
Lagrangian Relaxation Based Gate Sizing With Clock Skew
Scheduling - A Fast and Effective Approach

Ankur Sharma
ankur_sharma2@mentor.com

Mentor Graphics, Fremont, USA

David Chinnery
david_chinnery@mentor.com
Mentor Graphics, Fremont, USA

Chris Chu
cnchu@iastate.edu

Iowa State University, Ames, USA

ABSTRACT
Recent work has established Lagrangian relaxation (LR) based gate
sizing as state-of-the-art providing the best power reduction with
low run time. Gate sizing has limited potential to reduce the power
when the timing constraints are tight. By adjusting the arrival times
of clock signals (clock skew scheduling), the timing constraints can
be relaxed facilitating more power reduction.

Previous LR attempts at simultaneous gate sizing and skew sched-
uling solved a minimum-cost network flow problem for updating
the Lagrange multipliers in each LR iteration, and for optimality
assumed continuous sizes with convex delay models. We propose
an alternative approach, modifying a LR discrete gate sizing for-
mulation with table lookup non-convex delay models, which are
more accurate for modern process technologies. For the Lagrange
multiplier update, we use a projection heuristic that is much faster
than solving the minimum cost network flow problem.

On the ISPD 2012 gate sizing contest benchmark suite, our pro-
posed approach outperforms the previous min-cost flow based ap-
proach by saving 5.3% more power and is 70x faster. Compared to
sizing alone with the state-of-the-art LR gate sizer, skew scheduling
with sizing saves 19.7% more power with a small runtime penalty.

CCS CONCEPTS
• Hardware → Combinational synthesis; Circuit optimiza-
tion.

KEYWORDS
Lagrangian relaxation; discrete gate sizing; Vt assignment; clock
skew; multi-threading; gate sizing contest
ACM Reference Format:
Ankur Sharma, David Chinnery, and Chris Chu. 2019. Lagrangian Relaxation
Based Gate Sizing With Clock Skew Scheduling - A Fast and Effective
Approach. In 2019 International Symposium on Physical Design (ISPD ’19),
April 14–17, 2019, San Francisco, CA, USA.ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3299902.3309746

1 INTRODUCTION
In modern designs, power consumption has increased substantially
as larger circuits are being integrated on a single chip while the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISPD ’19, April 14–17, 2019, San Francisco, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6253-5/19/04. . . $15.00
https://doi.org/10.1145/3299902.3309746

technology continues to shrink. That results in high power density
causing reliability challenges, large cooling cost in data centers,
and quicker discharge of the batteries in mobile devices. Circuit
performance is also limited by power due to higher power densities.
Thus, reducing the power has become a major concern.

In physical design, gate sizing is one of the most frequently used
circuit optimizations. Each gate can be implemented by several
possible cell options, with different sizes and threshold voltages
(Vth). Different cell options trade off area or power for delay. A
gate-sizer has to choose a suitable cell for every gate to minimize
the objective cost while meeting the design timing constraints.

Synchronous circuits have combinational gates forming data
paths and sequential gates that receive the clock signal. The setup
timing constraint requires the data path signal to reach the sequen-
tial gate before the arrival of the clock signal. If a data path violates
such a constraint, a gate sizing tool would resize gates on the path
to speed it up. An alternative is to delay (skew) the arrival of the
clock at the sequential gate.

Figure 1: Example of clock skew to meet the timing constraint.

An example is shown in Figure 1. There are two flip-flops, A and
B. They receive the same clock edge every 20 time units. There is a
combinational block between them with a worst path delay of 24.
The data signal is required to arrive at flip-flop B in ≤20. By delay-
ing the arrival at the clock pin of B by 4 units, the timing constraint
can be satisfied. Assigning clock skews to improve performance
of the design is clock skew optimization [1]. A gate sizer with only
cell sizes to vary is limited in how much power/area it can recover.
Varying the clock skew provides an additional degree of freedom
that gate sizers can utilize to improve the results as demonstrated
previously [2–4]. These previous works make simplifying assump-
tions like continuity in sizes and convexity of delay models, and
their approaches are very slow on larger designs.

In this paper, we propose a new flow for effective simultaneous
gate sizing and clock skew scheduling that seamlessly integrates
with the state-of-the-art gate sizing tool. For comparison, we also
extend the previous approach fromWang et al. [3].Wang et al. trans-
formed the original timing graph to eliminate the skew variables

https://doi.org/10.1145/3299902.3309746
https://doi.org/10.1145/3299902.3309746

and in the process introduced loops in the graph. The Lagrangian
dual problem on the transformed graph was modeled as a min-cost
network flow problem. Assuming continuity in the cell sizes and
convexity of the delay models, their algorithm maximized the dual
cost to realize primal optimality, if the primal problem was feasible.
We detail how to apply their algorithm with more realistic con-
straints, i.e., discrete cell sizes and non-convex delay models, and
discuss several limitations of this approach in the presence of these
realistic constraints. We refer to this approach as NetFlow.

Our proposed approach for simultaneous gate sizing and skew
scheduling is built upon a state-of-the-art LR gate sizing algorithm.
We add skews variables to the LR formulation while keeping the
timing graph directed acyclic. The timing graph must be acyclic
to apply the projection based Lagrange multiplier update heuristic
which is crucial to the performance of state-of-the-art gate sizing
tools. We propose a new flow to simultaneously update skew along
with the cell sizes and the Lagrange multipliers. We discuss our
skew update strategy and propose modifications to the Lagrange
multiplier update strategy in order to reflect the modified timing
constraints caused by skewed clocks. We refer to this approach as
EGSS which stands for Effective Gate sizing with Skew Scheduling.
For benchmarking, we use the ISPD 2012 gate sizing contest bench-
mark suite [5]. Compared to NetFlow, EGSS achieves an average of
5.3% additional power savings, and is 70x faster in total run time.

Our main contributions are as follows:

• We derive an LR formulation for the simultaneous gate sizing
and clock skew scheduling problem while preserving the
directed acyclic structure of the underlying timing graph.
• We propose a modified Lagrange multiplier update heuristic
accounting for the skew.
• We present a simultaneous gate sizing and clock skew sched-
uling approach that seamlessly integrates with the state-of-
the-art gate sizing tool. We empirically verify it’s efficiency.
• In the context of discrete gate sizing with non-convex delays,
we identify and empirically demonstrate several limitations
of achieving primal optimality via dual maximization.

The rest of the paper is organized as follows. Section 2 summa-
rizes previous work on LR gate sizing and sizing with skew sched-
uling. Section 3 formulates the problem. Sections 4 and 5 present
NetFlow then EGSS. Section 6 discusses limitations of achieving
primal optimality via dual optimality. Section 7 briefly describes the
greedy refinement strategies that we use in this work. We present
the experimental results in Section 8 and conclude in Section 9.

2 PREVIOUS WORK
The gate sizing problem has been researched for several decades.
Earlier, most of the approaches assumed continuity in the gate
sizes, convex delay models and experimented on relatively smaller
designs. The gate sizing contests organized by Intel in ISPD 2012
[5] and ISPD 2013 [6] gave a fresh momentum to research in this
area. The objective in the contests was to minimize the leakage
power under the delay constraints. Contests were based on realistic
constraints, discrete cell options and table lookup based non-linear
delay models, and provided a suite of small to large designs having
up to a million gates for benchmarking. Most of the post-contest

publications in gate sizing utilized the contest framework for bench-
marking and thus, greatly pushed ahead the state-of-the-art.

Some of the post-contest publications like [7] used sensitivity
guided greedy metaheuristics to reduce timing violations and then
reduce the power. Daboul et al. [8] modeled the gate sizing problem
as a resource sharing problem. However, most of the gate sizers
that were published used LR formulation [9–13]. Li et al. [9] first
achieved minimum clock period and then recovered power using
the min-cost network flow formulation. Ren et al. [14] also used
network flow for discrete cell sizing, but neither of their formula-
tions considered skew. Flach et al. [11] improvised on the projection
based Lagrange multiplier update heuristic that was originally pro-
posed in [15]. They demonstrated the least power results on the
ISPD 2012 gate sizing contest designs. Sharma et al. [12] proposed a
multi-threaded LR gate sizer and reported the least runtime, which
they further improved in [13]. They proposed a simple and tunable
framework for projection based Lagrange multiplier update which
significantly improved the convergence. LR gate sizing using the
projection heuristic has been demonstrated to yield designs with
lower power and much smaller runtime compared to the other
approaches. The original LR gate sizing idea is credited to [16].

Some of the previous works on simultaneous gate sizing and
skew scheduling include [2–4, 17, 18]. Chuang et al. [2] directly
solved the primal problem by formulating it as a linear program-
ming problem using the piecewise-linear (PWL) approximations
of the convex delays. Roy et al. [18] assumed continuous sizes and
convex delays, and thus were able to minimize the Lagrangian sub-
problem simultaneously over size and skew variables using a bound
constrained optimization solver. Without giving much details they
claim to use the projection heuristic of [15] for updating Lagrange
multipliers. Wang et al. [3] eliminated the skew variables from the
primal problem in order for the Hessian of the primal objective
to be positive definite so that optimality of their algorithm can
be guaranteed. As a result, the timing graph could no longer be
acyclic. Wang et al. maximized the dual cost by solving the min-cost
network flow formulation of the Lagrangian dual problem. While
they prove primal optimality under the assumptions that sizes are
continuous and delay models are convex, these assumptions are
not valid in modern design methodologies which would limit the
effectiveness of their approach. Shklover et al. [4] accounted for the
cost of implementing the clock skew via clock tree. Although they
formulate a simultaneous discrete gate sizing and skew scheduling
problem using LR, they mainly focus on clock tree optimization
via dynamic programming. For sizing of the datapath gates and
Lagrange multiplier update, they simply refer to the previous works
[3, 16, 18]. The multiplier update strategies used in these previous
works [3, 16, 18] are either too slow, especially on large designs, or
have problem converging to a good solution [15].

3 PROBLEM FORMULATION
In order to formally define the problem, we use the notation tab-
ulated in Table 1. The objective is to minimize the leakage power
subject to the delay constraints, maximum load constraints, and
maximum slew (transition time) constraints. Skew variables are
bounded. Only combinational gates can change size, sequential
gates are a fixed size. The primal problem is formally defined as:

Table 1: Commonly used notations.

Notation Meaning
T Target clock period
G Set of gates in the design
Xд Discrete set of cells for gate д
xд ∈ Xд Current cell for gate д
FF Set of flip-flops in the design
PO Set of primary outputs in the design
wk Skew at flip-flop k ∈ FF
N Set of nodes in the timing graph
E Set of timing arcs in the timing graph
di j (xxx) Delay function of the timing arc (i, j)
λi j Lagrange multiplier for the timing arc (i, j)
ai Arrival time at node i
adk , aqk Arrival times at D and Q pins of flip-flop k
setupk , dclk2qk (xxx) Setup and clock to Q delay of flip-flop k
λdk , λqk Lagrange multipliers associated with the

setup and the clock to Q delay timing arcs
of flip-flop k

дate_power (x) Power of cell x
p(xxx) Total power of the design
max_load(x) Maximum load capacity of cell x
xxx,www,aaa,λλλ Respective set of variables x ,w , a and λ
loadд(xxx) Capacitive load at the output of gate д
slewi (xxx) Slew at node i
max_slew Maximum slew defined in the cell library

minimize
xxx ,aaa,www

p(xxx)

subject to ai + di j (xxx) ≤ aj ∀(i, j) ∈ E

apo ≤ T ∀po ∈ PO

adk ≤ T +wk − setupk ∀k ∈ FF

wk + dclk2qk (xxx) ≤ aqk ∀k ∈ FF

loadд(xxx) ≤ max_load(xд) ∀д ∈ G

slewд(xxx) ≤ max_slew ∀д ∈ G

xд ∈ Xд ∀д ∈ G

wmin ≤ wk ≤ wmax ∀k ∈ FF

(1)

where minimization is over the set of discrete cell variables xxx ,
continuous arrival time variables aaa, and continuous skew vari-
ables www . p(xxx) is the sum of the power over all the gates, p(xxx) =∑
д∈G дate_power (xд). Since Wang et al. [3] did not consider the

power cost of skew implementation, for a fair comparison against
their NetFlow approach, we also do not account for the clock tree
power in our formulation (1). For an example of how to incorporate
clock power, refer [4]. Although our EGSS approach complements
the work of Shklover et al. [4], we cannot compare against them
because they used proprietary designs which are not available.

We use table lookup based non-linear, non-convex delay models
for modeling cell arcs. Per ISPD 2012 contest framework, intercon-
nect is modeled by a lumped capacitance without any resistance,
so the net timing arcs have zero delay. Even if interconnects are
modeled by distributed RC trees as in the ISPD 2013 contest, the

Figure 2: Timing graph for EGSS approach. Graph is directed
acyclic with skew variables.

problem formulation and our approach would not change. With
RC interconnects, the main challenge is the interconnect and the
cell delay modeling which is beyond the scope of this work.

Timing constraints in the primal problem (1) are usually mod-
eled by a timing graph. The underlying timing graph used by our
proposed EGSS approach is shown in Figure 2. It was presented by
Wang et al. in [3]. The graph has two dummy nodes and several
dummy edges. Two dummy nodes are the global input I , and the
global output O . There are dummy edges from I to output pins
on flip-flops (Qk); from I to primary inputs (pi); from input pins
on flip-flops (Dk) to O ; and, from primary outputs (po) to O . Al-
though Wang et al. transformed it to eliminate skew variables and
in the process introduced loops (directed cycles) in the timing graph,
we instead propose to retain skews as variables and preserve the
graph’s directed acyclic structure. Further, Wang et al. had a back-
ward edge from O to I with a weight of −T which created more
loops. Unlike that, to avoid loops in the timing graph, we adjust
weights on the dummy edges so that the arrival times at I and O
satisfy the following properties: aI = 0 and aO ≤ 0, as shown in
Figure 2. In the presence of a clock tree, our timing graph can be
extended to include timing arcs from the clock tree without creating
loops. But it is not clear how skew variables can be eliminated in
the presence of timing constraints along the clock tree.

Following the methodology of Chen et al. for gate sizing [16], we
also relax the timing constraints. To penalize violations in the tim-
ing constraints, each constraint is associated with a non-negative
Lagrange multiplier. These multipliers indicate the timing criticality
of the corresponding arc. For a given set of Lagrange multipliers
λλλ ≥ 0, the Lagrange function can be defined as:

Lλλλ(xxx,aaa,www) : p(xxx) +
∑
(i , j)∈E

λi j ×
(
ai + di j (xxx) − aj

)
+

∑
po∈PO

λpo ×
(
apo −T

)
+

∑
k ∈FF

λdk ×
(
adk −T −wk + setupk

)
+

∑
k ∈FF

λqk ×
(
wk + dclk2qk (xxx) − aqk

)
(2)

LR gate sizing formulations typically do not relax the maximum
load and maximum slew constraints. We also propose not to relax
the skew bounds (last constraint of (1)), since such violations are
easy to compute. The Lagrangian dual function is the minimum
value of the Lagrangian function over xxx , aaa andwww , for given λλλ,

д(λλλ) =minimize
xxx ,aaa,www

Lλλλ(xxx,aaa,www)

subject to loadд(xxx) ≤ max_load(xд) ∀д ∈ G

slewд(xxx) ≤ max_slew ∀д ∈ G

xд ∈ Xд ∀д ∈ G

wmin ≤ wk ≤ wmax ∀k ∈ FF

(3)

The Lagrangian function is affine in arrival times, so for the dual
function to be finite, the multipliers must satisfy the flow constraints
shown in (4). This argument is due to Wang et al. [3].∑

{v |(i ,v)∈E }

λiv =
∑

{u |(u ,i)∈E }

λui ∀i ∈ N\{I ,O} (4)

Denote by Ω the Lagrange multipliers satisfying (4):

Ω = {λλλ |λλλ satisfies (4) and λλλ ≥ 0}

Applying the flow constraints (4) to (2), arrival time variables can
be eliminated, and by ignoring the constant terms involving T and
setupk , the Lagrangian function can be simplified as

Pλλλ∈Ω(xxx,www) : p(xxx) +
∑
(i , j)∈E

(λi j × di j (xxx))+∑
k ∈FF

λqk × dclk2qk +
∑

k ∈FF

(
λqk − λdk

)
×wk

(5)
For λλλ ∈ Ω, the dual function can be re-written as the following
minimization problem, the Lagrangian relaxation subproblem or
LRSλλλ ,

д(λλλ ∈ Ω) =minimize
xxx ,www

Pλλλ(xxx,www)

subject to constraints in (3)
(6)

The Lagrange dual problem (LDP) maximizes the dual function (6),

maximize
λλλ∈Ω

д(λλλ) −
∑

po∈PO

λpo ×T+∑
k ∈FF

λdk × (setupk −T)
(7)

The LDP is solved iteratively. In each iteration, for given λλλ, LRSλλλ
(6) is solved to update x,wx,wx,w ; and for given x,wx,wx,w , LDP objective is
maximized in the neighborhood of current λλλ. Thus, λλλ are incremen-
tally updated. With updated λλλ, LRSλλλ is solved again in the next LDP
iteration (also referred to as LR iteration).

4 NETFLOW
Before describing our proposed EGSS approach in Section 5, we
first discuss the NetFlow approach. The core idea of NetFlow (but
not the name) is due to Wang et al. [3]. We make two changes. To
optimally solve LRSλλλ , Wang et al. assumed continuous sizes and
convex delay models. We extend their LRSλλλ solver to apply it to
discrete sizes and table lookup based delay models. Also we fill in
the missing details for setting bounds on the Lagrange multipliers.

Wang et al. transformed the timing graph to eliminate skew
variables from the set of primal variables. This transformation
resulted in directed cycles in the timing graph, as shown in Figure 3.
Therefore, their Lagrangian function LN F

λλλ (xxx) is different than ours

Figure 3: The timing graph for NetFlow which has directed cycles
due to additional edges from Dk to Qk from eliminating skews.

(2). See [3] for the complete expression of LN F
λλλ (xxx). The Lagrangian

relaxation subproblem for NetFlow (LRSN F
λλλ) is defined as:

дN F (λλλ ∈ Ω) : minimize
xxx

LN F
λλλ (xxx)

subject to constraints in (3)
exceptw bounds

(8)

дN F is the dual function. Then, LDPN F is defined as,

maximize
λλλ∈Ω

дN F (λλλ) (9)

Wang et al. proposed a minimum cost network flow formulation,
MCNFλλλ , to solve LDPN F in the neighborhood of current λλλ,

minimize
△λλλ

〈
−∇дN F (λλλ), △λλλ

〉
subject to △λλλlb ≤ △λλλ ≤ △λλλub

△λλλ + λλλ ∈ Ω

(10)

where, ∇дN F (λλλ) is the gradient of the dual function дN F at λλλ; and
⟨.⟩ denotes the dot product. To solve the gate sizing problem, the
dual function is maximized over △λ△λ△λ ∈ Ω. The intuition behind the
algorithm is to iteratively improve the dual дN F (λλλ) by maximizing
its first-order approximation in neighborhood of the current λλλ.

Pseudo-code is shown in Algorithm 1. All Lagrange multipliers
are initialized to 0 as that is a trivial dual feasible solution. LRSN F

λλλ
is solved to initialize the sizes. Since the multipliers are all zeros,
the optimal solution to LRSN F

λλλ is the minimum power subject to
maximum load and slew constraints. Then, we initialize the skews
to 0 and update the timing. The timing is needed to compute the
bounds on △λλλ. Our bound computation strategy is discussed later
in this section, and our skew update strategy is discussed in Section
5. After the initialization, LDPN F is iteratively solved. In each
iteration, firstly the lower and the upper bounds are computed.
Then,MCNFλλλ (10) is solved using the computed bounds. Optimal
solution △λλλ∗ gives the steepest ascent direction of дN F (λλλ). Then,
a line search is performed along △λλλ∗ in order to improve дN F

in 5 equispaced steps. At each step, LRSN F
λλλ is solved. Based on

the step-size that yielded the maximum дN F , the multipliers are
updated. Then, skews and timing are updated, only for the purpose
of computing the bounds. Iterations continue until the change in
дN F is below a threshold, or a maximum number of iterations
are reached. Since the problem is discrete and non-convex, this
approach has several limitations which are discussed in Section 6.
Consequently, even though the dual function converges, often there

are some timing violations and scope for further power reduction.
Therefore, we add a greedy refinement step at the end to try to
recover any remaining timing violations and reduce power.

Algorithm 1 Pseudo code for NetFlow

1: λλλ = 0. Solve LRSN F
λλλ (8) for xxx

2: Initialize skew towmin . Update timing.
3: while дN F (λλλ) has not converged and iterations < N do
4: (△λλλlb , △λλλub) ← compute bounds on △λλλ
5: SolveMCNFλλλ (10) for optimal △λλλ∗
6: Perform line search on дN F (λλλ + step × △λλλ∗) ◃ 0 < step ≤ 1

for an increase in дN F .
7: Update λλλ
8: Update skew. Update timing (for bound computation)
9: Greedy refinements

Solving LRSN F
λλλ . The strategy in [3] to solve the subproblem (8)

assumes continuity in sizes and convexity of delay models. With
discrete sizes and non-convex delay models, it becomes a difficult
combinatorial problem. We adapt the LRS solver routine from the
discrete LR gate sizing tool [9]. Although it does not guarantee
optimality, its variants are the basis of state-of-the-art gate sizers
[11, 13]. In this routine, all gates are traversed in the forward topo-
logical order. For each gate, assuming other gates are fixed, all the
cell sizes are evaluated and the cell is chosen which minimizes the
objective. To compute the objective quickly, timing is propagated
only among the fanin and the fanout gates. To topologically order
the cyclic timing graph, we cut it at the flip-flops. We also apply
multi-threading techniques from [12] to parallelize the LRS solver.

Bound Computation. Wang et al. [3] did not give details on how
to set the bounds. Based on the insights from the state-of-the-art LR
gate sizing works, we propose to set the upper and lower bounds
on △λi j for each combinational cell timing arc (i, j), as follows:

△λi j ,ub = max
{
λi j × |(qj − ai − di j)|

T
, λ̄λλ ×M

}
△λi j ,lb = max {−λi j ,−△λi j ,ub }

(11)

where, qj is the required time at node j; λ̄λλ is the average value
of multipliers over all the arcs; and M is a tuning parameter. We
make the upper bound proportional to the current value of the
Lagrange multiplier and the slack along the arc. If either of them
is large, that indicates the need for large changes in the multiplier.
For near-critical arcs, the upper bound can be very small which
slows convergence. Hence, we ensure that the upper bounds are at
least of the order of the average multiplier value across the design.
Lower bounds are set to guarantee non-negative multipliers. For
some arcs, including the arc from O to I , it is not necessary to set
explicit bounds as their multiplier values are determined by other
incident arcs, being constrained by the Ω space.

5 EGSS: EFFECTIVE GATE SIZINGWITH
SKEW SCHEDULING

In this section we describe our approach for simultaneous gate
sizing and skew scheduling. We call it EGSS. We modify portions

Figure 4: Flow of our proposed EGSS. STA is static timing analysis.

of a state-of-the-art LR gate sizer. In particular, we re-use the LRS
solver from the existing gate sizer, propose a new skew update
strategy, and extend the projection based heuristic for the Lagrange
multiplier update which is much faster than solving the minimum
cost network flow problem as done in NetFlow.

Figure 4 shows the overall flow of EGSS. It has three stages:
initialization, solving LDP, and greedy refinements. Initially, gates
are sized to minimum power cell sizes subject to the maximum load
and slew constraints; skews are initialized to the minimum values;
timing is updated; and Lagrange multipliers are initialized to one
and projected onto the Ω space. Unlike NetFlow, because of the
multiplication in the Lagrange multiplier update which is discussed
later in this section, the multipliers cannot be initialized to zero.

The LDP solver fixes most timing violations and reduces the
power. In each iteration, it solves the LRSλλλ (6) over size and skew
variables, updates timing, and updates the multipliers. During the
first few iterations, multipliers are updated to reduce total negative
slack (TNS). The TNS is the total of all the timing violations in the
second and third constraint of (1). Once the timing violations are
reduced, multipliers are updated to focus on reducing power. There
are extra checks in the LRS solver to avoid timing violations. Like
NetFlow, greedy refinements are performed in the last stage.

5.1 Solving LRSλλλ
In LR gate sizing, sizes are the only variables in the Lagrangian
relaxation subproblem (LRS). The LRS is a tough combinatorial
problem, and adding skew variables for skew scheduling makes
it even more difficult. Heuristically, we solve LRSλλλ (6) separately
for sizes and skews. The objective of LRSλλλ from (5) can be split
into two functions: a function of sizes, and a function of skews,
Pλλλ∈Ω(xxx,www) = Hλλλ∈Ω(xxx) +Qλλλ∈Ω(www) where,

Hλλλ∈Ω(xxx) = p(xxx) +
∑
(i , j)∈E

λi j × di j (xxx) +
∑

k ∈FF

λqk × dclk2qk (xxx)

Qλλλ∈Ω(www) =
∑

k ∈FF

(
λqk − λdk

)
×wk

(12)
In our scheme to solve LRSλλλ , we first minimize Hλλλ∈Ω(xxx) assuming
skews are fixed, then update timing, and lastly update skews based
on the Qλλλ∈Ω(www) function - see Figure 4. Note that skews do not
affect Hλλλ∈Ω(xxx), and sizes do not affect Qλλλ∈Ω(www), so they can be
optimized separately. Shklover et al. [4] had a similar framework

to solve LRSλλλ , but used different algorithms to minimize Hλλλ∈Ω(xxx)
and update skew.

To minimize Hλλλ∈Ω(xxx), we use the LRS solver from [12]. This
LRS solver is similar to that for the NetFlow approach in Section 4,
but it performs a local slack check during every cell size evaluation.
Each new candidate cell size is checked for local timing degradation.
Only a cell size that either does not or minimally degrades the local
timing can be assigned to a gate. This check is necessary to keep
the timing violations under control while reducing power. This
check is not applied while solving LRSN F

λλλ (8) because the NetFlow
objective is dual maximization, and reduction in TNS and power
(primal objective) is expected as a consequence.

5.2 Skew Update
Consider minimizing Qλλλ∈Ω(www) (12) to determine skews subject to
the bounds. Since the objective is linear in skews, minimization
is trivial. For each flip-flop k , if λqk > λdk , then wk = wmin , else
wk = wmax . Intuitively, if the Q pin is more timing critical than
the D pin, then reduce the skew to reduce timing violations at the
Q pin. If the D pin is more timing critical, then increase the skew
to increase the slack at the D pin. Note that always setting skew
to either of the extreme values can cause oscillations. Hence, we
propose the following skew update strategy,

△wk =
slackq − slackd

2
wk = max {wmin, min {wmax ,wk + △wk }}

(13)

5.3 Modified Lagrange Multiplier Update
The projection based Lagrange multiplier update strategy is crucial
for fast convergence and final solution quality. A simple framework
for this multiplier update was proposed in [13]. We extend it to
account for the skew impact. If skew at a flip-flop is positive, then
the timing paths ending at its D pin have a larger required time
which reduces the rate at which multipliers increase. Pseudo code
for the Lagrange multiplier update is shown in Algorithm 2.

Algorithm 2 Lagrange multiplier update algorithm

for each flip-flop k do

λdk = λdk ×
(
1 +

adk +setupk−T−wk
T

)K
for each primary output po do

λpo = λpo ×
(
1 + apo−T

T

)K
for each timing arc (i, j) do

λi j = λi j ×
(
1 + ai+di j−qj

T

)K
◃ qj : required time at j

Projection to satisfy flow constraints. Refer [15]

6 NETFLOW VS EGSS: LIMITATIONS OF
OPTIMIZING THE PRIMAL PROBLEM VIA
DUAL MAXIMIZATION

The NetFlow approach is based on results from Lagrangian duality
theory [19], that under certain conditions which generally hold

Figure 5: Minimization of Lagrangian function Lλ (x) for a single
gate circuit is shown in the power-delay space parameterized by the
discrete cell size x . X-axis is delay shifted to the right by T . Y-axis
is the power. Each dot corresponds to a unique cell size x . Left of
the power axis (d (x) − T ≤ 0) is primal feasible. Minimum feasible
power p∗ and minimum possible power pmin are indicated above.

Figure 6: Maximization of dual function д(λ) is shown for a single
gate circuit in (a) primal space and, (b) dual space. д∗ is the dual
optimal attained at λ = λ3. Due to non-convexity and discreteness
there is a non-zero duality gap, p∗ −д∗. For the same reasons, Lλ3 (x)
is minimized at x4 and x3. While x4 is primal feasible, x3 is not.

for the convex and continuous primal problems, primal optimality
can be attained by maximizing the dual function. However, for
non-convex discrete gate sizing which is NP-hard [20], NetFlow
has limitations:
• A non-zero duality gap
• Minimizer xxx∗ of the Lagrangian while solving LRS for the
optimal set of dual variables λλλ∗ may not be primal feasible
• Discreteness tends to cause oscillations

We explain these limitations with the help of a simple illustration
of the process of dual maximization in the primal space.

Consider a single inverter circuit with cell size x as the only
variable. Let power of the circuit be p(x) and delay be d(x). Figure
5 shows these values for different sizes of the inverter. Each point
corresponds to a distinct size. Let λ ≥ 0 be the Lagrange multiplier
associated with the timing arc of the inverter. Then, the Lagrange
function can be written as Lλ(x) = p(x) + λ × (d(x) − T). In the
power-delay space, this is a line with slope −λ and the intercept on
the p(x) axis is the value of the Lagrangian function. Solving LRS,
or computing the dual function, is equivalent to minimizing Lλ(x),
i.e., pushing the line as low as possible as long as it passes through
at least one design point. This process is illustrated in Figure 5.

Table 2: A summary of the results for ISPD 2012 benchmarks suite [5] is shown for three flows: Sharma et al. [13] which is the baseline for
comparison - it assumes a fixed skew; NF (NetFlow); and EGSS. For NetFlow and EGSS minimum and maximum skew bounds are 0 and 165ps.
The final optimized netlist for each design from all three flows has zero timing violations.

Benchmark
Comb. Clock Leakage Power (W) Power saved (%) Total Runtime (min) Speedup (X)
Gates T, (ps) [13] NF EGSS Vs [13] Vs NF [13] NF EGSS Vs [13] Vs NF

DMA_slow 23109 900 0.135 0.111 0.104 23.1 6.6 0.07 7.90 0.08 0.9 94.0
pci_bridge32_slow 29844 720 0.098 0.073 0.072 26.9 2.2 0.09 8.70 0.10 0.9 88.0
des_perf_slow 102427 900 0.583 0.420 0.404 30.6 3.7 0.32 21.09 0.30 1.1 69.2
vga_lcd_slow 147812 700 0.329 0.310 0.310 5.9 0.2 0.44 28.35 0.44 1.0 64.0
b19_slow 212674 2500 0.569 0.577 0.556 2.2 3.7 0.83 45.75 1.24 0.7 37.0
leon3mp_slow 540352 1800 1.335 1.326 1.321 1.0 0.4 2.52 194.90 2.91 0.9 67.0
netcard_slow 860949 1900 1.763 1.762 1.762 0.1 0.0 2.35 343.90 2.82 0.8 122.0
DMA_fast 23109 770 0.245 0.173 0.137 44.3 20.8 0.08 9.20 0.10 0.8 92.0
pci_bridge32_fast 29844 660 0.141 0.083 0.078 44.7 6.2 0.10 9.20 0.11 0.9 84.0
des_perf_fast 102427 735 1.436 0.686 0.615 57.2 10.3 0.40 23.39 0.34 1.2 69.1
vga_lcd_fast 147812 610 0.417 0.318 0.316 24.3 0.8 0.56 27.90 0.50 1.1 55.3
b19_fast 212674 2100 0.729 0.823 0.682 6.5 17.1 1.13 19.58 1.61 0.7 12.2
leon3mp_fast 540352 1500 1.449 1.393 1.360 6.1 2.4 3.13 233.10 3.56 0.9 65.5
netcard_fast 860949 1200 1.846 1.804 1.800 2.5 0.2 3.33 237.05 3.98 0.8 59.5
Overall average 0.791 0.704 0.680 19.7 5.3 1.10 86.43 1.29 0.9 69.9

Nowwe explain dual maximization using Figure 6. Initially, when
λ = 0, we know that д(0) = pmin , where pmin is the lowest pos-
sible power. λ = 0 corresponds to the horizontal line and L0(x)
is minimized at x1 as shown in the Figure 6. As λ increases, the
slope of the line increases and the dual cost also increases. For
λ < λ1, x1 minimizes Lλ(x). At λ = λ1, both x1 and x2 minimize
the Lagrangian function. The dual function continues to increase
with λ as long as λ ≤ λ3, and attains a maximum of д∗ at λ = λ3. At
λ = λ3, the Lagrangian function is minimized at x3 and x4, but only
x4 is primal feasible. So even if the dual optimum is attained, there
is no guarantee that the primal feasible solution can be achieved.
Observe also that the primal optimal value p∗ = p(x∗) is more than
the dual optimal д∗. The gap p∗ − д∗ is the duality gap.

These limitations are due to both non-convexity and discreteness.
While NetFlow tries to maximize the dual cost and has the above-
mentioned limitations, EGSS uses Lagrange multipliers to help
attain primal feasibility and then reduce the power. EGSS rapidly
increases the Lagrange multipliers initially to attain feasibility. That
causes very low dual cost and high power. Then, using the local
slack check while solving LRS, the design is forced to stay in the
feasible region while Lagrange multipliers are reduced to recover
power. NetFlow requires an optimal LRS solver, which it is not,
to maximize the dual cost; but EGSS deliberately sacrifices the
optimality of the LRS solver to maintain primal feasibility.

7 GREEDY TIMING AND POWER RECOVERY
Optimized designs obtained from the LDP solver have some timing
violations and additional power that can be recovered. In the case of
NetFlow, due to the limitations discussed in Section 6, there are large
timing violations and a lot of power to be recovered. Hence, greedy
refinements are more important for NetFlow. In either case, it is a
common practice to apply a timing recovery followed by a power
recovery algorithm - both are greedy and local in nature. The timing
recovery and power recovery algorithms that we implemented have

been adapted from [11] and [12]. Below we have summarized only
the main steps for both the algorithms. For details refer to [11, 12].

For timing recovery, we sort all gates in the decreasing order of
the number of timing critical end-points that are in the fan-out cone
of each gate. Each gate is upsized in this order. In order to compute
the change in TNS, timing is updated in an incremental fashion. If
the TNS improves (reduces) then the new size is committed and
the gates are re-sorted, otherwise the upsizing is undone and the
next gate in the order is upsized. This process continues as long as
the TNS is non-zero and it is reducing. During timing recovery we
avoid reducing Vth because that significantly worsens the power.

To reduce power, we first try to increase Vth for each gate. If
Vth cannot be increased without worsening TNS, then downsizing
is considered. Gates are traversed in forward topological order.

8 EXPERIMENTS AND RESULTS
We used the ISPD 2012 gate sizing contest benchmark suite. We
performed experiments on two quad-core Intel(R) Xeon(R) 3.50GHz
CPUs. To solve the min-cost flow problem we used Gurobi [21].
For line search, we used a step size of 0.2 and evaluated 5 steps at
uniform spacing. We usedM = 10 for computing bounds. Our C++
code is multi-threaded using OpenMP [22], and we use 8 threads
to solve LRS. We used PrimeTime [23] version E-2010.12, to verify
the timing after NetFlow and EGSS. Each final design has zero TNS,
and all constraints are satisfied.

We use the sizing results from [13], which also used 8 threads,
as the baseline as it is the fastest and has competitive power re-
sults. This baseline only sizes the gates, with fixed zero skew at all
clock pins. We use a minimum skew wmin of 0 and a maximum
skew bound of 165ps for NetFlow and EGSS. Table 2 summarizes
the results from all three flows. Compared to the baseline, EGSS
saves on average 19.7% more power, because EGSS schedules skew
simultaneously with gate sizing. The benefit of skew scheduling
is more on designs with tighter timing constraints (‘fast’), where

Figure 7: Primal cost (power), dual cost, and TNS profiles for Net-
Flow for pci_bridge32_fast. The left Y-axis is the normalized dual or
primal cost, and the right Y-axis is the TNS normalized with respect
to the target clock period of 660ps. Here, themaximum skew bound
is zero to highlight the limitations of the NetFlow approach.

the average power saved is 26.5%. By carefully scheduling the skew,
timing constraints can be satisfied without having to upsize the
gates or decrease their Vth, both of which increase leakage power.
EGSS has only 17% slowdown in the total runtime.

Compared to NetFlow, EGSS saves 5.3% more power and is 70X
faster. In NetFlow, the greedy refinement stage accounts for an
average of 5.4% power reduction (not shown in Table 2), whereas it
accounts for only 0.4% power reduction in EGSS. This shows that
the core idea behind EGSS is more effective than that of NetFlow.

The main reasons for larger runtime of NetFlow are: 1) Solving
the min-cost flow problem is orders of magnitude more runtime
expensive compared to the projection based Lagrange multiplier
update shown in Algorithm 2. The latter has a linear time complex-
ity in the number of gates. Using a network flow solver instead of
Gurobi may be faster. 2) NetFlow has a slower convergence than
EGSS, so it takes more iterations. 3) Each NetFlow iteration is more
expensive due to solving LRS several times during the line search.

Figure 7 shows dual cost, power, and TNS profiles for NetFlow on
pci_bridge32_fast. Although the dual cost converges to a maximum
value, TNS does not converge down to 0. Also, there is a distinct
gap between the dual cost and the primal cost (total gate power of
the design), possibly due to a non-zero duality gap.

Figure 8 compares the TNS and power profiles from EGSS and
NetFlow. Early on, EGSS has high power as TNS rapidly reduces.
But then it recovers the power. It converges in less than 40 iterations
with near-zero TNS and lower power than NetFlow. Across all the
benchmarks, EGSS takes on average only 2 iterations to converge
the TNS and an additional 18 iterations to reduce the power.

In another experiment with EGSS, we varied the maximum skew
bound through 20, 40, 60, 80 and 100ps. Correspondingly, the aver-
age power savings compared to the baseline are 5.3%, 9.0%, 11.7%,
14.0% and 15.7%. Larger skew bounds allow larger adjustments in
the clock arrival times at different clock pins which can be poten-
tially used to save more power. Figure 9 shows the improvement in
power with increasing skew bounds for each design. b19, leon3mp

Figure 8: Power and TNS profiles for pci_bridge32_fast for NetFlow
and EGSS. The maximum skew bound is set to zero for both.

Figure 9: The percentage reduction in power for EGSS for differ-
ent maximum skew bounds: 20ps, 40ps, 60ps, 80ps, and 100ps. The
minimum skew bound is 0.

and netcard designs are already closer to minimum power, hence
we do not observe as significant power savings as other designs.

9 CONCLUSION
Gate sizing is a crucial circuit optimization technique. The power
reduction from gate sizing can be enhanced by allowing variable
skew. We investigated two approaches for simultaneous gate siz-
ing and skew scheduling. The network flow approach derives a
Lagrangian dual problem from the primal problem and tries to
maximize the dual objective. We detailed limitations arising from
the non-convexity and the discreteness of the primal space, due to
which dual maximization cannot guarantee primal feasibility and
thus is sub-optimal, as shown by our experimental results. In the
second approach, we extend the state-of-the-art high performance
Lagrangian relaxation based gate sizing. We first make use of the
variable skew to recover the bulk of the timing violations in just
two iterations, on average. Then, we iteratively reduce power. In
each iteration, skew is updated to redistribute the slack between
each side of the flip-flop. Compared to the state-of-the-art gate sizer
which treats skew as fixed, our proposed flow for simultaneous gate
sizing and clock skew scheduling reduces power by an average of

19.7% on the ISPD 2012 gate sizing contest designs with only 17%
higher run time.

10 ACKNOWLEDGMENTS
This work is partially supported by a grant from Mentor Graphics.

REFERENCES
[1] J. P. Fishburn. Clock skew optimization. IEEE Transactions on Computers,

39(7):945–951, July 1990.
[2] W. Chuang et al. Timing and area optimization for standard-cell vlsi circuit

design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 14(3):308–320, 1995.

[3] J. Wang et al. Gate sizing by Lagrangian relaxation revisited. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(7):1071–1084,
2009.

[4] G. Shklover et al. Simultaneous clock and data gate sizing algorithmwith common
global objective. In International Symposium on Physical Design, pages 145–152,
2012.

[5] M.M. Ozdal et al. The ISPD-2012 discrete cell sizing contest and benchmark suite.
In International Symposium on Physical Design, pages 161–164, 2012.

[6] M.M. Ozdal et al. An improved benchmark suite for the ISPD-2013 discrete cell
sizing contest. In International Symposium on Physical Design, pages 168–170,
2013.

[7] J. Hu et al. Sensitivity-guided metaheuristics for accurate discrete gate sizing. In
International Conference on Computer-Aided Design, pages 233–239, 2012.

[8] S. Daboul et al. Provably fast and near-optimum gate sizing. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 37(12):3163–3176,
2018.

[9] L. Li et al. An efficient algorithm for library-based cell-type selection in high-
performance low-power designs. In International Conference on Computer-Aided

Design, pages 226–232, 2012.
[10] V. S. Livramento et al. A hybrid technique for discrete gate sizing based on

lagrangian relaxation. ACM Transactions on Design Automation of Electronic
Systems, 19(4):40, 2014.

[11] G. Flach et. al. Effective Method for Simultaneous Gate Sizing and V-th Assign-
ment Using Lagrangian Relaxation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 33(4):546–557, 2014.

[12] A. Sharma et al. Fast Lagrangian relaxation based gate sizing using multi-
threading. In International Conference on Computer-Aided Design, pages 426–433,
2015.

[13] A. Sharma et al. Rapid gate sizing with fewer iterations of lagrangian relaxation.
In International Conference on Computer-Aided Design, pages 337–343, 2017.

[14] H. Ren et al. A Network-Flow Based Cell Sizing Algorithm. In The International
Workshop on Logic Synthesis, 2008.

[15] H. Tennakoon et al. Gate sizing using Lagrangian relaxation combined with a
fast gradient-based pre-processing step. In International Conference on Computer-
Aided Design, pages 395–402, 2002.

[16] C.-P. Chen et. al. Fast and exact simultaneous gate and wire sizing by Lagrangian
relaxation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18(7):1014–1025, 1999.

[17] H. Sathyamurthy et al. Speeding up pipelined circuits through a combination of
gate sizing and clock skew optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(2):173–182, 1998.

[18] S. Roy et al. An optimal algorithm for sizing sequential circuits for industrial
library based designs. In Asia and South Pacific Design Automation Conference,
pages 148–151, 2008.

[19] S. Boyd et al. Convex optimization. Cambridge university press, 2004.
[20] W. Ning. Strongly NP-hard discrete gate-sizing problems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 13(8):1045–1051, 1994.
[21] Gurobi. http://www.gurobi.com/.
[22] L. Dagum et al. OpenMP: an industry standard API for shared-memory program-

ming. IEEE Computational Science & Engineering, 5(1):46–55, 1998.
[23] Synopsys PrimeTime user guide. http://http://www.synopsys.com.

	Abstract
	1 Introduction
	2 Previous Work
	3 Problem Formulation
	4 NetFlow
	5 EGSS: Effective Gate Sizing With Skew Scheduling
	5.1 Solving LRS- .4
	5.2 Skew Update
	5.3 Modified Lagrange Multiplier Update

	6 NetFlow Vs EGSS: Limitations of Optimizing The Primal Problem Via Dual Maximization
	7 Greedy Timing and Power Recovery
	8 Experiments and Results
	9 Conclusion
	10 Acknowledgments
	References

