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In this paper, we consider the delay minimization problem of an interconnect wire by simultaneously
considering buffer insertion, buffer sizing and wire sizing. We consider three cases, namely using
no buffer (i.e., wire sizing alone), using a given number of buffers, and using the optimal number of
buffers. We provide elegant closed form optimal solutions for all three problems. These closed form
solutions are useful in early stages of the VLSI design flow such as logic synthesis and floorplanning.
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1. INTRODUCTION

With the evolution of VLSI fabrication technology, interconnect delay has be-
come the dominant factor in deep submicron design. Buffer insertion, buffer siz-
ing, and wire sizing have been shown to be effective techniques for interconnect
delay optimization. An overview of previous works on interconnect optimization
using these three techniques is given in Section 2.

Although interconnect optimization is usually performed at late stages in
the current VLSI design flow, it is important to take into account the impact of
interconnect optimization on early stages (like high-level synthesis, logic syn-
thesis, interconnect planning and floorplanning). However, as we can see from
the overview in Section 2, except for some simple cases like wire sizing alone
or buffer sizing alone, all the previous results on interconnect optimization are
algorithmic. It is not practical to incorporate existing interconnect optimization
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algorithms directly into the synthesis or planning tools. Those algorithms are
too costly to be run repeatedly inside the synthesis or planning tools. Moreover,
to run those algorithms, a lot of detailed information (i.e., choice for wire width
and buffer size) is required. But at the synthesis and planning stages, such
information is usually not available. A larger degree of abstraction is usually
used.

In this paper, we give closed form optimal solutions to several interconnect
optimization problems. These closed form solutions are useful at the synthesis
and planning stages since they are extremely efficient to compute and provide
the abstraction needed.

Basically, we consider the delay minimization problem of an interconnect
wire by simultaneous buffer insertion, buffer sizing, and wire sizing. The prob-
lem can be described informally as follows: Given the length of the wire, the
driver resistance and load capacitance, we are allowed to divide the wire into
segments and to optionally insert buffers between any two adjacent segments.
The sizes of buffers and the lengths and widths of segments can all be changed
in order to minimize the delay from source to sink. We solve three versions of
this problem, which differ in the number buffers allowed.

The first version uses the optimal number of buffers. This version is called the
simultaneous Buffer Insertion/Sizing and Wire Sizing problem (BISWS). It is
defined formally as follows: The input is the wire length L, the driver resistance
RD, the load capacitance CL (together with other electrical parameters) and the
total number of segments n to be used. The output variables are listed below.
Let m be the number of buffers used. (Therefore, the wire is separated by the
buffers into m + 1 pieces.) For 0 ≤ j ≤ m, let nj be the number of segments
between the j th buffer and the ( j + 1)th buffer (with n0 being the number of
segments between the source and the first buffer and nm being the number of
segments between the last buffer and the sink). For 1 ≤ j ≤ m, let bj be the size
of the j th buffer. For 1 ≤ i ≤ n, let li and hi be the length and the width of the
ith segment, respectively. The objective is to minimize the delay D from source
to sink over m, n0, . . . , nm, b1, . . . , bm, l1, . . . , ln and h1, . . . , hn simultaneously,
with constraints n0 + · · · + nm = n and l1 + · · · + ln = L. See Figure 1 for an
illustration of BISWS.

The second version allows no buffer. In other words, this is the problem of
delay minimization by wire sizing alone. This version is called the Wire Sizing
problem (WS).

The third version is that the number of buffers m is given as input. The
objective is to minimize D over n0, . . . , nm, b1, . . . , bm, l1, . . . , ln and h1, . . . , hn
simultaneously, with constraints n0+· · ·+nm = n and l1+· · ·+ln = L. This ver-
sion is called the simultaneous Buffer Insertion/Sizing and Wire Sizing problem
with m buffers (BISWS/m).

We provide closed form optimal solutions for all three versions. BISWS is the
most sophisticated version. But we also consider WS and BISWS/m because
their solutions are key intermediate steps to solve BISWS. In addition, WS and
BISWS/m are also practically very interesting by themselves. Instead of using
the optimal number of buffers, we may want to use fewer or not to use any at
all sometimes. In those cases, we need these simpler versions.
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Fig. 1. Illustration of the problem BISWS. The input is L, RD , CL and n. The output is m,
n0, . . . , nm, b1, . . . , bm, l1, . . . , ln and h1, . . . , hn. We provide a closed form optimal solution of it
which minimizes the delay.

Note that for the wire sizing technique considered here, the segment lengths
can also be varied, as long as the total length is fixed. This is more general
than the formulations in previous works, which allow the change of segment
widths only. The buffer insertion technique is more general too as buffers can
be inserted anywhere, rather than having some predefined candidate buffer
locations [Alpert and Devgan 1997; Lillis et al. 1995]. On the other hand, bounds
on buffer size and wire width, and wire fringing capacitance are ignored in the
problem formulation. The consideration of these two extensions are presented
in Section 7.4 and 7.5, respectively. Also note that n is a parameter that allows
us to determine the quality of the solution. We can get a smaller delay by using
a larger value of n.

The remainder of this paper is organized as follows: In Section 2, we present
an overview of previous works on interconnect optimization. In Section 3, we
introduce some notations and the models that we use. In Section 4, we consider
WS. The closed form solution is summarized in Theorem 1. In Section 5, we
consider BISWS/m. The closed form solution is summarized in Theorem 2. Then,
in Section 6, by showing how to find the optimal number of buffers, we give
a closed form solution for BISWS. The result is summarized in Theorem 3. In
Section 7, we present some interesting implications and extensions of our closed
form solutions. An extended abstract of this paper was presented in ISPD-97
[Chu and Wong 1997].

2. PREVIOUS WORKS

In this section, an overview of previous works on interconnect optimization
using buffer insertion, buffer sizing and wire sizing is presented.
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For wire sizing, Chen et al. [1996b], and Fishburn and Schevon [1995] gave
a closed form solution to the continuous wire sizing problem. Later, Chen and
Wong [1997], Fishburn [1997], and Gao and Wong [1997] extended the result
by taking fringing capacitance into consideration. Many iterative algorithms
optimizing various objectives using different delay models have also been
proposed Chen and Wong [1996]; Cong and He [1996]; Cong and Leung [1993];
Kay et al. [1997]; Menezes et al. [1997]; Menezes et al. [1994]; Xue et al. [1996].

Buffer sizing has been an active research area for decades. To drive a large
capacitive load, Lin and Linholm [1975] first proposed the tapered buffer struc-
ture, which is a series of cascaded buffers of increasing size. Immediately after
that, Jaeger [1975] showed that the optimal tapering factor (the size-ratio be-
tween consecutive buffers in the tapered buffer structure) that minimizes de-
lay should be the constant e. Hedenstierna and Jeppson [1987] considered a
more accurate capacitance model and delay model, and showed that the op-
timal tapering factor should be approximately 3–5, depending on the process
parameters and the design style. Zhou and Liu [1997] considered delay, power
dissipation and circuit area and proposed the use of variable size-ratio between
consecutive buffers. Note that all the results for the tapered buffer structure
above are useful only when large capacitive loads are driven. When the re-
sistiveness of loads cannot be ignored, as in the case of driving interconnects
nowadays, buffers should be distributed throughout the interconnect.

If the buffer locations in an interconnect are predetermined, and the buffers
and wire segments can be sized simultaneously, many iterative algorithms us-
ing various techniques have been published in the past few years. Menezes et al.
[1995] used a sequential quadratic programming approach, Cong et al. [1996]
used a greedy approach, Chen et al. [1996a] used the Lagrangian relaxation
technique, and Chu and Wong [1999b] solved a recurrence relation.

If the buffer locations are not predetermined (i.e., buffer insertion is consid-
ered), Dhar and Franklin [1991], and Alpert and Devgan [1997] considered the
problem of driving a uniform line (i.e., wires were not sized). Dhar and Franklin
[1991] assumed that the driver and sink can be resized and derived a closed
form solution which minimizes the delay. Alpert and Devgan [1997] disallowed
resizing of driver and sink and obtained a theoretical result similar to Dhar and
Franklin [1991]. Chu and Wong [1999a] formulated the simultaneous buffer
insertion and wire sizing problem as a convex quadratic program and derived
an very efficient algorithm to solve it. They also introduced an effective pruning
technique to handle buffer sizing. Lillis, et al. [1995] handled the simultaneous
buffer insertion, buffer sizing and wire sizing problem by generalizing the dy-
namic programming algorithm for buffer insertion in van Ginneken [1990]. The
algorithm in Lillis et al. [1995] was later extended to handle power dissipation
and incorporate signal slew into the buffer delay model Lillis et al. [1996].

As we can see, except for some simple cases like wire sizing alone or buffer siz-
ing alone, all the previous results on interconnect optimization are algorithmic.

3. PRELIMINARIES

The following are the notations of the electrical parameters used in this paper:
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Fig. 2. The model of a wire segment of length l and width h by a π -type RC circuit.

Fig. 3. The model of a buffer of size b×minimum device by a switch-level RC circuit.

• RD: Driver resistance.
• CL: Load capacitance.
• r0: Unit square wire resistance.
• c0: Unit area wire capacitance.

• re: Effective output resistance of a minimum device.
• cg : Gate capacitance of a minimum device.
• cd : Drain capacitance of a minimum device.

Elmore delay model [Elmore, 1948] is used for delay calculation. For the
purpose of delay calculation, a wire segment is modeled as a π -type RC cir-
cuit as shown in Figure 2, and a buffer is modeled as a switch-level RC
circuit as shown in Figure 3. For any segment, the upstream resistance is
the sum of all resistances from the driver (or the last buffer before the
segment) to the segment (excluding the segment). The downstream capaci-
tance is the sum of all capacitances from the segment (excluding the seg-
ment) to the sink (or the next buffer after the segment). The upstream
resistance of a buffer or the load, and the downstream capacitance of a
buffer or the driver are defined similarly. Let the delay associated with
the driver be RD × (downstream capacitance of the driver), the delay asso-
ciated with a wire segment as shown in Figure 2 be (r0l/h)× (c0lh/2 +
downstream capacitance of the segment), and the delay associated with a
buffer as shown in Figure 3 be (re/b) × (cd b+ downstream capacitance of the
buffer). Then, the Elmore delay for the wire is the sum of the delays associated
with the driver, all the segments and all the buffers.

4. WIRE SIZING

In this section, we consider the case when no buffer is used. In other words, we
consider the delay minimization problem from source to sink by sizing the n
segments of the wire. We call this the Wire Sizing problem (WS). See Figure 4
for an illustration.
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Fig. 4. Illustration of the problem WS. The input is L, RD , CL and n. The output is l1, . . . , ln and
h1, . . . , hn. We provide a closed form optimal solution of it which minimizes the delay.

The delay D can be written as a function of li ’s and hi ’s, as follows:

D = RD(c0l1h1 + c0l2h2 + · · · + c0lnhn + CL)

+ r0l1

h1

(
c0l1h1

2
+ c0l2h2 + · · · + c0lnhn + CL

)
+ r0l2

h2

(
c0l2h2

2
+ · · · + c0lnhn + CL

)
...

+ r0ln

hn

(
c0lnhn

2
+ CL

)
.

We want to minimize D with respect to li ’s and hi ’s. The optimal li ’s is given
in Lemma 5, and the optimal hi ’s is given in Lemma 7. The optimal solution of
WS is summarized in Theorem 1. In particular, it is interesting to note that
for the optimal solution, the wire is divided into equal-length segments and
the widths of the segments form a geometric progression (i.e., for 1 ≤ i ≤ n,
hi = h1α

i−1 for some constant h1 and α).

LEMMA 1. If f (x) = Ax + B/x +C where A, B, C are independent of x, and
A > 0, B > 0, then f (x) is minimized when x =√B/A.

PROOF. x is an extreme point when f ′(x) = A − B/x2 = 0. Therefore x =√
B/A. f ′′(

√
B/A) = 2B/(

√
B/A)3 = 2A

√
A/B > 0. So f (x) is minimized

when x =√B/A.

LEMMA 2. If f (x) = Ax2 + Bx + C where A, B, C are independent of x and
A > 0, then f (x) is minimized when x = −B/(2A).

PROOF. x is an extreme point when f ′(x) = 2Ax + B = 0. Therefore,
x = −B/(2A). f ′′(x) = 2A > 0. So f (x) is minimized when x = −B/(2A).

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 3, July 2001.



Closed Form Solution to Buffer Insertion • 349

LEMMA 3. For the optimal solution of WS, for any i such that 1 ≤ i ≤ n,
hi =

√
r0CD/c0 RU , and D = r0c0l2

i /2 +2li

√
r0c0 RUCD +RUCD + (terms inde-

pendent of hi), where RU is the upstream resistance and CD is the downstream
capacitance of segment i.

PROOF. The delay D can be written in terms of hi as follows:

D = RU (c0lihi + CD)+ r0li

hi

(
c0lihi

2
+ CD

)
+ terms independent of hi

= hi · RUc0li + 1
hi
· r0CDli + r0c0l2

i

2
+ RUCD

+ terms independent of hi.

By Lemma 1, optimal

hi =
√

r0CDli

RUc0li
=
√

r0CD
c0 RU

.

If we substitute hi into D,

D = r0c0l2
i

2
+ 2li

√
r0c0 RUCD + RUCD + terms independent of hi. 2

LEMMA 4. For the optimal solution of WS, h1 > h2 > · · · > hn.

PROOF. Consider segment i and segment i+1 for any i, the upstream resis-
tance of segment i is smaller than that of segment i + 1 and the downstream
capacitance of segment i is larger than that of segment i + 1. So by Lemma 3,
hi > hi+1 for the optimal solution.

LEMMA 5. For the optimal solution of WS, l1 = l2 = · · · = ln = L/n.

PROOF. Consider segment i and segment i+ 1. Let L̂ = li + li+1. We assume
in this proof that L̂ is fixed while li and li+1 are considered as variables, and
hi and hi+1 are changed optimally according to li and li+1. We show below that
the delay is minimized when li = li+1. It follows that, for any solution of WS, if
li 6= li+1 for some i, we can always find a better solution with li = li+1. Therefore,
for the optimal solution, all li ’s must be the same.

Let RU be the upstream resistance of segment i and CD be the downstream
capacitance of segment i + 1. Note that RU and CD are independent of hi, hi+1,
li and li+1 as li + li+1 is fixed.

D = RU (c0lihi + c0li+1hi+1 + CD)+ r0li

hi

(
c0lihi

2
+ c0li+1hi+1 + CD

)
+ r0li+1

hi+1

(
c0li+1hi+1

2
+ CD

)
+ terms independent of hi, hi+1, li and li+1
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=
(

r0c0 − r0c0hi+1

hi

)
l2

i

+
(

RUc0hi − RUc0hi+1 + r0c0hi+1 L̂
hi

+ r0CD
hi
− r0c0 L̂ − r0CD

hi+1

)
li

+ terms independent of hi, hi+1, li and li+1.

By Lemma 4, r0c0 − r0c0hi+1/hi > 0. So by Lemma 2,

li = −(RUc0hi − RUc0hi+1 + r0c0hi+1 L̂/hi + r0CD/hi − r0c0 L̂ − r0CD/hi+1)
2(r0c0 − r0c0hi+1/hi)

= 1
2

(
L̂ + CD

c0

1
hi+1
− RU

r0
hi

)
. (1)

By Lemma 3,

hi =
√

r0(c0li+1hi+1 + CD)
c0 RU

.

So

li+1 = RU
r0

hi
2

hi+1
− CD

c0

1
hi+1

. (2)

Again, by Lemma 3,

hi+1 =
√

r0CD
c0(RU + r0li/hi)

.

So

li = CD
c0

hi

h2
i+1

− RU
r0

hi. (3)

Add (2) and (3),

L̂ = RU
r0

h2
i

hi+1
− CD

c0

1
hi+1
+ CD

c0

hi

h2
i+1

− RU
r0

hi. (4)

Eliminate li by (1) and (3),

1
2

L̂ = CD
c0

hi

h2
i+1

− 1
2

RU
r0

hi − 1
2

CD
c0

1
hi+1

. (5)

Subtract 2 × (5) from (4),

CD
c0

hi

h2
i+1

= RU
r0

h2
i

hi+1
,

which implies
CD
c0

1
hi+1

= RU
r0

hi.

So by (1), li = L̂/2. That means li = li+1 = L̂/2. This implies l1 = l2 = · · · =
ln = L/n for the optimal solution.
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LEMMA 6. For the optimal solution of WS, h1, h2, . . . , hn form a geometric
progression.

PROOF. Consider segment i, segment i + 1 and segment i + 2. Let RU be
the upstream resistance of segment i and CD be the downstream capacitance of
segment i + 2. Let l = L/n. By Lemma 5, li = li+1 = li+2 = l . Let R = RU/r0l
and C = CD/c0l . By Lemma 3,

hi =
√

r0(c0lhi+1 + c0lhi+2 + CD)
c0 RU

=
√

hi+1 + hi+2 + C
R

, (6)

hi+1 =
√

r0(c0lhi+2 + CD)
c0(RU + r0l/hi)

=
√

hi+2 + C
1/hi + R

, (7)

hi+2 =
√

r0CD
c0(RU + r0l/hi + r0l/hi+1)

=
√

C
1/hi + 1/hi+1 + R

. (8)

So by (6), (7), and (8), respectively,

h2
i R = hi+1 + hi+2 + C (9)

h2
i+1

hi
+ h2

i+1 R = hi+2 + C (10)

h2
i+2

hi
+ h2

i+2

hi+1
+ h2

i+2 R = C. (11)

Eliminate C by (9) and (11),

h2
i R = hi+1 + hi+2 +

h2
i+2

hi
+ h2

i+2

hi+1
+ h2

i+2 R. (12)

Eliminate hi+2 + C by (9) and (10),

h2
i R = hi+1 +

h2
i+1

hi
+ h2

i+1 R. (13)

Eliminate R by (12) and (13),(
h2

i − h2
i+1

)(
hi+1 + hi+2 +

h2
i+2

hi
+ h2

i+2

hi+1

)
= (h2

i − h2
i+2

)(
hi+1 +

h2
i+1

hi

)
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352 • CHU and Wong

⇔ h2
i

h2
i+1

hi+2

hi+1
+ hi

hi+1

h2
i+2

h2
i+1

+ h2
i

h2
i+1

h2
i+2

h2
i+1

− 1− hi+2

hi+1
− hi

hi+1
= 0

⇔
(

hi

hi+1

hi+2

hi+1
− 1
)(

hi

hi+1
+ 1
)(

hi+2

hi+1
+ 1
)
= 0

⇔ hi

hi+1

hi+2

hi+1
− 1 = 0 as

hi

hi+1
+ 1 > 0 and

hi+2

hi+1
+ 1 > 0

⇔ hi+1

hi
= hi+2

hi+1
.

So hi ’s form a geometric progression.

LEMMA 7. For the optimal solution of WS, we have

hi =
√

r0CL

c0 RD

1
αn−1α

i−1 for 1 ≤ i ≤ n

D = r0c0L2

2n2 · n+ 2α − nα2

(1− α)2 ,

where α is the unique root between 0 and 1 of

f (α) = L
n

√
r0c0

RDCL
α(n+1)/2 + α − 1.

PROOF. Let l = L/n. By Lemma 5, li = l for 1 ≤ i ≤ n. By Lemma 6, we
know hi = h1α

i−1, 1 ≤ i ≤ n, for some α. By Lemma 4, we know 0 < α < 1. We
can write the delay as

D = RD
(
c0lh1 + c0lh1α + · · · + c0lh1α

n−1 + CL
)

+ r0l
h1

(
c0lh1

2
+ c0lh1α + · · · + c0lh1α

n−1 + CL

)
+ r0l

h1α

(
c0lh1α

2
+ · · · + c0lh1α

n−1 + CL

)
...

+ r0l
h1αn−1

(
c0lh1α

n−1

2
+ CL

)
= RDCL + r0c0l2 n

2
+ r0c0l2((n− 1)α + (n− 2)α2 + · · · + 2αn−2 + αn−1)

+ RDc0lh1(1+ α + · · · + αn−1)+ r0lCL

h1

(
1+ 1

α
+ · · · + 1

αn−1

)
. (14)

View D as a function of h1 and apply Lemma 1, we get

h1 =
√

r0lCL(1+ 1/α + · · · + 1/αn−1)
RDc0l (1+ α + · · · + αn−1)

=
√

r0CL(1+ α + · · · + αn−1)/αn−1

c0 RD(1+ α + · · · + αn−1)
=
√

r0CL

c0 RD

1
αn−1 .
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Substitute h1 into (14), we get

D = RDCL + r0c0l2 n
2
+ r0c0l2((n− 1)α + (n− 2)α2 + · · · + 2αn−2 + αn−1)

+ RDc0l

√
r0CL

c0 RD

1
αn−1 (1+ α + · · · + αn−1)

+ r0lCL

√
c0 RD

r0CL
αn−1

(
1+ 1

α
+ · · · + 1

αn−1

)
= RDCL + r0c0l2 n

2
+ r0c0l2((n− 1)α + (n− 2)α2 + · · · + 2αn−2 + αn−1)

+ 2l
√

r0c0 RDCL
(
α−(n−1)/2 + α−(n−3)/2 + · · · + α(n−1)/2) (15)

= RDCL + r0c0l2 n
2
+ r0c0l2

(
αn+1 − nα2 + (n− 1)α

(1− α)2

)
+ 2l

√
r0c0 RDCL

(
1

α(n−1)/2 ·
1− αn

1− α
)
. (16)

Let σ =
√

r0c0 RDCL.

dD
dα
= r0c0l2

(
(n+ 1)αn − 2nα + (n− 1)

(1− α)2 + 2(αn+1 − nα + (n− 1)α)
(1− α)3

)
+ 2lσ

(
1

α
n−1

2

1
1− α (−nαn−1)+ 1− αn

1− α
(
−n− 1

2

)
1

α(n+1)/2

+ 1− αn

α
n−1

2

1
(1− α)2

)
= r0c0l2 (n− 1)− (n+ 1)α + (n+ 1)αn − (n− 1)αn+1

(1− α)3

− lσ
(n− 1)− (n+ 1)α + (n+ 1)αn − (n− 1)αn+1

α(n+1)/2(1− α)2

=
(

r0c0l
1− α −

σ

α(n+1)/2

)
l

(1− α)2 ((n− 1)− (n+ 1)α+ (n+ 1)αn− (n− 1)αn+1).

Note that l 6= 0 and (1− α)2 6= 0 as 0 < α < 1. Let

p(α) = (n− 1)− (n+ 1)α + (n+ 1)αn − (n− 1)αn+1.

Then

p′(α) = −(n+ 1)+ n(n+ 1)αn−1 − (n− 1)(n+ 1)αn

p′′(α) = n(n− 1)(n+ 1)αn−2 − n(n− 1)(n+ 1)αn−1

= n(n− 1)(n+ 1)αn−2(1− α)
> 0 for 0 < α < 1.

So p′(α) is increasing for 0 < α < 1. As p′(1) = 0, p′(α) < 0 for 0 < α < 1. Hence,
p(α) is decreasing for 0 < α < 1. As p(1) = 0, p(α) > 0 for 0 < α < 1. In other
words, p(α) 6= 0 as 0 < α < 1.
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By (15), D is a posynomial [Duffin et al. 1967] in α. So D has a unique
minimum with respect to α. Therefore

D is minimized ⇔ dD
dα
= 0

⇔
(

r0c0l
1− α −

σ

α(n+1)/2

)
= 0

⇔ l
√

r0c0

RDCL
α(n+1)/2 + α − 1 = 0.

Let

f (α) = L
n

√
r0c0

RDCL
α(n+1)/2 + α − 1.

Then the optimal value of α which minimizes D is a root of f (α) between 0 and
1. Note that

f (0) < 0 < f (1)

and

f ′(α) = L
n

√
r0c0

RDCL
· n+ 1

2
α(n−1)/2 + 1 > 0 for 0 < α < 1

So f (α) has a unique root between 0 and 1.
To find D, note that

l
√

r0c0

RDCL
α(n+1)/2 + α − 1 = 0

implies √
RDCL = l

√
r0c0

αn+1/2

1− α .

Substituting
√

RDCL into (16), we get

D = r0c0L2

n2

αn+1

(1− α)2 +
r0c0L2

2n
+ r0c0L2

n2

αn+1 − nα2 + (n− 1)α
(1− α)2

+ 2r0c0L2

n2

α(1− αn)
(1− α)2

= r0c0L2

2n2 · n+ 2α − nα2

(1− α)2 . 2

The results of Lemma 5 and Lemma 7 is summarized in the following
theorem.

THEOREM 1. For the optimal solution of the Wire Sizing problem (WS), we
have

li = L/n for 1 ≤ i ≤ n

hi =
√

r0CL

c0 RD

1
αn−1α

i−1 for 1 ≤ i ≤ n
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Fig. 5. Illustration of the problem BISWS/m. The input is L, RD , CL, n and m. The output is
n0, . . . , nm, b1, . . . , bm, l1, . . . , ln and h1, . . . , hn. We provide a closed form optimal solution of it
which minimizes the delay.

D = r0c0L2

2n2 · n+ 2α − nα2

(1− α)2 .

where α is the unique root between 0 and 1 of

f (α) = L
n

√
r0c0

RDCL
α(n+1)/2 + α − 1.

5. SIMULTANEOUS BUFFER INSERTION/SIZING
AND WIRE SIZING WITH m BUFFERS

In order to simplify the notations, we treat the driver and the load as buffers of
fixed size in the rest of the paper. We call the driver the 0th buffer and the load
the (m+ 1)th buffer. Let b0 = re/RD and bm+1 = CL/cg . For 0 ≤ j ≤ m+ 1, let
sj = n0+· · ·+nj−1. In other words, sj is the total number of segments between
the driver and the j th buffer.

In this section, we consider the simultaneous Buffer Insertion/Sizing and
Wire Sizing problem with m buffers (BISWS/m). In other words, we minimize
D over n0, . . . , nm, b1, . . . , bm, l1, . . . , ln and h1, . . . , hn. See Figure 5 for an illus-
tration of BISWS/m.

Instead of considering BISWS/m directly, we first consider a restricted ver-
sion of it such that m as well as n0, . . . , nm are fixed (with n0+· · ·+nm = n). Note
that if we consider the piece of wire between the j th buffer and the ( j + 1)th
buffer, the sizing problem of it is similar to the one discussed in Section 4 with
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nj segments. However, the upstream resistance, which is re/bj , and the down-
stream capacitance, which is cg bj+1, and the length of this piece are not fixed as
we allow variables to be changed simultaneously. This complicates the problem
a lot. In what follows, we exploit some interesting properties so that closed form
optimal solution can be obtained.

The following lemma implies that even under buffer insertion and sizing, the
wire should still be divided into equal length segments.

LEMMA 8. For the optimal solution of BISWS/m with n0, . . . , nm fixed, l1 =
l2 = · · · = ln = L/n.

PROOF. For any j , consider the j th buffer, segment sj and segment sj+1 (i.e.,
the 2 segments around the j th buffer). Let L̂ = lsj + lsj+1. As in Lemma 5, we
assume that L̂ is fixed while lsj and lsj+1 are considered as variables. Let RU be
the upstream resistance of segment sj and CD be the downstream capacitance
of segment sj +1. Note that RU and CD are independent of bj , hsj , hsj+1, lsj and
lsj+1. By Lemma 3,

D = r0c0l2
sj

2
+ 2lsj

√
r0c0 RU (cg bj )+ RU (cg bj )

+
r0c0l2

sj+1

2
+ 2lsj+1

√
r0c0CD

re

bj
+ CD

re

bj
+ D′,

where D′ are terms independent of bj , hsj , hsj+1, lsj and lsj+1.
Put lsj+1 = L̂ − lsj into D and let ρ = √r0c0recg , we can write

D = r0c0l2
sj
+
(

2ρ

√
RUbj

re
− 2ρ

√
CD

cg bj
− r0c0 L̂

)
lsj

+
(

r0c0 L̂
2

2
+ 2L̂ρ

√
CD

cg bj
+ recg

(
RUbj

re
+ CD

cg bj

)
+ D′

)
.

This is a quadratic equation in lsj . By Lemma 2, D is minimized when

lsj = −
2ρ
√

RUbj /re − 2ρ
√

CD/cg bj − r0c0 L̂
2r0c0

. (17)

So

D =
(

r0c0 L̂
2

2
+ 2L̂ρ

√
CD

cg bj
+ recg

(
RUbj

re
+ CD

cg bj

)
+ D′

)

−
(

2ρ
√

RUbj /re − 2ρ
√

CD/cg bj − r0c0 L̂
)2

4r0c0

= r0c0 L̂
2

4
+ ρ

(√
RUbj

re
+
√

CD
cg bj

)
L̂ + 2

√
recg RUCD + D′.
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Consider D as a function of
√

bj . By Lemma 1, D is minimized when

bj =
√

CD
cg

/√
RU
re

,

or equivalently, √
RUbj

re
=
√

CD
cg bj

.

So according to (17), lsj = L̂/2. Therefore, lsj+1 = lsj . This together with
Lemma 5 implies l1 = l2 = · · · = ln = L/n for the optimal solution.

By Lemma 6, we know hsj+1, hsj+2, . . . , hs( j+1) form a geometric progression
for each 0 ≤ j ≤ m. Let α j be the constant such that hsj+i = hsj+1α j

i−1 for
1 ≤ i ≤ nj . By Lemma 4, we know that 0 < α j < 1 for 0 ≤ j ≤ m. The following
lemma proves the surprising result that the constants α j ’s corresponding to
different wire sizing problem instances between any two buffers are all the
same.

LEMMA 9. For the optimal solution of BISWS/m with n0, . . . , nm fixed, α0 =
α1 = · · · = αm.

PROOF. Let l = L/n. By Lemma 8, li = l for 1 ≤ i ≤ n. In this proof, we
treat α j−1 and α j , and hence D, as functions of bj for some j . We minimize
D with respect to bj but we write the optimality condition in terms of α j−1
and α j .

Note that the sizing of the pieces of wires between two adjacent buffers are
instances of WS. So by Theorem 1,

l
√

r0c0

(re/bj−1)(cg bj )
α

nj−1+1/2
j−1 + α j−1 − 1 = 0

or equivalently,

α
nj−1+1
j−1

(1− α j−1)2 =
recg

r0c0l2

bj

bj−1
.

Differentiate with respect to bj ,

α
nj−1

j−1 (nj−1 + 1+ α j−1 − nj−1α j−1)

(1− α j−1)3

dα j−1

dbj
= recg

r0c0l2

1
bj−1

= α
nj−1+1
j−1

(1− α j−1)2

1
bj
.

Hence

dα j−1

dbj
= α j−1(1− α j−1)

nj−1 + 1+ α j−1 − nj−1α j−1

1
bj
.
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Similarly, by Theorem 1,

l
√

r0c0

(re/bj )(cg bj+1)
α

nj+1/2
j + α j − 1 = 0,

or equivalently,

α
nj+1
j

(1− α j )2 =
recg

r0c0l2

bj+1

bj
.

Differentiate with respect to bj ,

α
nj
j (nj + 1+ α j − njα j )

(1− α j )3

dα j

db j
= − recg

r0c0l2

bj+1

b2
j

= − α
nj+1
j

(1− α j )2

1
bj
.

Hence

dα j

db j
= − α j (1− α j )

nj + 1+ α j − njα j

1
bj
.

Let

D j = r0c0l2

2
nj + 2α j − njα

2
j

(1− α j )2 .

Then by Theorem 1,

D = mrecd +
m∑

j=0

D j .

Note that only D j−1 and D j are dependent on bj .

D = r0c0l2

2

nj−1 + 2α j−1 − nj−1α
2
j−1

(1− α j−1)2 + r0c0l2

2
nj + 2α j − njα

2
j

(1− α j )2

+ terms independent of bj ,

dD
db j

= r0c0l2

2

(
2− 2nj−1α j−1

(1− α j−1)2 + 2
(
nj−1 + 2α j−1 − nj−1α

2
j−1

)
(1− α j−1)3

)
dα j−1

db j

+ r0c0l2

2

(
(2− 2njα j )

(1− α j )2 +
2
(
nj + 2α j − njα

2
j

)
(1− α j )3

)
dα j

db j

= r0c0l2 nj−1 + 1+ α j−1 − nj−1α j−1

(1− α j−1)3 · dα j−1

db j

+ r0c0l2 nj + 1+ α j − njα j

(1− α j )3 · dα j

db j

= r0c0l2

bj

(
α j−1

(1− α j−1)2 −
α j

(1− α j )2

)
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d2 D

db2
j

= −r0c0l2

bj
2

(
α j−1

(1− α j−1)2 −
α j

(1− α j )2

)

+ r0c0l2

bj

((
1

(1− α j−1)2 +
2α j−1

(1− α j−1)3

)
dα j−1

db j

−
(

1
(1− α j )2 +

2α j

(1− α j )3

)
dα j

db j

)
= − 1

bj

dD
db j
+ r0c0l2(1+ α j−1)α j−1

b2
j (1− α j−1)2(nj−1 + 1+ α j−1 − nj−1α j−1)

+ r0c0l2(1+ α j )α j

b2
j (1− α j )2(nj + 1+ α j − njα j )

> 0 when
dD
db j
= 0.

Therefore

D is minimized ⇔ dD
db j
= 0

⇔ α j−1

(1− α j−1)2 −
α j

(1− α j )2 = 0

⇔ (α j−1α j − 1)(α j − α j−1) = 0
⇔ α j−1 = α j since α j−1α j − 1 < 0.

In other words, for the optimal solution, α0 = α1 = · · · = αm.

With Lemma 8 and Lemma 9, we are able to write bj ’s, hi ’s and D in closed
form in the following lemma.

LEMMA 10. For the optimal solution of BISWS/m with n0, . . . , nm fixed, we
have

bj = b0
αsj

β j for 1 ≤ j ≤ m

hi =
√

r0CL

c0 RD

βm

αn−1

αi−1

β j for 1 ≤ i ≤ n

with j being the index such that sj + 1 ≤ i ≤ sj+1

(i.e., the ith segment is between the j th and ( j + 1)th buffers)

D = mrecd + r0c0L2

2n2 · n+ 2(m+ 1)α − nα2

(1− α)2 ,

where S = r0c0L2/recg n2, α is the unique root between 0 and 1 of g (α) =√
b0/bm+1 S(m+1)/2 α(n+m+1)/2 − (1− α)m+1, and β = (1− α)2/Sα.

PROOF. By Lemma 9, let α0 = α1 = · · · = αm = α. Let l = L/n. By Lemma 8,
li = l for 1 ≤ i ≤ n. Note that the sizing of the pieces of wires between two
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adjacent buffers are instances of WS. So by Theorem 1,

l
√

r0c0

(re/bj )(cg bj+1)
α(nj+1)/2 + α − 1 = 0 for 0 ≤ j ≤ m

⇒
√

bj

bj+1
α(nj+1)/2 =

√
1
S

(1− α) for 0 ≤ j ≤ m (18)

⇒
m∏

j=0

√
bj

bj+1
α(nj+1)/2 =

m∏
j=0

√
1
S

(1− α)

⇒
√

b0

bm+1
α(n+m+1)/2 =

(
1
S

)(m+1)/2

(1− α)m+1.

Let

g (α) =
√

b0

bm+1
S(m+1)/2α(n+m+1)/2 − (1− α)m+1.

Then the optimal value of α which minimizes D is a root of g (α) between 0 and
1. Note that

g (0) < 0 < g (1)

and

g ′(α) =
√

b0

bm+1
S(m+1)/2 n+m+ 1

2
α(n+m+1)/2−1 + (m+ 1)(1− α)m

> 0 for 0 < α < 1

So g (α) has a unique root between 0 and 1.
Let β = (1− α)2/Sα. For bj ’s, by (18),

bk+1 = bk
Sαnk+1

(1− α)2 = bk
αnk

β
.

So

bj = b0

 j−1∏
k=0

αnk

β


= b0

αsj

β j .

For hi ’s, by Theorem 1, for 0 ≤ j ≤ m and sj + 1 ≤ i ≤ sj+1,

hi =
√

r0(cg bj+1)
c0(re/bj )

1
αnj−1α

i−sj−1

=
√

r0cg

c0re
bj bj+1

1
αnj−1α

i−sj−1.
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Since bj = b0α
sj /β j and

bj+1 = b0
αsj+1

β j+1 = b0
αsm+1

βm+1 ·
αsj+1−sm+1

β j−m = bm+1
αsj+1−n

β j−m ,

hi =
√

r0cg

c0re
b0
αsj

β j bm+1
αsj+1−n

β j−m

1
αnj−1α

i−sj−1

=
√

r0cg

c0re

re

RD

CL

cg

α2sj+nj−n

β2 j−m

1
αnj−1α

i−sj−1

=
√

r0CL

c0 RD

βm

αn−1

αi−1

β j .

For D, by Theorem 1,

D = mrecd +
m∑

j=0

r0c0L2

2n2 · nj + 2α − njα
2

(1− α)2

= mrecd + r0c0L2

2n2 · n+ 2(m+ 1)α − nα2

(1− α)2 . 2

Notice that by Lemma 10, the optimal delay D is independent of n0, . . . , nm.
That means we can set n0, . . . , nm arbitrarily (with the constraint that n0 +
· · · + nm = n) without affecting the optimal delay. This observation together
with Lemma 8 and Lemma 10 give the following theorem.

THEOREM 2. For the optimal solution of the simultaneous Buffer Inser-
tion/Sizing and Wire Sizing problem with m buffers (BISWS/m), we have

nj = an arbitrary nonnegative integer, for 0 ≤ j ≤ m
(such that n0 + · · · + nm = n)

bj = re

RD

αsj

β j for 1 ≤ j ≤ m

li = L/n for 1 ≤ i ≤ n

hi =
√

r0CL

c0 RD

βm

αn−1

αi−1

β j for 1 ≤ i ≤ n

with j being the index such that sj + 1 ≤ i ≤ sj+1

(i.e., the ith segment is between the jth and ( j + 1)th buffers)

D = mrecd + r0c0L2

2n2 · n+ 2(m+ 1)α − nα2

(1− α)2

where S = r0c0L2/recg n2, sj = n0 + · · · + nj−1, α is the unique root between 0
and 1 of

g (α) =
√

recg

RDCL
S(m+1)/2α(n+m+1)/2 − (1− α)m+1,

and β = (1− α)2/Sα.
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6. SIMULTANEOUS BUFFER INSERTION/SIZING AND WIRE SIZING
WITH OPTIMAL NUMBER OF BUFFERS

Now, we consider the problem BISWS. In other words, we minimize D over m,
n0, . . . , nm, b1, . . . , bm, l1, . . . , ln and h1, . . . , hn simultaneously. (See Figure 1.)
The optimal number of buffers m is given by the following lemma.

LEMMA 11. For the optimal solution of BISWS, we have m equals the better
one of bm̂c and dm̂e, where

m̂ =
ln

recg

RDCLβ

1+ Sβ
2
−
√

Sβ +
(

Sβ
2

)2
n/ lnβ,

S = r0c0L2/recg n2, and (1/eβ)1/β = ecd /cg .

PROOF. By Theorem 2, if the number of buffers used is m, then for the opti-
mal solution,

D = mrecd + r0c0L2

2n2 · n+ 2(m+ 1)α − nα2

(1− α)2 , (19)

where √
recg

RDCL
S(m+1)/2α(n+m+1)/2 − (1− α)m+1 = 0,

or equivalently,
recg

RDCL
αn = βm+1. (20)

Let β = (1− α)2/Sα. Then

dβ
dα
= −2(1− α)

Sα
− (1− α)2

Sα2

= − (1− α)(1+ α)
Sα2 .

Differentiate (20) with respect to α,

recg

RDCL
nαn−1 = βm+1 ·

(
dβ
dα

m+ 1
β
+ dm

dα
lnβ

)
,

dm
dα
=
(

n
α
+ (1− α)(1+ α)

Sα2

m+ 1
β

)/
lnβ

= n− nα + (m+ 1)+ (m+ 1)α
α(1− α) lnβ

.

Differentiate (19) with respect to m, we get

dD
dm
= recd + r0c0L2

2n2

((
2(m+ 1)

dα
dm
+ 2α − 2nα

dα
dm

)
· 1

(1− α)2

+ (n+ 2(m+ 1)α − nα2) · −2
(1− α)3

(
− dα

dm

))
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= recd + r0c0L2

n2 ·
(

n− nα + (m+ 1)+ (m+ 1)α
(1− α)3

dα
dm
+ α

(1− α)2

)
= recd + r0c0L2

n2 · α

(1− α)2 (lnβ + 1)

= recd + recg
lnβ + 1

β

d2D

dm2 = recg

(
1
β2 −

lnβ + 1
β2

)
dβ
dm

= −recg
lnβ
β2

dβ
dα

dα
dm

= recg
(lnβ)2

β2

(1− α)2(1+ α)
Sα(n− nα + (m+ 1)+ (m+ 1)α)

> 0 as 0 < α < 1.

So D is a convex function with respect to m. Therefore

D is minimized ⇔ d D
dm
= 0

⇔ recd + recg
lnβ + 1

β
= 0

⇔ − lnβ + 1
β

= cd

cg

⇔
(

1
eβ

)1/β

= ecd /cg

Since β = (1− α)2/Sα, or equivalently, α2 − (2+ Sβ)α + 1 = 0, and we know
0 < α < 1,

α = 1+ Sβ
2
−
√

Sβ +
(

Sβ
2

)2

.

Take the logarithm of both sides of (20) and rearrange,

m =
(

ln
recg

RDCL
αn
)/

lnβ − 1

=
ln

recg

RDCLβ

1+ Sβ
2
−
√

Sβ +
(

Sβ
2

)2
n/ lnβ.

Suppose D is minimized when m = m̂, where m̂ is not necessary to be an integer.
Since D is a convex function with respect to m, the integer value that minimizes
D is either bm̂c or dm̂e. 2

Lemma 11 together with Theorem 2 give the following theorem.
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THEOREM 3. For the optimal solution of the simultaneous Buffer Inser-
tion/Sizing and Wire Sizing problem (BISWS), we have

m = the better one of bm̂c and dm̂e,
where

S = r0c0L2

recg n2 ,

m̂ =
ln

recg

RDCLβ̂

1+ Sβ̂
2
−
√

Sβ̂ +
(

Sβ̂
2

)2
n/ ln β̂, and

(
1
eβ̂

)1/β̂

= ecd /cg .

Moreover,

nj = an arbitrary nonnegative integer, for 0 ≤ j ≤ m
(such that n0 + · · · + nm = n)

bj = re

RD

αsj

β j for 1 ≤ j ≤ m

li = L
n

for 1 ≤ i ≤ n

hi =
√

r0CL

c0 RD

βm

αn−1

αi−1

β j for 1 ≤ i ≤ n

with j being the index such that sj + 1 ≤ i ≤ sj+1

(i.e., the ith segment is between the jth and ( j + 1)th buffers)

D = mrecd + r0c0L2

2n2 · n+ 2(m+ 1)α − nα2

(1− α)2 ,

where sj = n0 + · · · + nj−1, α is the unique root between 0 and 1 of

g (α) =
√

recg

RDCL
S(m+1)/2α(n+m+1)/2 − (1− α)m+1,

and β = (1− α)2/Sα.

7. DISCUSSION

In this section, some interesting implications and extensions of our closed form
solutions are presented. For the experiments in this section, we use the param-
eters of the 0.18µm technology listed in Cong and Pan [1998], which is based on
the 1997 National Technology Roadmap for Semiconductors (NTRS’97) [Semi-
conductor Industry Association 1997]. The values are shown in Table I. Buffers
of size 200×minimum device are used both as driver and as load.

7.1 Generalization of Previous Results

We observe that several previous results are special cases of our result.
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Table I. Parameters of the 0.18 µm Technology Based on NTRS’97.

r0 c0 c f re cg cd Wmin

0.0679�/2 0.0596 f F/µm2 0.0641 f F/µm 17.1k� 0.234 f F 3.883 f F 0.18 µm

c f is the unit length wire fringing capacitance.
Wmin is the minimum wire width.
All other parameters are defined in Section 3.

Wire sizing alone. In this paper, the wire is divided into a finite number of
uniform-width segments. Therefore, the width function describing the opti-
mal wire shape is a step function. In Chen et al. [1996b] and Fishburn and
Schevon [1995], a continuous version of the wire sizing problem was consid-
ered. The wire was divided into an infinite number of segments. Therefore,
the width function describing the optimal wire shape is a continuous func-
tion. These two papers proved that the optimal width function should be an
exponential function. Note that by letting n tends to infinity, our result on
WS (Theorem 1) implies their results.

Buffer sizing alone. If we ignore all the wire segments in Section 5 and Section 6
by setting L = 0 (i.e., li = 0 for all i), then our result on BISWS (Theorem 3)
implies the results for the tapered buffer structure in Lin and Linholm [1975]
and Jaeger [1975].

7.2 The Use of Equal-Length Segments

For previous papers which apply wire sizing for interconnect delay optimiza-
tion, the problem formulations usually allow changing of segment widths while
segment lengths are given as input. Some papers (e.g., Cong and He [1996] and
Cong and Leung [1993]) made the assumption that the input segment lengths
are all equal. Then they solved the problems of determining the wire widths
by iterative algorithms. This is a very natural assumption to make, but no one
actually proves that this is the best. In this paper, we consider a more gen-
eral formulation by allowing the lengths of segments to be varied. However,
we prove that for the optimal solution, the wire is always divided into equal
length segments (no matter how many buffers we use and no matter where
we put the buffers). That means using segments of different length does not
have any advantage with respect to the delay. Therefore, our result justifies the
assumption made in previous works.

7.3 Trade-off between Delay and Number of Segments Used

We point out in Section 1 that the number of segments used n is a parameter
that allows us to determine the quality of the solution. We can get a smaller
delay D by using a larger value of n. In order to suggest a good value of n to
be used in practice, we take a 10000 µm long wire and apply our solution of
BISWS to it using different values of n. Figure 6 plots D as a function of n.
We also compute the delay corresponding to n = 1000, which is assumed to be
the best possible value. If an accuracy of 2% within the best possible value is
desired, a value of n ≥ 6 is needed. If an accuracy of 0.2% is desired, a value of
n ≥ 17 is needed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 3, July 2001.



366 • CHU and Wong

Fig. 6. The delay D versus the number of segments used n.

7.4 Minimizing Area subject to Bounds on Buffer Size and Wire Width

In Section 5, we pointed out that D in Theorem 2 is independent of
n0, n1, . . . , nm. In other words, for any fixed number of buffers inserted, if the
buffers and wires are allowed to be sized simultaneously and continuously,
we can put the buffers anywhere between two adjacent segments without af-
fecting the optimal delay. Note that although the delay is not affected by the
buffer locations, other design objectives, such as total wire area, total power
dissipation, minimum wire width or minimum buffer size, are very sensitive
to buffer locations. So the flexibility in buffer locations can be used in opti-
mizing other objectives. In this section, we demonstrate how this flexibility
can be used to minimize buffer and wire area among minimum delay solu-
tions such that the buffer sizes and wire widths are larger than some lower
bounds.

We use a wire that is 15000 µm in length as an illustration. We set m = 2
(i.e., 2 buffers) and n = 6 (i.e., 6 segments). Since 0 ≤ s1 ≤ s2 ≤ 6, there are
7+6+· · ·+1 = 28 optimal solutions of BISWS/m with different buffer locations.
Four of the solutions are shown in Figure 7.

If the ith segment is between the j th buffer and the ( j + 1)th buffer (i.e.,
sj + 1 ≤ i ≤ sj+1), by Theorem 2, the size of the j th buffer bj and the width of
the ith wire hi are given as follows.

bj = re

RD

αsj

β j (21)

hi =
√

r0CL

c0 RD

βm

αn−1

αi−1

β j (22)
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Fig. 7. Four optimal solutions of BISWS/m with different buffer locations. The segment widths
are written above the segments. The buffer sizes are written as a ratio over the minimum device
below the buffers.

We know that α is less than 1. β is also less than 1 in practice. (Note that 1/β is
the buffer tapering factor if wire segments are ignored. If the optimal number
of buffers is used, β can be proved to be less than 1.) Therefore, for any j , bj
is smaller if sj (i.e., number of segments before the j th buffer) is larger. For
any i, hi is smaller if j (i.e., number of buffers before the ith segment) is larger.
In other words, if we cascade all buffers just before the load (i.e., s1 = · · · =
sm = n), then both the buffer area and the wire area will be minimized. For
the problem in Figure 7, Solution 1 is the one with minimum buffer and wire
area.

However, for the minimum-area solution, buffers may be too small and wire
segments may be too narrow. So instead of using sj = n, we use the largest sj
such that the solution is still above the bounds. In the following, the way to find
the largest feasible sj is discussed. Suppose the j th buffer is just after the ith
segment. Note that if we decrease sj by one (i.e., we move the j th buffer from
just after the ith segment to just before the ith segment), by (22) and (21), all
buffer sizes and all segment widths will remain the same except for the j th
buffer and the ith segment. The size of the j th buffer bj will be divided by a
factor α, and the width of the ith segment hi will be divided by a factor β. In
other words, both the size of the j th buffer and the width of the ith segment
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will be increased if sj is decreased by one. For an illustration, compare Solution
2 and Solution 3 in Figure 7, in which the first buffer is moved across the third
segment from Solution 2 to Solution 3.

The algorithm for determining buffer locations such that the buffer area and
wire area are minimized and the buffer sizes and wire widths are larger than
some given lower bounds can be summarized as follows:

Algorithm to Determine Buffer Locations
1. Set sj := n for 1 ≤ j ≤ m.
2. Compute b1 and hs1 using Theorem 2.
3. for j := 1 to m do

while bj or hsj is below the lower bound do
Set sj := sj − 1.
Compute bj and hsj using Theorem 2.

4. Place the j th buffer just after the sj th segment for 1 ≤ j ≤ m.

If we apply the algorithm to the problem in Figure 7, Solution 2 is obtained.
For comparison, if the buffers are placed evenly along the wire, Solution 4 is
obtained. We notice that Solution 4 uses 156.7% more buffer area and 68.6%
more wire area than Solution 2.

7.5 Wire Fringing Capacitance Consideration

In this section, we present some experimental results on approximating the
case with fringing capacitance by our closed, form solutions. We use wires the
lengths of which range from 1000 µm to 20 000 µm and we set n = 10. For a
wire of length L, we add half of the total fringing capacitance to the load (i.e.,
we add c f L/2 to CL). Then we obtain the solution of BISWS by Theorem 3.
We notice that when fringing capacitance is considered, the delay is affected
by the buffer locations. So we choose the best one among all nm possible buffer
placements of the solution of BISWS, where m is the number of buffers used.
Note that it is very efficient to try all nm buffer placements as m is usually
small in practice. When the wire length is from 1000 µm to 5000 µm, from
6000 µm to 13 000 µm, and from 14 000 µm to 20 000 µm, m is zero, one, and
two respectively. The delay of our solution and of the optimal solution (obtained
by an iterative algorithm) are plotted in Figure 8.

In general, the accuracy of our solution is higher for shorter wires. If the wire
length is within 8000µm, our solution is within 2% of the optimal solution. Even
for a wire of length 20 000 µm, our solution is only 3.5% away from the optimal
solution.

Recently, Cong and Pan [1998] also derived a closed-form delay estimation
model for an interconnect wire. In their model, fringing capacitance is taken
into consideration. About 90% accuracy on average was reported.

Fringing capacitance will become more important as wires will become nar-
rower. For future research, it would be nice if closed-form optimal solutions can
be obtained even if fringing capacitance is considered. However, the closed-form
solution is expected to be much more complicated. For example, the lengths of
segments will no longer be equal and the widths of segments will no longer
form a geometric progression in the optimal solution.
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Fig. 8. Comparison of the approximate solution of BISWS and the optimal solution (obtained by
an iterative algorithm) when fringing capacitance is considered.

7.6 Handling Interconnect Trees

For interconnect trees, minimizing maximum sink delay and minimizing total
area subject to sink delay bounds are the most commonly used objectives. Chen
et al. [1996] showed that both objectives can be reduced by the Lagrangian
relaxation technique to a sequence of subproblems minimizing a weighted
sum of the sink delays. In other words, by solving the problem of minimizing
weighted sink delay, we also solve the problems of minimizing maximum
sink delay and minimizing total area subject to sink delay bounds as well.
So we consider the problem of minimizing weighted sink delay in the
following.

To minimize a weighted sum of the sink delays of an interconnect tree, a simi-
lar technique as in Chen et al. [1996] can be used. The basic idea is to iteratively
optimize the tree edges one at a time. In each iteration, we manipulate the tree
edges one by one in a depth-first order. When an edge is manipulated, we keep
all the other edges fixed and apply our closed form solutions to that edge. This
method should be much faster and use much less memory than an iterative
algorithm which divides each tree edge into several segments and locally sizes
one segment at each step.
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