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A Matrix Synthesis Approach to Thermal Placement

Chris C. N. Chu and D. F. Wong

Abstract—In this paper, we consider the thermal placement
problem for gate arrays. We introduce a hew combinatorial opti- 3 8
mization problem, matrix synthesis problem (MSP), to model the 7 3
thermal placement problem. Given a list ofmn nonnegative real
numbers and an integert, MSP constructs am x n matrix out of & 3

1

1
0
submatrices is minimized. We show that MSP is NP-complete 7

the given numbers such that the maximum sum among alt x ¢
and present several provably good approximation algorithms for (a) (b)
the problem. We also demonstrate that our thermal placement .
Fig. 1. An example of MSP withn = 4, n = 3, andt = 2. The problem

r is flexible en h llow simultan nsideration of | - !
Zihaeurego{)jgcti?/els) ilfchoig vc?riﬁgo simultaneous consideration o is to synthesize a 4« 3 matrix out of 12 numbers (8, 8,7,7,4, 3,3, 3,2, 1,

0, 0) and to minimize the maximum sum over allx22 submatrices. (a) is a

Index Terms—Approximation algorithm, thermal placement. bad solution (maximum sum is 27), and (b) is an optimal solution (maximum
' sum is 13). The submatrices with maximum sum are shaded.
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|. INTRODUCTION boards and multichip modules) [2], [6], [7]. However, since

IGH-PERFORMANCE circuits consume a considerablghermal placement of gates within a single chip was not of ma-
amount of power due to increases of frequency, banjér concern in the past, existing placement algorithms [9] only
width, and system integration. For examples, the two rece&atus on minimizing area and delay but do not consider heat
high-performance chips, Alpha 21164 and PowerPC 62@ssipation. One exception is [1], but it only addresses thermal
consume 50 and 30 W, respectively, on 3*cdies. It can issues during IC floor planning. In this paper, we consider
be extrapolated that a 10 émext-generation microprocessorthe thermal placement problem for gate arrays. We introduce
clocked at 500 MHz, would consume 300 W [8]. a new combinatorial optimization problem, matrix synthesis
Consumed power is converted directly into dissipated hegtoblem (MSP), to model the thermal placement problem.
In the past decade, heat produced by a chip has increased froBasically, MSP is to synthesize a matrix out of a given list
2.2 to 10 W/cm due to the continuous increase of the clockf numbers such that no submatrix of a particular size has a
frequency and the total number of transistors [10]. large sum. In this paper, submatrix means those consisting of
Higher temperature not only affects circuit performanceonsecutive rows and columns. For any matvix let S, (M)
directly by slowing down the transistors on CMOS chips buje the set of alt x t submatrices of/. Let (A1) be the sum
also decreases their reliability. A circuit with considerablef all entries inM. Let (M) = maxges,(m) o(S). MSP
power consumption requires extra expensive cost to remaygn be defined formally as follows:
heat at the packaging level, and therefore the reduction of . .
power dissipation is required at the chip design stages. (See [8] Matrix Synthesis Problem (MSF)
for a survey of current research efforts in power minimization ~ ® INSTANCE: Integerst, m, n, and a list of
in IC design.) . o mn nonnegative real numbess), z1, - -, Tmmn—1-
Even_ when the total power consumptlop Qf a chip is e QUESTION: Synthesize a x n matrix M out
constrained, an unevenly distributed heat dissipation by the
gates in the chip may produce hot spots, which can lead
to reliability problems. It is also desirable to have an even see Fig. 1 for an example.
temperature distribution for the temperature-sensitive circuit|t is not difficult to see that MSP models the thermal
(whose characteristic, such as the gain factef a CMOS or  placement problem for gate arrays. We represent the amount
bipolar circuit, affects its output). Therefore, during physicaif heat generated by each gate by a nonnegative real number.
design of a very large scale integration (VLSI) chip, it i$if we have less gates than the number of array slots, we
important to place the gates such that heat dissipation by & add some zeros.) A submatrix $(A/) corresponds to
gates are evenly distributed. a region of sizet x t on the chip. The submatrix with the
The thermal placement problem has been studied in the pRg§est sum corresponds to the hottest region on the chip. So
for placing chips during the packaging stage (for printed circW§Sp is equivalent to finding a placement of the gates such
Manuscript received April 24, 1998. This work was supported in part bghat the temperature of the hottest region is the lowest among
the Texas Advanced Research Program under Grant 003658288. This palkpossible placements.

of zg, -+, Zmn—1 such thatu:(M) is minimized.

was recommended by Associate Editor C. K. Cheng. _The parametet is to model how good the heat transfer is.
The authors are with the Department of Computer Sciences, University ?f he h fer i h th h ff f .

Texas at Austin, Austin, TX 78712 USA. If'the heat trgns er is poor such that t.e effect of a gate is
Publisher Item Identifier S 0278-0070(98)08594-7. mostly on neighbor gates, then MSP with= 2 probably is
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a good model to use. On the other hand, if the heat transfer ¢
is good, we may want to consider larger regions and hence
a largert. x
Our formulation assumes that the user will provide the ; x e o o o
data corresponding to the power dissipation of each gate. x
So the accuracy of our algorithms depends on the accuracy
of the data provided. In general, the power dissipation of @ @ @
a gate is affected by several factors like circuit structure,
functionality of the gate, wire loading, and input data. The Xy X, Xg1
power-estimation problem is a hard problem by itself. It is aﬁg. 2. Construction of a partition according to a placement.
active research area recently, and many different probabilistic
and statistical techniques have been proposed. See [4] and [5] .
for survey articles. 3-Partition
A summary of the remainder of this paper is given below. e INSTANCE: A positive real bound3, and a
In Seftion(II:;I;VIDe S_h;W that MS_P”Wi_th ;";)ll ﬁéedZ_ 2 iT”NP' multi-set X of 3¢ positive real numbers such that
complete. witht = 1 is trivially in P.) In Section Ill, we .
give a simple algorithm (calledil) that approximates MSP 2aex®=gqBandve e X, B/4<z<B/2.

to within a factor of two for every > 2. In Section IV, we » QUESTION: CanX be partitioned intay
give a modified version ofAl (called A2). Fort = 2, A2 multi-sets X, -- -, X,_1 such that for
approximates MSP to within a factor of 5/3. If a simple 0<7r<qg—1,% ey & =B?

condition on the input is satisfiedi2 approximates MSP to

within a factor of 1.5 for every > 2. A1 and A2 output a Note that 3-Partition is NP-complete [3].

placement that is good for a particulaionly. In Section V, In this paper, we assume that the indexes of matrices
we give a recursive algorithm (called3) that outputs a start at zero. LetS,’ (M) be thet x ¢ submatrix inS,(M)
single placement such that besides approximating MSP wih the intersection of rows, ---, i + ¢ — 1 and columns
parametert, it also approximates MSP with parametérto  j ... j4+¢—1. Let S,(M) be the set of alt x ¢ submatrices
within a factor of at most five for alt’ < t. Sy (M) such thati = j = 0(mod ¥).

In Section VI, some experimental results are given. First, Theorem 1: For every fixedt > 2, MSP is NP-complete.
note that the approximation factors shown in Sections lll-V  Proof: Lett be any fixed integer greater than or equal to
are worst case bounds only, and we show that the algorith@a®. Given an instance of 3-Partition, we can reduce it to an
work much better in practice. Second, we consider therniaktance of MSP with that particular value ©fThe boundB
placement and optimization of other objectives at the sarf the MSP is the same as tti for the 3-Partition problem.
time. That is because when we place gates into a chip, we M&g setm = ¢ andn = tg. Themn nonnegative real numbers
have other concerns besides heat consideration. We show Hratthose inX together withmn — 3¢ zeros. We have to show
the placements byl1 and A3 are so flexible that the flexibility that the instance of 3-Partition returns “YES” if and only if
can be used in optimizing other objectives simultaneousie instance of MSP returns “YES.”

We demonstrate the idea by considering thermal distribution«<: If the instance of MSP returns “YES,” then we have a
and wiring at the same time. In Section VII, we conclude by x tq matrix M such that for alls € S,(M), ¢(S) < B. In
discussing some directions for future work. particular, for allS € S,(M), o(S) < B. As theq submatrices
in S,(M) cover the whole matrixi/, the sum of all the
numbers in them equalsB. Soo(S) = Bforall S € S,(M).
If we ignore all the zeros not fronX, then theq submatrices
Il. NP-COMPLETENESS in 5,(M) define a partition ofX such that the sum of each

MSP with ¢t = 1 is very easy since every placement ipartition is B (see Fig. 2). So the instance of 3-Partition will
optimal. However, we will show that MSP with every fixedeturn “YES.”
t > 2 is NP-complete. To prove this result, we need the =: If the instance of 3-Partition returns “YES,” let
following definitions. Xy, - -+, X,—1 be the partition. Sinc& /4 < x < B/2 for all
x € X, each partition should contain exactly three numbers.
Case 1)t > 3: For eachr, we can put the three numbers
Decision Version of MSP of X, into the first column of a distincs € $,(M) and
« INSTANCE: A positive real bound3, integers zeros into other positions (see Fig. 3) Then every submatrix
in S;(M) should contain three numbers from son?. and
some zeros but nothing else. Hence every submatrix sum is
real numberscg, z1, -+, Trmn—1- B. So the instance of MSP will return “YES.”
e QUESTION: Is it possible to synthesizena x n Case 2)¢ = 2: In this case, we do not have three positions
in the first column of each submatrix $»(A/). So we place
two numbers in the first column and one in the second column.
p(M) < B? Let X,. = {a,, b., ¢.}. Without loss of generality, assume

t, m, n, and a list ofmn nonnegative

matrix M out of zg, z1, -+ -, Tmn—1 Such that
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X X X
L ¥ 1
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0 0 0
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Fig. 3. Construction of a placement according to a partition when3. L L
X, X; X1 L, Lz L, L,|L L
"~ N
ay| €pl @) €4 1| €41 L,|L,|L,|L,|L,|L
by| 0 | by 0 b"" 0 Fig. 5. Labeling of algorithmd1 with + = 2 andn = 6. Note that there is

exactly one of each akq, Ly, L2, and L3 inside every 2x 2 submatrix.

Fig. 4. Construction of a placement according to a partition when2.

thatcy < ¢; < --- < ¢,1. Then the pla}cement is as shown 0| 19 133 25 22| 24
in Fig. 4. It is obvious that for alls € S:(M), o(S) = B.
ConsiderSy > (M) for some0 < r < ¢—1, which is not in vl sl s |15] 4
SQ(M) O(Sg 2t (M)) = crtart1+bey1 S G +arp1 +
bryr = o(Sy P T3 (M)) = B as Sy ¥ (M) € Sa(M). So 35 | 21|29 | 18|32 |26
the instance of MSP will return “YES.” ]
4|0 |13 2112] 8
[ll. A SIMPLE APPROXIMATION ALGORITHM 20 128122 | 34| 23
From now on, we assume for simplicity that= n = tq for
some integer;. In other words, we are placing¢® numbers 1|7 1103 |9 6

into atqg x tg matrix. Note that in this casé;Zt(M) isasetof _ _
¢? nonoverlapping submatrices that covers the whole matggi"ﬁ’ A Bf’s?ﬁée eg{ﬁggm\zﬁ; E’beléz'gorg_heﬁlnu:ﬁéertshefrorr}]”'gfgﬁ
M. We can obtain similar resultsif. # n, orm ornisnota ;) are shaded.

multiple of ¢£. Without loss of generality, we also assume that

T 2 XL Z 2 Tpz_g.

The algorithm A1 below approximates MSP to within a Let OPT; be the optimal placement for MSP with parameter
factor of two. The basic idea of the algorithm is to distributé Before proving the approximation factor fad, we first give
the numbers evenly in the matrix. We divide the numbers inte/o lower bounds onu (O PT}).
¢ x ¢ groups according to their magnitudes. We observe that itLemma 1: For everyt > 2, 0 < k < t2 — 1, 1,(OPT;) >
is possible to have a placement with the property that evelly + 1)zx42.

t x t submatrix contains exactly one number from each group. Proof: zg, ---, x4, are kg* + 1 numbers at least as

ALGORITHM A1 Iqrge aSTrg2 . (;onsider the;? submatrices irﬁ‘t(Ol_DTt). By

_ pigeonhole principle, there must be a submatrix containing
1.For0 <k <#* -1, let groupGy contain the at leastk + 1 numbers larger than or equal to,z. So

numbersey z, -+, Thygz4qz—1- p(OPTy) > (k4 1agge. u
2

2.For0 <k <t -1, foralli=|k/t| modtand Lemma 2: For everyt > 2, 1, (OPT;) > 1/4? 2;;51@.

for all j = (k modt) modt, Proof:

labelm;, ; (entry (4, 5) of matrix M) as L. .

3. For0 < k <t* —1, place each number in group pt(OPTy) > Z Z o(S) Q)

G, arbitrarily into a distinct position ofi/ 5€5,(OPTy)

2
labeled withL;,. vt
. . =5 > )

For example, let =2, m =n =6, 2, =35 —ifor0 <i < L
35. In other words, we are placing the numbass 34, ---, 0
into a 6 x 6 matrix. Then Gy contains 35, - -+, 27, G Equation (1) follows from the fact that,(OPT3) > o(S)
contains26, ---, 18, (G containsl7, ---, 9, andG3 contains

for any S € S,(OPT;) and |S:(OPT,)| = ¢*. Equation (2)

8, -+, 0. The labeling is as shown in Fig. 5. A possiblg. .\« tom the fact thatS, (M) is a set of nonoverlapping
placement is in Fig. 6. Note that those numbers from gro bmatrices that covers the whole mathik -

Gy are evenly distributed in the matrix. This is also true for Theorem 2: For everyt > 2, ju(Al) < 2 u(OPT,).
all other groups.
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Proof:
pe(AL) <o+ 202 4 -+ 221y @)
q 21 2/] —1
<a:0+ — Z T; + Z T;
(t2—1)q -1
T (4)
T im oy
n?-1
Sa0+ Z ;
§2¢MOPﬂ) (5)

By the way we place the numbers, eathx ¢ submatrix
contains exactly one number from each graip. Note that
z < a2 for every numberz in Gy. So for any S €
S1(A1), 0(S) < @0 + w42 + -+ + x2_1)2. Equation (3)
immediately follows. Equation (4) follows from the fact that
Tpe < Tppe_y for 1 <7 < ¢® as the numbers are sorted in
decreasing order. Equation (5) follows from Lemma 1 with

1169

Fig. 7. A possible implementation for Step 3 of algoritd2 with n = 6
andt = 2. The entries with labeL, are shaded.

j rj/t'lt nil

k =0 and Lemma 2. []

IV. A BETTER APPROXIMATION ALGORITHM

In Step 3 of algorithmA1, the placement of numbers from
groupy, into entries marked with labdly, is done arbitrarily.
The algorithmAz2 given below makes use of this flexibility on
placement to improve the approximation factor.

ALGORITHM A2
1.Foro<k<t?-1,
the numbersey 2, -+, Zp2q2 1.

2. For0 <k <# -1, foralli=|k/t] modt and
for all j = (k modt) modt, labelm;;

(entry (¢, j) of matrix) asLy,.

3. Place each number of groug, into a distinct
position of M labeled withLy (i.e. intom,; s.t.
andy are multiple oft) such that

let group Gy contains

Mot, vt = Mgt ot ANA Mz o 2> Mo, g
for all u, v.
4. For0<r<¢*—1, letS, e 5,(M) be the
submatrix wherez,. is placed at step 3. For
1<k<# -1, placeryyeiqo 1, € Gy into
the entry with labell.;, in S,..

One way to do Step 3 is to place. into my. .+, where

w=|r/q], v = (r modgq). Fig. 7 illustrates this step.
The algorithm matches larger numbers from graégpwith

smaller numbers from other groups. So it prevents all the
largest numbers of the groups from being placed into the samé&

t x t submatrix. Intuitively, one might think that it would be

better to match larger numbers from half of the groups with

el B

sHA2)

S‘r.-/m,l;-{m A2)

Fig. 8.
all 4, 5.

lllustration to show that(S:7 (A2)) < (5] 14 T7/111(42)) for

smaller numbers from the other half of the groups. However,
the worst case bound is better for our algorithm.

Theorem 3:For everyt > 2, if z2_; = a=zo, then
p(A2) < max(1.5, 2 — «) - u(OPT).

Proof: As in algorithm A1, everyt x t submatrix con-
tains exactly one number from each group. However, because
of the way we do the placement in Stepr8y;/4¢, 15761t <
mrpi/ee—t, [5/6)¢ fOr any ¢, j. Hence by Step 4, this implies
o(B) < ¢(B’), where B and B’ are submatrices as shown
in Fig. 8. Similarly, Sincemwﬂt LAt S Mpsee, [45/6t—t
and myi e, e < OMie—t, [i/t]t—t W€ can prove that
o(C) < o(C") and o(A) < o(A). So o(S7(A2)) <

o (S /1t 49)) (see Fig. 8). Therefore, the sum of every
submatrix is dominated by the sum of some submatrix in
S,(A2). Hence we can focus on those submatrice$,ip42).

For anys,. € 5}(A2) as defined in Step 4 of the algorithm
1’) =Tr +Tog2 1 T T332 1+ T X221 0
—

< r + q2 —7r + q2
=| sz +—Tp2e 1+ Top2_1_,
7 ? @ T
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¢ ¢’
+q2 Tag2_1—p+- -+ (]—2 Ty2 —1—1*) L, L, L} L,
2 2
- 7T — 7 T
+ <q SREPRS S L+ — x2q2_1_7,> Ll |||l L
q q
1 12—:1 qz—:l qu T LI LI LI L LI
S ) xz o + -
e ; “ L |L | L |L |L |L | L
Q)  ——
3¢°—1—r g —1—1 L, | L, L, :_;Fo | L,
+ Y mitet Y -
i=2¢2 —r i=(t2—1)q2—7r LZ L3 L2 L3 L2 L3 L2 L3
2 2 T
q-—r qg-—r T : o
- < q? to~ q? a%o + 7 ng) ©) L Lijh | L)L |5
1 el L, Ly | L, | L | L, | Ly
<—= T;
— 2 T
7\ i=o
1- - 1- 2 ' L L lr lL | L L
+ T2 Zo — 7 Oéxo-i-q—quz el ' 1 0 L1
: -1 L Ll |\L,|L |L
< 1+<1—7—2>(1—a)+7—2§> 1 (OPTy) L, 0 A A
q q y
(7) I‘th "1L3 LILZ L L3 "1L3
. . (b) LLZ L3 LJLJ L2 LjLZ L3 LJLJ
Equation (6) follows from the fact that thels are sorted in . -

decreasing order and that._; = awo. Equation (7) follows L'Lo :,LILI ‘ ILo L,LI
from Lemma 1 witht = 0 andk =1 and Lemma 2. L, |L |L|L|L, L
If o < 1/2, then L, L, = Nl L, L

1 : . LILZ V L1L3 Lz LILZ L1L3
o(Sr) < <2 —a-— <1 —a— 5)) - (OPT;) Lo L LB | L | L L |
<(2-a) m(OPTY)

Fig. 9. The labeling of43 with + = 4 andn = 8. (a) is the labels for the

If « > 1/2, then

(S < <1 + % <1 - é
5 1(OPT,).

are written at lower left corners.

1
) +5 _> 11 (OPTy) D
2 trix in S2(A2). For any0 <

r<g®—1

O—(Sr) =Tr+ T2q2-1—r + T3q2 —1—r + Laq2 -1

S0 (A2) < max(1.5, 2 — «) - 1 (OPTY). ]
Note that Theorem 3 gives a bound worse than 1.5 only
when is small (less than 0.5). In this case, the input should
contain a few large numbers and many small numbers.
For the case = 2, we can prove a bound that holds for any
input. But we need to use another lower boung.ofOPT;).
Lemma 3: For all ¢ > 2 and for allr such thatd < » <
n? — 1, i (OPT}) > xp + Tpa_1_,.

1
+ 5 T3q2—1—r T+

(5p)

1
+ b L3¢2 —1—r

- T T
A

) L2q2—1—7
1
5 .1'4(12_1_7,)

,
+ — To2_1_,
2 q T

q

1
+ 5 .’L’4q217,>

Proof: zq, ---, x, arer+1 numbgrs larger than or equal 11 [t 2¢%—1—1
to x,.. Consider the;?> submatrices inS,(OPT;). If any two < W] Z z; + Z Z;
of these numbers are in the same submatrix, then the lemma T \i=o i=r
is obviously true. Consider the case when they are i1 3¢%—1—1

different submatrices irﬁt(OPTt). Since there are at most

r numbers less tham,:_;_,, at least one of these + 1

submatrices must contain some number larger than or equal to

T,.2_1_,. Hence the result follows. [ ]
Theorem 4:For t = 2, u2(A2) < 5/3 - ue(OPT3).

first level of recursion. Those entries labeled with at this step are shaded.
(b) is the labels for the second level of recursion. The labels for the first level

Proof: As in Theorem 3, we will focus on those subma-

T T 1
+ <1 — 2—(]2)(1',, +.’L’4q2_1_,’,) =+ q—Q.TqZ =+ 5 X

(8)
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TABLE |
AVERAGE APPROXIMATION FACTORS FORA1 AND A2

avg. approx. factor
Al A2  Random
1.218 1.125 1.899
1.079 1.085 1.714
1.033 1.054 1.646

5 1.018 1.038 1.480
average | 1.087 1.076 1.685

A D) e+

TABLE I
THE WORST CASE Bounps (1 — (2P /n)? + (2P /t')2, WHERE
p = [log, t']) AND THE AVERAGE VALUES OF THE APPROXIMATION
FACTORS OF ALGORITHM A3 WITH ¢ = 8 FOR DIFFERENT ¢/

worst-case bound avg. approx. factor
t’ for A3 A3 with £ =8 Random
2 2.000 1.247 1.899
3 2.777 1.370 1.714 Fig. 10. Heat distribution of a random placement. There are many hot spots
4 1.999 1.053 1.646 (white spots) in this placement.
5 3.556 1.222 1.480
6 2.773 1.084 1.388
7 2.302 1.263 1.454
8 1.996 1.006 1.287
average 2.486 1.178 1.553
11 n?—1
= 2 ? Z zi | + <1 T 9 2) (Tr + 2ag2—1-4)
=0

Equation (8) follows from the fact the’s are sorted in
decreasing order and that— r/2¢*> > 1/2. Equation (9) Fig. 11. Heat distribution of a placement Byt. There is no hot spot (white
follows from Lemma 1 withk = 1 andk = 2. Lemmas 2 SPob in this placement. The heat is evenly distributed.

and 3.

So fort =2, us(A2) < 5/3- ux(OPTs). [ ]
2(42) / 2( 2) t = 4, the numbers front7y, G1, G4, and G5 will be placed
next to each other. As the numbers from these four groups
V. A RECURSIVE APPROXIMATION ALGORITHM are relatively large, if we rumil with ¢ = 4, jip(Al) may

. be large.
For the thermal placement lem, if the heat transf . . .
or the thermal placement problem, if the heat transfer iS t can be easily seen that the problem with the previous two

good, it is reasonable to consider larger regions and hence} ithms is that there i intention to distribute th b
use a larget. Smaller regions will become less important a gonthms 1S that there 1S no intention to distrioute the numbers

heat generated will be dissipated to other parts of the cHl[g™ different groups evenly inside fax ¢ submatrix. If we
easily. Even if a lot of heat is generated in a small region, 0 the labeling carefully, we should be able to obtain better
its surrounding region does not generate much heat, the HRg¢nds for smaller submatrices. In this section, we give an
will spread out quickly to a larger region. However, it does né@/gorithm A3 that outputs a single placement such that besides
mean that the heat consideration of smaller regions is totafipProximating MSP with parameteérto within a factor two,
unimportant. One may still want to have some bounds on tHe!S0 approximates MSP with parametéto within a factor
amount of heat generated by smaller regions. of at most five for allt’ < ¢, whent is a power of two.

In the previous two sections, we present two algorithiis ~ The idea is to do the labeling by1 with ¢ = 2 recursively.
and A2 that give placements that are good for a particuldror a2g x 2¢ matrix labeled byA1 with ¢ = 2, if we consider
t. If we consider a parametef < t, those placements the g x ¢ matrix formed by removing all the entries other than
generated with parametérdo not give much guarantee onthose marked wittLy, and applyAl with ¢ = 2 again to place
the approximation factor. For example, if we rutil with the ¢ numbers ofG, into it, then we know that the largest
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TABLE I
COMPARISON OF TRADITIONAL PLACEMENT BASED ON THE WIRING OBJECTIVE ONLY AND OUR
APPROACH OF PLACEMENT, WHICH CONSIDERS BOTH HEAT DISTRIBUTION AND WIRING

Circuit Wiring Heat
name size n | Traditional Our alg. inc% | Traditional Our alg. dec%
5378 | 2978 | 55 23912 23912 0.0 1.878 1224 348
$9234 | 5844 | 77 58209 58546 0.6 1.882 1.226  34.9
s13207 | 8727 | 94 94698 95547 0.9 1.934 1.224  36.7
515850 | 10397 | 102 128369 130003 1.3 1.889 1.216 356
538584 | 20871 | 145 375121 375577 0.1 1.949 1.222 373
538417 | 24061 | 156 444150 447792 0.8 1.893 1.244 343
average 0.6 35.6
numbers ofGy will not be placed adjacent to each other in 92p 92p "1
the original matrix. We can continue the idea recursively until = <1 - F) Zo + w2 Z T
the groups we are considering are small enough. Then we can ) =0 )
apply the same procedure @, G2, andGs. The algorithm <{1-— 27N AOPT.) + Cal A(OPT.) (11
is given below. = n?2 e ) PR ( v) (D)
2w\?  f2p\?
ALGORITHM A3 =(1- <g> + <t—,> e (OPTy).
1. Divide the input numbers into 4 groups
Gy, G1, G2 andG; and label the matrix by Equation (10) follows from the fact that's are sorted in
Lo, L1, Ly andLs as in step 1 and 2 decreasing order. Equation (11) follows from Lemma 1 with
. . k = 0 and Lemma 2.
of algorlthm Al with ¢ = 2. . Hence the theorem follows. |
2. Recursively place the numbers @, into the Note that if¢’ is a power of two, the approximation factor
submatrix formed by entries marked wifh, is at most two. Otherwise, a rough upper bound on the

until the size of each group is?/t%. In approximation factor ig1 + (2"/2/1)%) = 5.

that case, we do the placement arbitrarily
instead of doing it recursively. VI. EXPERIMENTAL RESULTS

3. Apply the same procedure G, G2 and Gs. The approximation factor bounds for the algorithms shown
in the previous three sections are all worst case bounds only.

Note that we assumeis a power of two in algorithni3. If ¢ We show here that these algorithms perform much better in

is not a power of two, we can use the smallest power of twRsactice. _ .
bigger thant as the parameter fad3 instead. As we do not have any actual thermal information for

An example of the labeling is shown in Fig. 9. Basica||ygircuits, we generate thermal information uniformly at random.
as in Al with ¢ = 4, we are dividing the input numbers into T€N Sets of data of size 120 120 are generated. In Table I,
16 groups (four groups in the first level of recursion and thdRe average approximation factors over the ten data are shown
16 groups in the second level) such that there is exactly ofy@€n algorithmsAl and A2 with various values of are used
number from each group in every ¥ 4 submatrix. So the t© place them into a 12& 120 matrix. For algorithmA1, the
sum of every 4x 4 submatrix will not differ by too much. Placement of numbers inside a group is done randomly. We
However, because of the way we do the labeling, numbeiso include the results of random placements for comparison.
from different groups are evenly distributed inside every 4 If the placement of gates is independent of the amount of heat
4 submatrix. So we can obtain some bounds for 3 and 2 9enerated by the gates, then the resulting placement should be
« 2 submatrices too. similar to a random placement in terms of heat distribution.

Theorem 5: Supposet is a power of two. For any’ such As shown in Table I, the approximation factors of our
that2 < ¢ < ¢, let p be the integer such thar—! < ¢ < 2r. algorithms are very close to optimal in practice. They also

Then py (A3) < (1 — (27 /n)2 + (27 /t)2) - py (OPTyr). perform much better than random placements. Note that as
Proof: Let r be the integer such that= 27. For any We do not know the optimal valug,(OP1T;), we only use
2<¢ <tandS € 5, (A3) the maximum of the lower bounds in Lemmas 1-3 as an

approximation of it. The approximation factors should be even
better if optimal values are used.

o(S) <xo + T2 + Z.02r— .
(5) S @0 @p2rzngz + Ta22m2ng2 In Table II, the average approximation factors over the same

T Tz _1yazr-ze g2 sets of data for algorithml3 are shown. We usé = 8 here,
1 1 n’—1 and the approximation factors fér < 8 are also shown. The
< <1 — ﬁ> o+ 53555 Z T; (10) worst case bounds proved in Theorem 5 and the results of
227 Pq 24T Pq ; . .
i=0 random placements are included for comparison.
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As shown in Table Il, the algorithm gives pretty goodut in Section V, one may want to have bounds on several
approximation factors simultaneously for ail It performs values oft simultaneously. The worst case bounds giveniBy
much better in practice than the upper bounds suggest. It atgmnmetimes can be as large as five. It is good to have algorithms
performs much better than random placements. Again, we caith better worst case bounds. We can also generalize MSP
only use the lower bounds in Lemmas 1-3 to approximate thg considering a weighted average of the approximation
optimal values. factors for different values ot. This model gives more

Figs. 10 and 11 show the heat distribution of a randoguarantee than MSP, and it may be easier to work with
placement and a placement b\ with ¢ = 4, respectively. than the model of providing several bounds simultaneously.
The brightness at each point is proportional to the total amoutbwever, we have no idea how the weights should look. It
of heat generated by a surrounding region of size4. As we is worthwhile to investigate what the weights should be and
can see, there are many hot spots in the random placemémtdesign approximation algorithms according to the weight
On the contrary, the heat is very evenly distributed in thaistribution. Another direction is to obtain a simple model
placement byAl. that gives the temperature for each point on the chip. In

When we place gates into a chip, we usually have fact, the temperature distribution for a given placement can
optimize other objectives at the same time. For algorithths be found by numerically solving differential equations, but
and A3, there is large flexibility to do the placement becaussuch calculations are too expensive to be used by a placement
the algorithms only require a number to be placed in any afgorithm.
those entries with a particular label. Moreover, the entries with
that particular label are plenty and are evenly distributed on ACKNOWLEDGMENT
the matrix. .
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