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A Matrix Synthesis Approach to Thermal Placement
Chris C. N. Chu and D. F. Wong

Abstract—In this paper, we consider the thermal placement
problem for gate arrays. We introduce a new combinatorial opti-
mization problem, matrix synthesis problem (MSP), to model the
thermal placement problem. Given a list ofmnmnmn nonnegative real
numbers and an integerttt, MSP constructs ammm���nnn matrix out of
the given numbers such that the maximum sum among allttt��� ttt
submatrices is minimized. We show that MSP is NP-complete
and present several provably good approximation algorithms for
the problem. We also demonstrate that our thermal placement
strategy is flexible enough to allow simultaneous consideration of
other objectives such as wiring.

Index Terms—Approximation algorithm, thermal placement.

I. INTRODUCTION

H IGH-PERFORMANCE circuits consume a considerable
amount of power due to increases of frequency, band-

width, and system integration. For examples, the two recent
high-performance chips, Alpha 21 164 and PowerPC 620,
consume 50 and 30 W, respectively, on 3 cmdies. It can
be extrapolated that a 10 cmnext-generation microprocessor,
clocked at 500 MHz, would consume 300 W [8].

Consumed power is converted directly into dissipated heat.
In the past decade, heat produced by a chip has increased from
2.2 to 10 W/cm due to the continuous increase of the clock
frequency and the total number of transistors [10].

Higher temperature not only affects circuit performance
directly by slowing down the transistors on CMOS chips but
also decreases their reliability. A circuit with considerable
power consumption requires extra expensive cost to remove
heat at the packaging level, and therefore the reduction of
power dissipation is required at the chip design stages. (See [8]
for a survey of current research efforts in power minimization
in IC design.)

Even when the total power consumption of a chip is
constrained, an unevenly distributed heat dissipation by the
gates in the chip may produce hot spots, which can lead
to reliability problems. It is also desirable to have an even
temperature distribution for the temperature-sensitive circuit
(whose characteristic, such as the gain factorof a CMOS or
bipolar circuit, affects its output). Therefore, during physical
design of a very large scale integration (VLSI) chip, it is
important to place the gates such that heat dissipation by the
gates are evenly distributed.

The thermal placement problem has been studied in the past
for placing chips during the packaging stage (for printed circuit
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Fig. 1. An example of MSP withm = 4; n = 3; and t = 2. The problem
is to synthesize a 4� 3 matrix out of 12 numbers (8, 8, 7, 7, 4, 3, 3, 3, 2, 1,
0, 0) and to minimize the maximum sum over all 2� 2 submatrices. (a) is a
bad solution (maximum sum is 27), and (b) is an optimal solution (maximum
sum is 13). The submatrices with maximum sum are shaded.

boards and multichip modules) [2], [6], [7]. However, since
thermal placement of gates within a single chip was not of ma-
jor concern in the past, existing placement algorithms [9] only
focus on minimizing area and delay but do not consider heat
dissipation. One exception is [1], but it only addresses thermal
issues during IC floor planning. In this paper, we consider
the thermal placement problem for gate arrays. We introduce
a new combinatorial optimization problem, matrix synthesis
problem (MSP), to model the thermal placement problem.

Basically, MSP is to synthesize a matrix out of a given list
of numbers such that no submatrix of a particular size has a
large sum. In this paper, submatrix means those consisting of
consecutive rows and columns. For any matrix, let
be the set of all submatrices of . Let be the sum
of all entries in . Let . MSP
can be defined formally as follows:

Matrix Synthesis Problem (MSP)

INSTANCE: Integers and a list of

nonnegative real numbers

QUESTION: Synthesize a matrix out

of such that is minimized.

See Fig. 1 for an example.
It is not difficult to see that MSP models the thermal

placement problem for gate arrays. We represent the amount
of heat generated by each gate by a nonnegative real number.
(If we have less gates than the number of array slots, we
can add some zeros.) A submatrix in corresponds to
a region of size on the chip. The submatrix with the
largest sum corresponds to the hottest region on the chip. So
MSP is equivalent to finding a placement of the gates such
that the temperature of the hottest region is the lowest among
all possible placements.

The parameter is to model how good the heat transfer is.
If the heat transfer is poor such that the effect of a gate is
mostly on neighbor gates, then MSP with probably is
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a good model to use. On the other hand, if the heat transfer
is good, we may want to consider larger regions and hence
a larger .

Our formulation assumes that the user will provide the
data corresponding to the power dissipation of each gate.
So the accuracy of our algorithms depends on the accuracy
of the data provided. In general, the power dissipation of
a gate is affected by several factors like circuit structure,
functionality of the gate, wire loading, and input data. The
power-estimation problem is a hard problem by itself. It is an
active research area recently, and many different probabilistic
and statistical techniques have been proposed. See [4] and [5]
for survey articles.

A summary of the remainder of this paper is given below.
In Section II, we show that MSP with any fixed is NP-
complete. (MSP with is trivially in P.) In Section III, we
give a simple algorithm (called ) that approximates MSP
to within a factor of two for every . In Section IV, we
give a modified version of (called ). For
approximates MSP to within a factor of 5/3. If a simple
condition on the input is satisfied, approximates MSP to
within a factor of 1.5 for every . and output a
placement that is good for a particularonly. In Section V,
we give a recursive algorithm (called ) that outputs a
single placement such that besides approximating MSP with
parameter , it also approximates MSP with parameterto
within a factor of at most five for all .

In Section VI, some experimental results are given. First,
note that the approximation factors shown in Sections III–V
are worst case bounds only, and we show that the algorithms
work much better in practice. Second, we consider thermal
placement and optimization of other objectives at the same
time. That is because when we place gates into a chip, we may
have other concerns besides heat consideration. We show that
the placements by and are so flexible that the flexibility
can be used in optimizing other objectives simultaneously.
We demonstrate the idea by considering thermal distribution
and wiring at the same time. In Section VII, we conclude by
discussing some directions for future work.

II. NP-COMPLETENESS

MSP with is very easy since every placement is
optimal. However, we will show that MSP with every fixed

is NP-complete. To prove this result, we need the
following definitions.

Decision Version of MSP

INSTANCE: A positive real bound integers

and a list of nonnegative

real numbers

QUESTION: Is it possible to synthesize a

matrix out of such that

Fig. 2. Construction of a partition according to a placement.

3-Partition

INSTANCE: A positive real bound and a

multi-set of positive real numbers such that

and

QUESTION: Can be partitioned into

multi-sets such that for

Note that 3-Partition is NP-complete [3].
In this paper, we assume that the indexes of matrices

start at zero. Let be the submatrix in
at the intersection of rows and columns

. Let be the set of all submatrices
such that mod t .

Theorem 1: For every fixed , MSP is NP-complete.
Proof: Let be any fixed integer greater than or equal to

two. Given an instance of 3-Partition, we can reduce it to an
instance of MSP with that particular value of. The bound
for the MSP is the same as thefor the 3-Partition problem.
We set and . The nonnegative real numbers
are those in together with zeros. We have to show
that the instance of 3-Partition returns “YES” if and only if
the instance of MSP returns “YES.”

: If the instance of MSP returns “YES,” then we have a
matrix such that for all . In

particular, for all . As the submatrices
in cover the whole matrix , the sum of all the
numbers in them equals . So for all .
If we ignore all the zeros not from , then the submatrices
in define a partition of such that the sum of each
partition is (see Fig. 2). So the instance of 3-Partition will
return “YES.”

: If the instance of 3-Partition returns “YES,” let
be the partition. Since for all

, each partition should contain exactly three numbers.
Case 1) : For each , we can put the three numbers

of into the first column of a distinct and
zeros into other positions (see Fig. 3) Then every submatrix
in should contain three numbers from some and
some zeros but nothing else. Hence every submatrix sum is

. So the instance of MSP will return “YES.”
Case 2) : In this case, we do not have three positions

in the first column of each submatrix in . So we place
two numbers in the first column and one in the second column.
Let . Without loss of generality, assume
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Fig. 3. Construction of a placement according to a partition whent � 3.

Fig. 4. Construction of a placement according to a partition whent = 2.

that . Then the placement is as shown
in Fig. 4. It is obvious that for all .
Consider for some , which is not in

.
as . So

the instance of MSP will return “YES.”

III. A SIMPLE APPROXIMATION ALGORITHM

From now on, we assume for simplicity that for
some integer . In other words, we are placing numbers
into a matrix. Note that in this case, is a set of

nonoverlapping submatrices that covers the whole matrix
. We can obtain similar results if , or or is not a

multiple of . Without loss of generality, we also assume that
.

The algorithm below approximates MSP to within a
factor of two. The basic idea of the algorithm is to distribute
the numbers evenly in the matrix. We divide the numbers into

groups according to their magnitudes. We observe that it
is possible to have a placement with the property that every

submatrix contains exactly one number from each group.

ALGORITHM

For let group contain the

numbers

For for all mod and

for all mod mod

label entry of matrix as

For place each number in group

arbitrarily into a distinct position of

labeled with

For example, let for
. In other words, we are placing the numbers

into a 6 6 matrix. Then contains
contains contains and contains

. The labeling is as shown in Fig. 5. A possible
placement is in Fig. 6. Note that those numbers from group

are evenly distributed in the matrix. This is also true for
all other groups.

Fig. 5. Labeling of algorithmA1 with t = 2 andn = 6. Note that there is
exactly one of each ofL0; L1; L2; andL3 inside every 2� 2 submatrix.

Fig. 6. A possible placement by algorithmA1 for the numbers
35; 34; � � � ; 0. The entries with labelL0 (i.e., numbers from group
G0) are shaded.

Let be the optimal placement for MSP with parameter
. Before proving the approximation factor for , we first give

two lower bounds on .
Lemma 1: For every ,

.
Proof: are numbers at least as

large as . Consider the submatrices in . By
pigeonhole principle, there must be a submatrix containing
at least numbers larger than or equal to . So

.

Lemma 2: For every .
Proof:

(1)

(2)

Equation (1) follows from the fact that
for any and . Equation (2)
follows from the fact that is a set of nonoverlapping
submatrices that covers the whole matrix.

Theorem 2: For every , .
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Proof:

(3)

(4)

(5)

By the way we place the numbers, each submatrix
contains exactly one number from each group. Note that

for every number in . So for any
. Equation (3)

immediately follows. Equation (4) follows from the fact that
for as the numbers are sorted in

decreasing order. Equation (5) follows from Lemma 1 with
and Lemma 2.

IV. A B ETTER APPROXIMATION ALGORITHM

In Step 3 of algorithm , the placement of numbers from
group into entries marked with label is done arbitrarily.
The algorithm given below makes use of this flexibility on
placement to improve the approximation factor.

ALGORITHM

For let group contains

the numbers

For for all mod and

for all mod mod label

(entry of matrix) as

Place each number of group into a distinct

position of labeled with i.e. into s.t.

and are multiple of such that

and

for all

For let be the

submatrix where is placed at step 3. For

place into

the entry with label in

One way to do Step 3 is to place into , where
mod . Fig. 7 illustrates this step.

The algorithm matches larger numbers from groupwith
smaller numbers from other groups. So it prevents all the
largest numbers of the groups from being placed into the same

submatrix. Intuitively, one might think that it would be
better to match larger numbers from half of the groups with

Fig. 7. A possible implementation for Step 3 of algorithmA2 with n = 6
and t = 2. The entries with labelL0 are shaded.

Fig. 8. Illustration to show that�(Sij
t (A2)) � �(S

di=tet; dj=tet
t (A2)) for

all i; j.

smaller numbers from the other half of the groups. However,
the worst case bound is better for our algorithm.

Theorem 3: For every , if , then
.

Proof: As in algorithm , every submatrix con-
tains exactly one number from each group. However, because
of the way we do the placement in Step 3,

for any . Hence by Step 4, this implies
, where and are submatrices as shown

in Fig. 8. Similarly, since
and , we can prove that

and . So
(see Fig. 8). Therefore, the sum of every

submatrix is dominated by the sum of some submatrix in
. Hence we can focus on those submatrices in .

For any as defined in Step 4 of the algorithm
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(6)

(7)

Equation (6) follows from the fact that the’s are sorted in
decreasing order and that . Equation (7) follows
from Lemma 1 with and and Lemma 2.

If , then

If , then

So .
Note that Theorem 3 gives a bound worse than 1.5 only

when is small (less than 0.5). In this case, the input should
contain a few large numbers and many small numbers.

For the case , we can prove a bound that holds for any
input. But we need to use another lower bound of .

Lemma 3: For all and for all such that
.

Proof: are numbers larger than or equal
to . Consider the submatrices in . If any two
of these numbers are in the same submatrix, then the lemma
is obviously true. Consider the case when they are in
different submatrices in . Since there are at most

numbers less than , at least one of these
submatrices must contain some number larger than or equal to

. Hence the result follows.
Theorem 4: For , .

(a)

(b)

Fig. 9. The labeling ofA3 with t = 4 andn = 8. (a) is the labels for the
first level of recursion. Those entries labeled withL0 at this step are shaded.
(b) is the labels for the second level of recursion. The labels for the first level
are written at lower left corners.

Proof: As in Theorem 3, we will focus on those subma-
trix in . For any

(8)
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TABLE I
AVERAGE APPROXIMATION FACTORS FORA1 AND A2

TABLE II
THE WORST CASE BOUNDS (1� (2p=n)2 + (2p=t0)2, WHERE

p = dlog
2
t0e) AND THE AVERAGE VALUES OF THE APPROXIMATION

FACTORS OF ALGORITHM A3 WITH t = 8 FOR DIFFERENT t0

(9)

Equation (8) follows from the fact the ’s are sorted in
decreasing order and that . Equation (9)
follows from Lemma 1 with and , Lemmas 2
and 3.

So for .

V. A RECURSIVE APPROXIMATION ALGORITHM

For the thermal placement problem, if the heat transfer is
good, it is reasonable to consider larger regions and hence to
use a larger. Smaller regions will become less important as
heat generated will be dissipated to other parts of the chip
easily. Even if a lot of heat is generated in a small region, if
its surrounding region does not generate much heat, the heat
will spread out quickly to a larger region. However, it does not
mean that the heat consideration of smaller regions is totally
unimportant. One may still want to have some bounds on the
amount of heat generated by smaller regions.

In the previous two sections, we present two algorithms
and that give placements that are good for a particular
. If we consider a parameter , those placements

generated with parameterdo not give much guarantee on
the approximation factor. For example, if we run with

Fig. 10. Heat distribution of a random placement. There are many hot spots
(white spots) in this placement.

Fig. 11. Heat distribution of a placement byA1. There is no hot spot (white
spot) in this placement. The heat is evenly distributed.

, the numbers from and will be placed
next to each other. As the numbers from these four groups
are relatively large, if we run with may
be large.

It can be easily seen that the problem with the previous two
algorithms is that there is no intention to distribute the numbers
from different groups evenly inside a submatrix. If we
do the labeling carefully, we should be able to obtain better
bounds for smaller submatrices. In this section, we give an
algorithm that outputs a single placement such that besides
approximating MSP with parameterto within a factor two,
it also approximates MSP with parameterto within a factor
of at most five for all , when is a power of two.

The idea is to do the labeling by with recursively.
For a matrix labeled by with , if we consider
the matrix formed by removing all the entries other than
those marked with , and apply with again to place
the numbers of into it, then we know that the largest
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TABLE III
COMPARISON OF TRADITIONAL PLACEMENT BASED ON THE WIRING OBJECTIVE ONLY AND OUR

APPROACH OFPLACEMENT, WHICH CONSIDERS BOTH HEAT DISTRIBUTION AND WIRING

numbers of will not be placed adjacent to each other in
the original matrix. We can continue the idea recursively until
the groups we are considering are small enough. Then we can
apply the same procedure to , , and . The algorithm
is given below.

ALGORITHM

Divide the input numbers into 4 groups

and and label the matrix by

and as in step 1 and 2

of algorithm with

Recursively place the numbers in into the

submatrix formed by entries marked with

until the size of each group is In

that case, we do the placement arbitrarily

instead of doing it recursively.

Apply the same procedure to and

Note that we assumeis a power of two in algorithm . If
is not a power of two, we can use the smallest power of two
bigger than as the parameter for instead.

An example of the labeling is shown in Fig. 9. Basically,
as in with , we are dividing the input numbers into
16 groups (four groups in the first level of recursion and then
16 groups in the second level) such that there is exactly one
number from each group in every 4 4 submatrix. So the
sum of every 4 4 submatrix will not differ by too much.
However, because of the way we do the labeling, numbers
from different groups are evenly distributed inside every 4
4 submatrix. So we can obtain some bounds for 33 and 2

2 submatrices too.
Theorem 5: Suppose is a power of two. For any such

that , let be the integer such that .
Then .

Proof: Let be the integer such that . For any
and

(10)

(11)

Equation (10) follows from the fact that’s are sorted in
decreasing order. Equation (11) follows from Lemma 1 with

and Lemma 2.
Hence the theorem follows.
Note that if is a power of two, the approximation factor

is at most two. Otherwise, a rough upper bound on the
approximation factor is .

VI. EXPERIMENTAL RESULTS

The approximation factor bounds for the algorithms shown
in the previous three sections are all worst case bounds only.
We show here that these algorithms perform much better in
practice.

As we do not have any actual thermal information for
circuits, we generate thermal information uniformly at random.
Ten sets of data of size 120 120 are generated. In Table I,
the average approximation factors over the ten data are shown
when algorithms and with various values of are used
to place them into a 120 120 matrix. For algorithm , the
placement of numbers inside a group is done randomly. We
also include the results of random placements for comparison.
If the placement of gates is independent of the amount of heat
generated by the gates, then the resulting placement should be
similar to a random placement in terms of heat distribution.

As shown in Table I, the approximation factors of our
algorithms are very close to optimal in practice. They also
perform much better than random placements. Note that as
we do not know the optimal value , we only use
the maximum of the lower bounds in Lemmas 1–3 as an
approximation of it. The approximation factors should be even
better if optimal values are used.

In Table II, the average approximation factors over the same
sets of data for algorithm are shown. We use here,
and the approximation factors for are also shown. The
worst case bounds proved in Theorem 5 and the results of
random placements are included for comparison.
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As shown in Table II, the algorithm gives pretty good
approximation factors simultaneously for all. It performs
much better in practice than the upper bounds suggest. It also
performs much better than random placements. Again, we can
only use the lower bounds in Lemmas 1–3 to approximate the
optimal values.

Figs. 10 and 11 show the heat distribution of a random
placement and a placement by with , respectively.
The brightness at each point is proportional to the total amount
of heat generated by a surrounding region of size 44. As we
can see, there are many hot spots in the random placement.
On the contrary, the heat is very evenly distributed in the
placement by .

When we place gates into a chip, we usually have to
optimize other objectives at the same time. For algorithms
and , there is large flexibility to do the placement because
the algorithms only require a number to be placed in any of
those entries with a particular label. Moreover, the entries with
that particular label are plenty and are evenly distributed on
the matrix.

We observe that such flexibility can be used to simultane-
ously optimize other objectives. We demonstrate the idea by
considering heat distribution and wiring at the same time. A
set of MCNC benchmark circuits was used. Since thermal data
of these circuits were not available, we generated a number
uniformly at random for each gate representing the amount
of heat dissipated by the gate. We first obtain a thermally
good placement by our thermal placement algorithmwith

. Then we try to improve the total wiring length by
simulated annealing. However, we only allow the exchange
of two entries such that the differences in row indexes and in
column indexes are both multiples of. So as far as heat
is concerned, the placement after the simulated annealing
is as good as the one before. As for comparison, we also
consider traditional placement based on the wiring objective
only. That is, in our experiment, we apply simulated annealing
to a random initial placement, using total wire length as the
objective, and without imposing any restrictions on the gate
locations as was done in the other case. It corresponds to the
case when heat is not taken into consideration. Table III gives
the results of the experiment.

As expected, our algorithm is not as good as usual simulated
annealing in terms of total wire length. However, the increase
is very insignificant. On the other hand, our algorithm performs
much better in distributing the heat.

VII. CONCLUDING REMARKS

We have introduced a new combinatorial problem, MSP,
to model the thermal placement problem. We show that
MSP is NP-complete and we give three provably good ap-
proximation algorithms for it. All three algorithms run in
just time for a problem of data. Be-
sides, the algorithms are flexible and are good both theo-
retically and practically in providing an approximate solu-
tion.

A direction of future work is to design algorithms with
provably better approximation factors for MSP. As we pointed

out in Section V, one may want to have bounds on several
values of simultaneously. The worst case bounds given by
sometimes can be as large as five. It is good to have algorithms
with better worst case bounds. We can also generalize MSP
by considering a weighted average of the approximation
factors for different values of . This model gives more
guarantee than MSP, and it may be easier to work with
than the model of providing several bounds simultaneously.
However, we have no idea how the weights should look. It
is worthwhile to investigate what the weights should be and
to design approximation algorithms according to the weight
distribution. Another direction is to obtain a simple model
that gives the temperature for each point on the chip. In
fact, the temperature distribution for a given placement can
be found by numerically solving differential equations, but
such calculations are too expensive to be used by a placement
algorithm.

ACKNOWLEDGMENT

The authors thank Dr. K. Y. Chao of Intel Corp. for his
helpful comments.

REFERENCES

[1] K. Y. Chao and D. F. Wong, “Low power considerations in floorplan
design,” in Proc. 1994 Int. Workshop Low Power Design,1994, pp.
45–50.

[2] , “Thermal placement for high performance multi-chip modules,”
in Proc. IEEE Int. Conf. Computer Design (ICCD),Oct. 1995.

[3] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness.New York: Freeman, 1979.

[4] E. Macii, M. Pedram, and F. Somenzi, “High level power modeling,
estimation and optimization,” inProc. 34th Design Automation Conf.,
1997, pp. 504–510.

[5] F. Najm, “A survey of power estimation techniques in VLSI circuits,”
IEEE Trans. VLSI Syst.,vol. 2, no. 4, pp. 446–455, 1994.

[6] M. D. Osterman and M. Pecht, “Component placement for reliability on
conductively cooled printed wiring boards,”ASME J. Packaging,vol.
111, no. 3, pp. 149–156, 1989.

[7] , “Placement for reliability and routability of convectively cooled
PWB’s,” IEEE Trans. Computer-Aided Design,vol. 9, no. 7, pp.
734–744, 1990.

[8] M. Pedram, “Power minimization in IC design: Principles and applica-
tions,” ACM Trans. Design Automat. Electron. Syst.,vol. 1, no. 1, pp.
3–56, 1996.

[9] B. T. Preas and M. J. Lorenzetti,Physical Design Automation of VLSI
Systems. Menlo Park, CA: Benjamin Cummings, 1988.

[10] R. E. Simons, “Microelectronics cooling and semitherm: A look back,”
in Proc. 10th Semiconductor Thermal and Temperature Measurement
Symp.,1994, pp. 1–16.

Chris C. N. Chu received the B.S. degree in com-
puter science from the University of Hong Kong,
Hong Kong, in 1993 and the M.S. degree in com-
puter science from the University of Texas at Austin
in 1994. He is now pursuing the Ph.D. degree in the
Computer Sciences Department of the University of
Texas at Austin.

His research interests include design and analysis
of algorithms, CAD of VLSI physical design, and
performance-driven interconnect optimization.



1174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

D. F. Wong received the B.Sc. degree in mathe-
matics from the University of Toronto, Canada, and
the M.S. degree in mathematics from the University
of Illinois at Urbana-Champaign. He received the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana-Champaign in 1987.

He is currently an Associate Professor of com-
puter sciences at the University of Texas at Austin.
His main research interest is CAD of VLSI. He has
published more than 160 technical papers and has
graduated 15 Ph.D. students in this area. He is a

coauthor ofSimulated Annealing for VLSI Design(Norwell, MA: Kluwer
Academic, 1988).

Dr. Wong received Best Paper Awards at DAC-86 and ICCD-95 for his
work on floorplan design and FPGA routing, respectively. He is the General
Chair of the 1999 ACM International Symposium on Physical Design (ISPD-
99) and was the Technical Program Chair of the same conference in 1998
(ISPD-98). He has also served on the technical program committees of many
other VLSI CAD conferences (e.g., ICCAD, ED&TC, DATE, ISCAS, and
FPGA). He is an Editor of IEEE TRANSACTIONS ON COMPUTERS.


