed as long as their aspect ratios are within the given bounds and their total area
is equal to

� " . A preliminary floorplan is given in the form of a pair of vertical and horizontal constraint
graphs. Our objective is to change the shapes and dimensions of the soft modules to fill up the unused area,
while keeping the relative positions between the modules as described by the constraint graphs unchanged.
(Notice that if a module becomes non-rectangular in shape, its spatial relationship with the other modules
will be measured with respect to its main block, i.e., its largest sub-block.) The problem is defined formally
as follows:

Problem Floorplanning with Shaping and Sizing (FP/SS)
Given a preliminary floorplan design in the form of a pair of horizontal and vertical constraint graphs, and
a set of hard and soft modules with their initial dimensions and their areas and aspect ratio constraints,
change the shapes (from rectangular to non-rectangular) and dimensions of the soft modules to reduce
the total area of the floorplan such that the relative positions between the modules (as described by the
constraint graphs) are maintained and all the area and aspect ratio constraints are satisfied.

3 An Overview of Our Approach

We are given a preliminary floorplan of a set ) of � modules * �
, * �

, ..., * �
with areas

� �
,
� �

, ...,
� �

respectively. For each module * ",+ ) , the minimum and maximum aspect ratios are 	 " and
� " respectively.
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The preliminary floorplan is given as a pair of constraint graphs ��� and ��� together with the initial dimen-
sions of the modules. From this information, we can determine the packing, the positions of the unused area
and the positions of the modules. We will then select some soft modules that lie in the neighborhood of
some empty spaces into a set � . These selected modules are eligible to become non-rectangular in shape.
An example is shown in Figure 2. In this example, module

�
and � are selected, and they can be changed to

non-rectangular in shape to fill up the unused spaces (Figure 2(b)). Every module in this set � will have one
additional sub-block of variable size. The constraint graphs ��� and ��� will also be updated (become �	��
and ���� ) to include these new sub-blocks. New edges will be added to the constraint graphs to restrict the
positions of these sub-blocks so that they will fill up the empty spaces and will abut with their corresponding
main blocks. Figure 3 shows the changes made to the constraint graphs for the example in Figure 2. Notice
that every selected module *�
 + � will have one sub-block * �
 but the area of the sub-block may become
zero at the end and the selected module will then remain rectangular if this can optimize the design better.
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(a) Preliminary floorplan

Figure 2: Module
�

and � are selected to be eligible to be changed into non-rectangular in shape to fill up
the empty spaces.
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Figure 3: Modify the constraint graphs to include the new sub-blocks and their associated edges.

After selecting a set of modules into � and modifying the constraint graphs correspondingly, we can treat
the sub-blocks as individual soft modules. (They will automatically abut with their main blocks because of
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the constraint edges added into the constraint graphs.) Let the size of � be � , i.e., � modules are selected
to be possibly changed to non-rectangular in shape. W.l.o.g., we assume that module * ��
 * ��
�������
 *�� are
in � and their corresponding sub-blocks are * ��� ��
 * ��� ��
�������
 * ��� � . Let � � denote this set of sub-blocks.
Now, we have a new set ) � of total � ��� ��� � modules * ��
 * ��
�������
 * �	�

. Consider the packing topology
described by the constraint graphs � � � and � �� . Let 
!" denote the smallest 
 position of the lower left corner
of module * " satisfying all the horizontal constraints in the horizontal constraint graph ���� . Similarly, � "
denotes the smallest � position of the lower left corner of module * " satisfying all the vertical constraints
in the vertical constraint graph �	�� . Then for each edge � � & 
� � from * " to *�� in � � � , we have the following
constraint:


�"���� " $�
 �
where � " is the width of * " . Similarly, for each edge � � & 
� � from * " to *�� in ���� , we have the following
constraint:

� " ��� " $����
For each module * " + )�� � , i.e., a rectangular module, the following relationship between � " and � "
holds:

� " � � "� � "
For each module * " + � , i.e., a non-rectangular module, we have a constraint on the total area of * " and
its sub-block * ��� " :

� " � " ��� ��� " � ��� " � � "
In the horizontal constraint graph � � � , we denote the set of sources and sinks by

� � and � � respectively where
a source is a vertex without any in-coming edge and a sink is a vertex without any out-going edge. Similarly,
we use

� � and � � to denote the set of sources and sinks in � �� respectively. Then for each * " in
� � and *��

in
� � :


 " � �
��� � �

For simplicity, we add one dummy vertex labeled � ��� # to each of ���� and � �� . The dummy vertices in � � �
and � �� represent the rightmost and topmost boundary of the chip respectively. Edge � � & 
 � � � # � with weight
� " is added to � � � for each * " + � � because the rightmost chip boundary should be at a distance of at least
� " from each module * " + � � . Similarly, � � & 
 � � � # � with weight � " is added to � �� for each * " + � � . From
now onwards, we assume that the constraint graphs � � � and � �� contain these additional vertices and edges.
The problem can be formulated as the following mathematical program ��� (Primal Problem):

Minimize: 
 �	��� � � �	��� �
Subject to: 
 " ��� " $�
�� � � � & 
� � + � � � (A)

� " � � " $���� � � � & 
� � + � �� (B)
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� " � " � � " � � � #%$ & $ � (C)
� " � " ��� ��� " � ��� " � � " �,# $ &($ � (D)
	 " � " $�� " �,# $ &($ � � � (E)
� " $ � " � " �,# $ &($ � � � (F)

4 Solving the Problem by Lagrangian Relaxation

We will apply the Lagrangian relaxation technique [17] to solve the primal problem � � . Lagrangian re-
laxation is a general technique for solving constrained optimization problems. Constraints that are difficult
to handle are “relaxed” and incorporated into the objective function by multiplying each constraint with a
constant called Lagrange multipler. To solve the problem ��� , we relax the constraints (A) and (B). Let

� "�� �
denotes the multiplier for the constraint 
 " � � " $�
�� in (A), and � "�� � denotes the multiplier for the constraint
� " � � " $���� in (B). Let

��
and

�� be vectors of all the Lagrange multipliers introduced. Then the Lagrangian
relaxation subproblem associated with the multipliers

��
and

�� , denoted by �() � � � �� 
��� � , becomes:

Minimize: 
 � � � � � � � � � �	��
� "�� ������� � � � "�� � � 
 " ��� " � 
 � � �	��
�� "�� ������� � � � "�� � � � " ��� " � ��� �
Subject to: � " � " � � " � � � # $ &($ �

� " � " � � ��� " � ��� " � � " � #�$ & $ �
	 " � " $�� " � #�$ & $ � � �
� " $ � " � " � #�$ & $ � � �

Let � � �� 
��� � denote the optimal value of the problem � ) � � � �� 
��� � . We define the Lagrangian dual problem��� � of ��� as follows:

Maximize: � � �� 
��� �
Subject to:

��! � and
��  �

Notice that ��� is a geometric program [19]. It can be transformed into a convex problem. Hence, if
��

and
�� is the optimal solution of ��� � , then the optimal solution of �() � � � �� 
��� � will also optimize ��� [17,

Theorem 6.2.4]. In the following, we will show how to solve � ) � � � �� 
��� � and ��� � optimally. In other
words, ��� also is solved optimally.

4.1 Simplification of the Lagrangian Relaxation Subproblem

The Lagrangian relaxation subprogram �() � � � �� 
��� � can be greatly simplified by the Kuhn-Tucker condi-
tions [17, 18]. Consider the Lagrangian " of � � [17]:

" � 
 � � � � � � � � � � #
� "�� ������� � �
� "�� � � 
 " ��� " � 
 � � � #
� "�� ������� � � � "�� � � � " � � " � ��� �

�	$&%(')+*-,/.10�%(23%4.�0�%4.5$76�8 
 " � �:9 .�0 � " � �

The Kuhn-Tucker conditions imply that ;<" � ;�
 " � � and ;<" � ;�� " � � for all # $ & $ � � � # at the optimal
solution of ��� . Therefore, in searching for the multipliers to optimize �=� � , we only need to consider
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those multipliers such that ; " � ; 
 " � � and ;<" � ;�� " � � hold for all # $ & $ � � � # . We obtain the
following conditions by rearranging the terms in " and taking derivatives:

#
� � � " ����� � �
� � � " � #
�� "�� ������� � �

� "�� � (1)

#
�� � � " ����� � � � � � " � #
�� "�� ������� � � � "�� � (2)

for all #%$ & $ � � , and

� � � � � � #
�� "�� � � � � ����� � �
� "�� �	��� � (3)


 � � � � � #
�� "�� � � � � ����� � � � "��
� � � �

(4)

We use
�

to denote the set of �
�� 
��� � satisfying the above relationships (1) - (4) for the given pair of horizontal

and vertical constraint graphs � � � and � �� . When �
�� 
��� � + �

, the objective function � of � ) � � � �� 
��� �
becomes:

� � ��� #��� " � ��� �
��
� #
�� "�� ������� � �

� " � � � � " � � #
�� " � ������� � � � "�� � � � "��	
where � � � � ��
� "�� � � � � ����� � � � "�� �	��� � � � � 
�� " � � � � � ����� � � � " � �	� � � � is a constant for a fixed pair of

��
and

�� . Let� " � � 
� "�� ������� � � � " � � and � " � � 
� "�� ������� � � � "�� � , for #%$ & $ � � � . Then � ) � � � �� 
��� � can be simplified to:

Minimize: #��� " � ��� � � � " � " � � " � " �
Subject to: � " � " � � " � � � #%$'&($ �

� " � " ��� ��� " � ��� " � � " � #%$ & $ �
	 " � " $ � " � #%$ & $ � � �
� " $ � " � " � #%$ & $ � � �

To solve this simplified Lagrangian relaxation subproblem, we first write down its Lagrangian 
 :
 � #��� " � ��� � � � " � "�� � " � " � � #� � ��� " � ��� " � � " � " � � " ��� #��� " � �� " � � " � " ��� ��� " � ��� " � � " �
� #��� " � ��� ��� " � 	 " � " � � " ��� #��� " � ��� ��� " � � " � � " � " �

where � "�+�� ,  "%+�� , � "  � and � "  � denote the Lagrangian multipliers for the constraints in (C),
(D), (E) and (F), respectively. According to the Kuhn-Tucker conditions [17], the first-order optimality
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conditions for � ) � � � �� 
��� � are as follows:

; 
 � ;�� " � � for all #%$ & $ � � � (5)

; 
 � ; � " � � for all #%$ & $ � � � (6)

� " � 	 " � " � � " � � � for all #%$ & $ � � � (7)

� " � � " � � " � " � � � for all #%$ & $ � � � (8)

� " � " � � " for all � � # $ &($ � (9)

� " � " � � ��� " � ��� " � � " for all #%$ & $ � (10)

4.2 Optimality Condition for Rectangular Blocks

Consider a module * " where � � # $ &($ � , i.e., a rectangular module. The first-order optimality conditions
for this module are:

� " � � " � " � � " � � " � � (11)

� " � � " � " � 	 " � " � � " � " � � (12)

� " � 	 " � " � � " � � � (13)

� " � � " � � " � "�� � � (14)

� " � " � � " (15)

where (11) and (12) follow from (5) and (6), respectively.
There are 3 cases for the values of � " and � " according to the values of � " and � " :

Case 1: � " � � and � " � � . From (11), � " � � � " � � " . From (12), � " � � � " � � " . Eliminating � " ,
� " � � " � " � � " . Substituting � " into (15), �

�
" � " � � " � � " . Therefore, � " � � � " � " � � " .

Case 2: � "��� � and � " � � . Equation (13) implies that � " � 	 " � " . Substituting � " into (15), � " ��� � " 	 " .
Case 3: � " � � and � " �� � . Equation (14) implies that � " � � " � " . Substituting ��" into (15), � " � � � " � " .
Note that the case � "��� � and � "��� � is impossible since equation (13) and (14) cannot be satisfied
simultaneously.

By combining the three cases, it is not difficult to see that

� " � ) ,/.	� � � " � " 
 ) 9�
 � � � " 	 " 
� � " � " � � "����
Once � " is found, � " is given by

� " � � " .
4.3 Optimality Conditions for Non-Rectangular Modules

Consider a module * " where #�$ & $ � , i.e., a module that can possibly become non-rectangular in shape.
The first-order optimality conditions for this module and its sub-block * ��� " are:

� " �  " � " � � " � � " � � (16)

� " �  " � " �'	 " � " � � " � " � � (17)
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� ��� " �  " � ��� " � � ��� " � � ��� " � � (18)

� ��� " �  " � ��� " � 	 ��� " � ��� " � ����� " � ��� " � � (19)

� " � 	 " � " � � " � � � (20)

� " � � " � � " � " � � � (21)

� ��� " � 	 ��� " � ��� " � � ��� " � � � (22)

� ��� " � � ��� " � ����� " � ��� " � � � (23)

� " � " � � ��� " � ��� " � � " (24)

where (16) and (17) follow from (5) and (6), respectively. For a given pair of
��

and
�� ,
� " , � " , � ��� " and � ��� "

are known. Therefore, we need to solve a system � of nine non-linear equations with nine unknowns ( � " ,
� " , � ��� " , � ��� " ,  " , � " , � " , � ��� " and � ��� " ). Fortunately, they can be solved by closed form equations as
described in the following.

There are 3 cases for the values of � " and � " according to the values of � " and � " :
Case 1: � " � � and � " � � . This case occurs when 	 " $�����

�
$ � " . From equation (16) and (17),

� " � �
� " " � " � � � " "

Case 2: � " �� � and � " � � . This case occurs when ����
�
$ 	�" . From equation (16), (17) and (20),

� " � �
� " 	 " � � "�  " 	 " � " � �

� " 	 " � � "�  "
Case 3: � " � � and � " �� � . This case occurs when ����

�
 � " . From equation (16), (17) and (21),

� " � �
� " � " � � "�  " � " � " � �

� " � " � � "�  "
Note that the case that � " �� � and � " �� � is impossible since equation (20) and (21) cannot be satisfied
simultaneously. Similarly, we can write � ��� " and � ��� " in terms of

� ��� " , � ��� " , 	 ��� " , � ��� " and  " according
to the values of � ��� " and � ��� " :
Case 1: � ��� " � � and � ��� " � � . This case occurs when 	 ��� " $ ���
	���

�
	��
$ ����� " . From equation (18) and

(19),

� ��� " � �
� ��� " " � ��� " � � � ��� " "

Case 2: � ��� " �� � and � ��� " � � . This case occurs when ����	��
��	�

$ 	 ��� " . From equation (18), (19) and (22),

� ��� " � �
� ��� " 	 ��� " � � ��� "�  " 	 ��� " � ��� " � �

� ��� " 	 ��� " ��� ��� "�  "
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Case 3: � ��� " � � and � ��� " �� � . This case occurs when ����	��
��	�

 ����� " . From equation (18), (19) and (23),

� ��� " � �
� ��� " ����� " � � ��� "�  " ����� " � ��� " � �

� ��� " ����� " � � ��� "�  "
Similarly, the case that � ��� " �� � and � ��� " �� � is impossible since equation (22) and (23) cannot be
satisfied simultaneously. Therefore, in any combination of the above cases, we can write � " , � " , � ��� " and
� ��� " in terms of  " . (Note that

� " , � ��� " , � " , � ��� " , 	 " , � " , 	 ��� " and
����� " are known.) We can substitute

these expressions into equation (24) and solve  " . Finally, we will substitute back the value of  " into the
expressions for � " , � " , � ��� " and � ��� " and compute their values.

4.4 Solving LRS

The algorithm LRS below outlines the steps to solve the Lagrangian relaxation subproblem �() � � � �� 
��� �
given a pair of

��
and

�� satisfying the optimality condition.

Algorithm LRS

/* This algorithm solves � ) � � � �� 
��� � optimally given a pair of �
�� 
��� � + � */

Input: Areas
� �

,
���

, ...,
���

Lower bounds on aspect ratios 	 � , 	 � , ..., 	 � �
Upper bounds of aspect ratios

� �
,
���

, ...,
� � �

Constraint graphs � �� and � � �
Lagrange multipliers �

�� 
��� � + �
Output: � � , � � , ..., � � � , � � , � � , ..., � � �
1. For & � � � # to �
2. Compute � " ��� � " 	�" and � " ��� � " � "
3. Compute

� " � � 
� "�� ������� � � � "�� �
4. Compute � " � � 
� "�� ������� � � � "�� �
5. If � � " �� � � and ��� " � � "  � �
6. Compute ��� � � � " � " � � "
7. � " � ) ,/. ��� " 
 ) 9�
 � � " 
 � � ��� 
 � " � � " � � "
8. For & � # to �
9. Compute

� " � � 
� "�� ������� � � � "�� �
10. Compute � " � � 
� "�� ������� � � � "�� �
11. Compute

� ��� " � ��
�� ��� "�� ������� � � � ��� "�� �
12. Compute � ��� " � ��
� ��� " � ������� � � � ��� " � �
13. Compute  " , � " , � " , � ��� " and � ��� " from the values of

� " , � " , � ��� " and � ��� "
according to the cases described in Section 4.3.

4.5 Solving �����

As explained above, we only need to consider those �
�� 
��� � + � in order to maximize � � �� 
��� � in the �=� �

problem. We used a subgradient optimization method to search for these optimal pairs of
��

and
�� . Starting
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from an arbitrary �
�� 
��� � + �

in step � , we will move to a new pair �
��
�

 �� � � by following the subgradient

direction:

� �"�� � � � � "�� � ��� 
 � 
 " � � " � 
 � � � �
� �"�� � � � � "�� � ��� 
 � � " ��� " � ��� � � �

where

� 
 �
�
�
� 
 , 8 
�� � 

� , 8 
 $ � �

and � 
 is a step size such that � & � 
��
	�� 
 � � and � 	
�� � � 
 �� . After updating
��

and
�� , we will

project �
��
�

 �� � � back to the nearest point �

��
�

 �� � � in

�
using a 2-norm measure and solve the Lagrangian

relaxation subproblem �() � � � �� � 
 �� � � again using the algorithm LRS. These steps are repeated until the
solution converges. The following algorithm summarizes the steps to solve the �=� � problem:

Algorithm LDP
/* This algorithm solves the �=� � problem optimally. */
Input: Areas

� �
,
� �

, ...,
� �

Lower bounds on aspect ratios 	 � , 	 � , ..., 	 � �
Upper bounds on aspect ratios

� �
,
���

, ...,
� � �

Constraint graphs � �� and ����
Output: � � , � � , ..., � �	� , � � , � � , ..., � �	�
1. Initialize �

�� 
��� � and � �
2. Project �

�� 
��� � to �
��
�

 �� � � such that �

��
�

 �� � � + �

3. � � #
4. �

�� 
��� � � �
��
�

 �� � �

5. Repeat

6. Call LRS() with �
�� 
��� �

7. Compute � 
 " 
 � " � � #�$ & $ � � � # from ���� and ���� using the
longest path algorithm

8. Compute
� �" � � � � � "�� � ��� 
 � 
 " ��� " � 
�� � � � � � � & 
� � + ����

9. Compute � �"�� � � � � "�� � ��� 
 � � " ��� " � ��� � � � � � � & 
� � + � ��
10. Project �

��
�

 �� � � to �

��
�

 �� � � s.t. �

��
�

 �� � � + �

11. � � ��� #
12. �

�� 
��� � � �
��
�

 �� � �

13. Until � " and � " �,#%$ & $ � � � # converge

5 Experimental Results

We tested our method using the MCNC benchmarks. The size of each benchmark data is shown in Table 1.
In each experiment, we first generated a preliminary floorplan using a simulated annealing method. In this
initial floorplanning step, equal weighting were given to the area term and the wirelength term in the cost
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Data Set Number of Modules Number of Nets

xerox 10 203

hp 11 83

ami33 33 123

ami49 49 408

Table 1: Testing data sets

Benchmark Deadspace in Area Change Time
preliminary Re-used in Total

floorplan Wirelength
(%) (%) (%) (sec)

xerox 3.51 3.01 -0.87 0.16

hp 3.87 2.55 -0.88 0.17

ami33 7.41 5.01 -0.97 1.44

ami49 9.07 4.08 +1.00 4.88
Each result is obtained by taking the average of running an experiment five times.

Table 2: Shaping and sizing results

function, where the wirelength is computed using the half-perimeter estimation method assumming that the
pins are located at the center of the module. After obtaining a preliminary floorplan, we selected some soft
modules lying in the neighborhood of some large empty spaces into the set � . These were the modules
that would possibly become non-rectangular in shape to fill up the spaces. In our current implementation,
we would select those modules which were also lying on the critical paths of the constraint graphs. The
constraint graphs were then modified to include the new sub-blocks of the selected modules and to restrict
their positions so that they would fill up the empty spaces and abut with their corresponding main blocks.
After these pre-processing steps, we performed shaping and sizing on the modules using the Lagrangian
relaxation technique as described in section 4.

In all the experiments, the minimum and maximum aspect ratios of the soft modules were 0.5 and 2.0
respectively, while those for the sub-blocks were 0.1 and 10.0 respectively. We limited the aspect ratio of
the final packing to the range of 0.9 to 1.1. All the results were generated using a 600MHz Pentium III
processor, and were shown in Table 2. Experimental results show that our shaping and sizing technique is
useful in re-using empty spaces by changing some soft modules to non-rectangular in shape, while keeping
the relative positions between the modules unchanged. We can see that the total wirelength is reduced on
average because of the more compacted result packing. Notice that after shaping and sizing, the pins of an
L-shaped module are assummed to be located at the center of the major sub-block. Figure 4, 5, 6, 7 and 8
show the preliminary floorplans and the floorplans after shaping and sizing for some of the experiments.
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6 Remarks

In this paper, we only handle the case when the non-rectangular modules have at most two rectangular sub-
blocks. However our approach can be extended to more than two sub-blocks directly. If each non-rectangular
module has up to � rectangular sub-blocks, the system of equations � will have � � � # unknowns in � � � #
non-linear equations, and can still be solved by closed form equations by considering three possible cases
for the size of each rectangular sub-block.

7 Conclusion

We presented an efficient method to post-process a floorplan solution to further optimize its area usage by
changing some soft modules to non-rectangular in shape to fill up the empty spaces. The total wirelength
can also be reduced because of the more compacted result packing. This technique will also be useful in
fixing small incremental changes during ECO modifications. Our approach is based on an elegant closed-
form solutions to a mathematical program using the Lagrangian relaxation technique. Experimental results
on the MCNC benchmarks have demonstrated its effectiveness in post-processing a floorplan solution in a
very flexible way.

(a) Preliminary floorplan. Deadspace = 6.38%
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Figure 4: Data set xerox (3)
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(b) After sizing and shaping. Deadspace = 2.09%
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Figure 7: Data set ami33 (5)

(a) Preliminary floorplan. Deadspace = 6.48%
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(b) After sizing and shaping. Deadspace = 1.72%
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