
Rapid Gate Sizing with Fewer Iterations of Lagrangian Relaxation

Ankur Sharma
Iowa State University

Ames, USA
ankur@iastate.edu

David Chinnery
Mentor Graphics
Fremont, USA

david chinnery@mentor.com

Shrirang Dhamdhere
Mentor Graphics
Fremont, USA

shrirang dhamdhere@mentor.com

Chris Chu
Iowa State University

Ames, USA
cnchu@iastate.edu

Abstract—Existing Lagrangian Relaxation (LR) based gate sizers take
many iterations to converge to a competitive solution. In this paper,
we propose a novel LR based gate sizer which dramatically reduces
the number of iterations while achieving a similar reduction in leakage
power and meeting the timing constraints. The decrease in the iteration
count is enabled by an elegant Lagrange multiplier update strategy for
rapid coarse-grained optimization as well as finer-grained timing and
power recovery techniques, which allow the coarse-grained optimization
to terminate early without compromising the solution quality. Since LR
iterations dominate the total runtime, our gate sizer achieves an average
speedup of 2.5x in runtime and saves 1% more power compared to the
previous fastest work.

I. INTRODUCTION

In modern chip design methodologies, circuit optimization via gate
sizing is regarded as one of the key techniques that needs to be
invoked at several design stages to trade off various metrics such as
timing, area, and power. Due to the large number of gates in a design,
gate sizing can be very time consuming. In a standard cell based
design, each gate can be implemented by many different options
which are characterized by a size and a threshold voltage (Vt). Each
option trades off power, area, and delay. The task of gate sizing is to
assign a suitable option to each gate such that the desired objective is
optimized under the given design constraints. In this work, we focus
on timing constrained leakage power (hereafter referred to as power)
minimization.

The problem of gate sizing has been studied for over three decades.
Earlier the gate sizes were assumed to be continuous and the timing
models were either derived from RC Elmore delay models, which can
be transformed into a convex function of sizes, or approximated by
a convex function. Under such scenarios, an optimal solution could
be obtained by applying techniques like Lagrangian Relaxation (LR)
[1]. However, such delay models are too inaccurate to achieve a good
solution with modern process technologies - non-convex lookup table-
based delay models have been industry standard for more than a
decade. With discrete size and Vt options, the gate sizing problem is
NP hard [2] and thus no polynomial time optimal algorithm is known.
With millions of gates in designs and tens to hundreds of discrete
options for each gate size, it can take a day or more of runtime to
deliver acceptable solution quality.

For discrete gate sizing, researchers have presented several heuris-
tics based on dynamic programming [3], sensitivity guided greedy
frameworks [4], network flow [5], and LR based techniques like [6],
[7], [8], [9]. After the ISPD 2012 gate sizing contest [10], several
publications established the superiority of the LR based gate sizers,
showing both faster runtime and lower power. However, the proposed
LR based gate sizers take many LR iterations, even more than 100
on some benchmarks. The high number of iterations can be very
detrimental for runtime, especially with expensive timing updates to
account for the RC parasitics on large designs.

A reason for the high iteration count of the LR based gate sizers is
that they are effective only for coarse-grained timing and power re-
covery. As the total negative slack (TNS) and the total leakage power

TABLE I: Acronyms and their meanings.

Acronym Meaning
LR Lagrangian Relaxation
LRS Lagrangian Relaxation Subproblem
LDP Lagrangian Dual Problem
RGS Rapid Gate Sizer
CPS Critical Path Sizing
MGS Multi-Gate Sizing
SGS Single Gate Sizing
TNS Total Negative Slack
STA Static Timing Analysis

of the design reduce, the efficiency of each iteration also degrades.
Although LR based gate sizers are usually equipped with greedy
post-pass heuristics for finer-grained timing and power recovery, they
cannot be invoked too early as they are very time consuming and get
stuck in a local minimum. The LR iterations need to go on until
TNS and power are sufficiently small. Otherwise, the outstanding
timing violations and the remaining potential power savings would
be too large to be effectively handled by those greedy techniques.
Therefore, we need strategies that can reduce the runtime of coarse-
grained optimization by reducing LR iterations, and techniques for
finer-grained optimization.

In this paper, we develop an LR based rapid gate sizer (RGS).
We propose an elegant Lagrange multiplier update strategy that
makes the coarse-grained LR based sizing converge very rapidly
to a solution with sufficiently low TNS and power. We propose
two LR-based techniques, one for finer-grained timing recovery, and
the other for finer-grained power recovery. For timing recovery, our
proposed technique is called critical path sizing (CPS), which reduces
the delay along critical paths. For power recovery, our proposed
technique is called multi-gate sizing (MGS), which sizes several
gates simultaneously, unlike typical sizing heuristics employed by
LR based sizers which size one gate at a time. While CPS is able
to efficiently fix the timing violations that may occur during power
recovery, MGS allows coarse-grained optimization to terminate early,
thereby reducing the expensive LR iterations without compromising
on the final solution quality. MGS can also potentially take the design
out of a local minimum, thus creating opportunities for further power
recovery. With these three techniques, the number of LR iterations is
significantly lower than those in previous works. Since LR iterations
dominate the total runtime, RGS achieves an average speedup of 3x
compared to the previously fastest work [8].

Our major contributions are summarized as follows:

• We propose an elegant Lagrange multiplier update strategy.
• We propose two LR-based techniques, MGS and CPS, for fine-

grained power and timing recovery, respectively.
• We develop a rapid gate sizing flow, and empirically verify its

effectiveness.

This paper is organized as follows: Section II formulates the
problem. Section III presents the overall flow of RGS and briefly
discusses some of its components. Section IV describes the core



solver of RGS in detail. There we discuss our proposed techniques:
Lagrange multiplier update strategy, MGS, and CPS. Section V
discusses the empirical results, and we conclude in Section VI.

II. PROBLEM FORMULATION

With our gate sizing algorithm, we solve the following constrained
optimization problem:

Given a gate-level netlist, a standard cell library with discrete
choices for cell size and threshold voltage (Vt), timing constraints,
and lumped parasitics, compute the size and Vt combination (here-
after referred to as ‘option’) for each combinational gate in the netlist
such that the leakage power is minimized without violating the timing
constraints.

This is the same formulation as used in the ISPD 2012 gate sizing
contest. For our experiments, we use the same setup including the set
of benchmarks as provided in the contest. Per the contest guidelines,
there are two types of electrical constraints: load at the output of
a gate cannot exceed a maximum value (max load constraint), and
slew at the input of a gate cannot exceed a maximum value (max
slew constraint). Since computing the max slew violations is compu-
tationally more expensive than computing the max load violations,
we translate max slew constraints into max load constraints - this can
be done because a lumped wire capacitance model is used for the
ISPD 2012 gate sizing contest. Thus ensuring that there is zero max
load violation guarantees zero max slew violation.

Before formally defining the problem, we detail notations com-
monly used in this work. Table I lists acronyms that are commonly
used throughout this paper. T is the target clock period. For gate i,
xi denotes the size/Vt option, and ai denotes the arrival time at its
output. di→j is the delay of the timing arc i → j which is defined
from the output of the gate i to the output of the gate j. Endpoint of
a timing path can be either a primary output of the design or input
of a sequential element (e.g. flip-flop). Note that sequential elements
have a fixed size as per the contest.

Mathematically, the above problem is commonly formulated as a
non-convex, discrete mathematical program as:

minimize
x,a

∑
i

leakagei

subject to ai + di→j ≤ aj , ∀ i→ j

ak ≤ T , ∀ endpoints k

(1)

We refer to Equation (1) as the Primal Problem (PP). To solve this
NP-hard problem, as in previous work [1], we relax the constraints
and derive its Lagrangian dual. Each constraint is associated with a
non-negative Lagrange multiplier, λ, that acts as a penalty for vio-
lating the respective constraint. The Lagrangian function, L(x, a, λ)
is:

L(x, a, λ) =
∑
i

leakagei +
∑
i→j

λi→j (ai + di→j − aj)

+
∑

k∈endpoints

λk (ak − T )
(2)

For a given set of Lagrange multipliers, the Lagrangian relaxation
subproblem LRS(λ) is:

LRS(λ) : minimize
x,a

L(x, a, λ) (3)

By applying the Karush-Kuhn-Tucker (KKT) conditions for opti-
mality, and omitting the term

∑
k λkT since it is a constant for a

given set of λk, the LRS(λ) can be simplified to:

LRS∗(λ) : minimize
x

∑
i

leakagei +
∑
i→j

λi→jdi→j (4)

Fig. 1: RGS flow chart. Each iteration involving SGS and Lagrange
multiplier (LM) update is referred to as an LR iteration. †: LM are updated
to rapidly recover timing. ‡: LM are updated to rapidly recover power.
During SGS of phase three and five, no gate is allowed to degrade power.

where Lagrange multipliers must satisfy the ‘flow constraints’:∑
u∈fanin(i)

λu→i =
∑

v∈fanout(i)

λi→v , ∀i (5)

The objective in Equation (4) is referred to as the LRS cost. Flow con-
straints in Equation (5) are obtained by setting the partial derivatives
over the a variables to 0.

The Lagrangian dual problem (LDP) is then defined as:

maximize
λ

LRS∗(λ)

subject to KKT flow constraints and λ ≥ 0
(6)

Solving LRS*(λ) for a given set of λ gives a lower bound on the
PP. And, solving LDP maximizes that lower bound. Optimal values
of LDP and PP would match, if the duality gap is zero. A similar
Lagrangian relaxation based formulation can be derived for other
objective functions like area and dynamic power.

III. OVERALL FLOW

Like several other LR-based gate sizers, our gate sizer RGS is
also composed of initialization, LR based sizing which is equivalent
to solving the LDP in Equation (6), and a greedy post-pass. The
Overall flow chart for RGS is shown in Figure 1.

During the initialization, RGS initializes all gates to the least leak-
age power option (lowest size and highest Vt), followed by a reverse
topological scan to remove the load violations. Lagrange multiplier
values for all the arcs are initialized to 1. Initial Lagrange multiplier
values would depend upon the leakage power of a typical gate and its
timing arc delay. Therefore, for a different library, one-time tuning of
the initial Lagrange multiplier value might improve the convergence.
To satisfy the KKT flow constraints, Lagrange multipliers are then
updated using the projection technique [11]. Reimann et. al. [9]
proposed a strategy to estimate Lagrange multipliers to speedup the
convergence on a pre-optimized design. Since the ISPD 2012 gate



sizing contest provided unoptimized designs, their strategy is not
needed for these benchmarks.

After initialization, LR based sizing begins. LR based sizing can
be broadly divided into two stages: timing recovery, and power
recovery. The timing recovery stage is focused on fixing most of
the setup timing violations. It is composed of iterations between
single gate sizing (SGS) which is a typical heuristic for solving LRS*
(described later in this section), static timing analysis (STA) and
Lagrange multiplier update. Each such iteration is referred to as an
LR iteration. The Lagrange multipliers are updated to facilitate quick
timing recovery. The Lagrange multiplier update strategy will be
discussed in Section IV-A. When TNS is below a threshold, tshTNS ,
power recovery can begin.

The second stage of LR based sizing is power recovery. It is
composed of five phases. While phases one, three, and five use
SGS to solve LRS*; phases two and four use MGS. Like timing
recovery, phase one of power recovery is coarse-grained optimization.
It iterates between SGS, STA, CPS, and Lagrange multiplier update.
In each phase of power recovery, CPS is optionally invoked if timing
violations exceed the threshold tshTNS to keep timing violations
under control so that power recovery can continue unimpeded.
Lagrange multipliers are updated to facilitate quick power recovery.
Phase one achieves the bulk of the power recovery and is usually
the most runtime expensive phase. It is terminated as soon as the
improvement in power is less than a threshold, tshpow, compared to
the previous iteration.

Phases two through five perform finer-grained power recovery.
Phase two performs a single iteration of MGS followed by STA, CPS,
and multiplier update. Since MGS is time consuming we perform only
one iteration. In addition to power recovery, MGS can potentially
perturb the design out of a local minimum, creating opportunities
for more power reduction. Therefore, we invoke SGS based power
recovery iterations in phase three. Empirically, we determined that
beyond two iterations in this phase, power recovery diminishes
significantly. Unlike the SGS during coarse-grained optimization, i.e.,
during timing recovery and phase one of power recovery, SGS in
phase three does not allow any gate to increase its power. To recover
more power, we repeat phases two and three again in phases four
and five, respectively.

After LR based sizing, small timing violations can still remain.
Therefore, we invoke greedy timing recovery to eliminate all the
violations. In greedy timing recovery, gates with a larger number of
critical paths passing through them are processed first. Each gate is
upsized, and timing is propagated through its entire fanout cone. If
timing degrades, the sizing is undone and the next gate is processed.
This is a common greedy heuristic to recover small timing violations.

There are two main differences between our flow and previous
flows. Firstly, we have an explicit timing recovery stage followed by
a power recovery stage. This provides finer grained control on runtime
and solution quality. Previous works did not make such distinction.
Secondly, instead of a greedy power recovery, we employ MGS which
is parallelizable and is LR compliant.

Solving LRS*(λ): In the context of LR based gate sizing, single
gate sizing (SGS) is a common heuristic for solving LRS* in Equation
(4). SGS is briefly described as follows. For a given set of Lagrange
multipliers, assuming no other gate can change its option, SGS near-
optimally minimizes the objective in Equation (4) for each gate
separately. Gates are visited in the forward topological order. For
each gate, several options are evaluated to compute their contribution
to the LRS cost, and the option that minimizes the cost is assigned
to that gate. Changing the option of a gate can potentially affect the
delays in the entire fanout cone of that gate. However, in the interest
of runtime, and without much loss of accuracy, delay changes only in

Fig. 2: Lagrange multiplier update heuristics from previous works.

the local neighborhood of the gate are computed and applied towards
the LRS cost computation. We use the multi-threaded version of SGS
as proposed in [8].

Flach et. al. [7] suggested that while solving the LRS, in addition to
minimizing the LRS cost, its important to prevent timing degradation
to ensure solution stability for faster convergence. They proposed
an approximate way of ensuring this by restricting the local slack
degradation. We call it local slack check and apply it in SGS. Through
our experiments, we verify that the local slack check indeed facilitates
faster timing convergence and thereby, reduce the LR iterations,
especially during the timing recovery stage.

IV. LR BASED GATE SIZING

In this section we discuss various components of LR based gate
sizing. We present our proposed Lagrange multiplier update strategy
and describe how it differs in timing recovery and power recovery.
Then, we discuss our proposed MGS and CPS techniques.

A. Lagrange Multiplier Update

The Lagrange multiplier update strategy is very crucial in reducing
the number of iterations for faster convergence. The general strategy
is to increase (decrease) the multipliers across timing critical (non-
critical) arcs. The key is how much to change. Most of the previous
works use a non-linear expression to direct the optimization. The
strategies presented in previous works [7], [8] are reproduced in
Figures 2a and 2b, respectively. Both of these strategies use an
exponent to adjust the multipliers and then project them to satisfy
Equation (5). While the projection heuristic has not changed since
it was proposed in [11], the main difference is how the exponent is
tuned. Flach et. al. [7] do not provide much detail on how to tune
the exponent. Moreover, they use different expressions for critical
and non-critical arcs (refer Figure 2a) without any insight. On the
other hand, Sharma et. al. [8] complicate the tuning of the exponent
by introducing two other parameters, namely r and k (refer Figure
2b). Both of the strategies have slow convergence.

We propose a single expression for the Lagrange multiplier update
(refer Algorithm 1) along with a much simpler strategy to tune the
exponent. Di→j , in Algorithm 1, is the worst path delay through
the arc i→ j, and K is the ‘acceleration’ factor. The ratio Di→j/T
indicates the timing criticality of the arc i → j. The ratio is more
than one for an arc with a timing violation, so the Lagrange multiplier
for such an arc is increased. For a non-critical arc, the ratio is
less than one, therefore its multiplier is decreased. The acceleration
factor determines how quickly the Lagrange multipliers increase or
decrease. Larger acceleration factors can speedup the convergence but
can also cause the solution to get stuck in a worse local minimum.



Algorithm 1 Our proposed Lagrange multiplier update algorithm

for timing arc i→ j do
λi→j = λi→j ×

(
Di→j

T

)K
Projection to satisfy Equation (5). Refer [11]

Fig. 3: TNS and power profiles for different values of K for critical arcs
during the timing recovery stage are shown. TNS has been normalized
with respect to T . As K increases, TNS reduces faster.

B. Timing Recovery

Since timing is a hard constraint that must be met, we first focus on
fixing setup timing violations. To enable fast timing recovery, delay
on the timing arcs with timing violations needs to be emphasized,
so Lagrange multipliers for critical timing arcs need to increase
faster. Therefore, acceleration factors of more than one for critical
arcs during timing recovery improves the convergence of this phase.
However, the larger the acceleration factor, the more the overshoot in
the power. Figure 3 shows the TNS (solid lines) and power (dashed
lines) profiles for different values of K for critical timing arcs. For
non-critical timing arcs, we set K = 1. As K is increased, we observe
faster convergence in TNS and larger overshoots in power. Note that,
from K = 4 to K = 6, improvement in the TNS convergence is
marginal but overshoot in the power is significant, as it may not
always be recoverable due to the likelihood of the algorithm getting
stuck in some bad local minimum. Also, due to the design being
oversized for power, it is possible to simultaneously improve power
and timing in the later iterations.

We use K = 4 for the critical arcs, and K = 1 for the non-critical
arcs, during the timing recovery stage of LR based sizing. The small
value of K for non-critical arcs means we gradually reduce their
Lagrange multipliers and recover some power even during the timing
recovery phase. In our case, timing recovery is said to converge when
timing violations are less than a threshold tshTNS . With this setting,
timing recovery on our experimental benchmark suite converges in
four iterations on average.

C. Power Recovery

To quickly reduce power, Lagrange multipliers need to rapidly re-
duce along the non-critical timing arcs. Therefore, a large acceleration
factor for the non-critical timing arcs is crucial. Figure 4 shows TNS
and power profiles for different values of K applied to such arcs. For
critical timing arcs, we set K = 1. We can observe that with larger
K, power reduces more rapidly. We note that the gain diminishes
from K = 4 to K = 6. On the other hand, TNS does not seem to
be affected by K. This is because timing degradation is discouraged

Fig. 4: TNS and power profiles for different values of K for non-critical
arcs are shown. Around iteration 10, timing recovery ends and power
recovery phase one begins. Note: TNS profiles for all K indistinguishably
overlap. Therefore, markers are not used for them.

by the local slack check. Even if, on account of reduced Lagrange
multipliers, LRS cost favors a smaller size (or larger Vt) for a gate,
that size is not applied if local slack would degrade. Additionally, we
invoke CPS for sizing critical paths whose timing violations exceed
the threshold.

During all phases of power recovery, we set K to 1 and 6 for
critical and non-critical timing arcs, respectively. If we use a larger
K for non-critical arcs, we notice that the final power is 1 to 2%
worse, because the design gets stuck in a worse local minimum.
In order to terminate power recovery phase one, we propose an
aggressive early exit strategy. We do not want to wait until phase
one yields the best power that it can, because it can be very runtime
inefficient in recovering power at later LR iterations. Therefore, we
terminate this phase as soon as reduction in power is less than a
threshold, tshpow, compared to the previous iteration, and invoke
MGS which can size multiple gates simultaneously to recover power
in larger chunks. We empirically verify that our aggressive early exit
strategy can significantly reduce the number of iterations without
compromising on the final power.

Algorithm 2 Multi-gate sizing (MGS)

1: for each gate g ∈ S in forward topological order do
2: status = false
3: resizeg = g.downsize()
4: resizes = {resizeg}
5: if resizeg.valid() then
6: for each fo ∈ g.fanout() do
7: resizefo = single gate sizing(fo)
8: resizes = resizes ∪ {resizefo}
9: if change in power(resizes) < 0 then

10: 4negSlack = local neg slack change(resizes)
11: if 4negSlack ≤ 0 then
12: status = true
13: if status 6= true then
14: undo(resizes)

15: STA every four topological levels

D. Multi-Gate Sizing (MGS)

As briefly discussed in Section III, a typical way of solving LRS is
SGS which processes one gate at a time assuming that the other gates
do not change their options. Such an approach restricts the solution
space exploration, and increases the likelihood of the sizing solution



getting stuck in a local minimum. We propose MGS to alleviate this
drawback by allowing multiple gates to simultaneously change their
sizes. In favor of runtime, we do not change Vt and thereby, restrict
the number of sizing combinations.

We’ll briefly describe the MGS algorithm in reference to its
pseudo code shown in Algorithm 2. MGS processes gates in forward
topological order. Gate g is downsized and, if the new size of g is
valid (lines 3-5) - in other words, no new load violations are created
- then all the fanouts of g are sized in the same way as in SGS (lines
6-8). However unlike SGS, in favor of runtime and also since we do
not anticipate large perturbations in the size of a gate at this stage,
for each fanout only three options are evaluated: the current option,
the option with the next bigger size, and the option with the next
smaller size. The least LRS cost option is assigned to each fanout.
New options for the gate g and all its fanouts are referred to as a
set of resizes. Lines 9 and 11 describe the conditions to accept the
resizes. The first condition is that the total power must decrease. If
the first condition holds true, then the change in negative slack of the
neighboring gates is computed (line 11). If the negative slack has not
degraded then the resizes are accepted. If either condition fails, the
resizes are undone (line 14). Since local slack degradation is only
a rough indicator of the impact of the resizes on circuit timing, to
prevent large timing violations from accumulating, we update timing
after every four topological levels (line 15).

Since MGS can be more time consuming than SGS, we refrain
from applying it during phase one of power recovery. We apply it
only twice, during phases two and four of power recovery.

Algorithm 3 Critical Path Sizing (CPS)

1: tsh = tshTNS/vend . vend: #endpoints that violate timing
2: S = φ
3: for each timing endpoint, end do
4: if end.slack < −tsh then
5: S = S ∪ {end}
6: Sort elements of S in the ascending order of slack
7: for each end ∈ S do
8: P = critical path(end)
9: minDeltaLM = some arbitrarily large value

10: for each arc i→ j ∈ P do

11: 4λij = λij

[(
Dij

T

)K
− 1

]
12: if 4λij < minDeltaLM then
13: minDeltaLM = 4λij
14: for each arc i→ j ∈ P do . Update Lagrange multiplier

along the path
15: λij = λij +minDeltaLM

16: for each gate g ∈ P do . LRS along the path
17: single gate sizing(g)

18: increamental STA()

E. Critical Path Sizing (CPS)

The timing recovery stage can reduce the bulk of the timing
violations in a few LR iterations. During various phases of power
recovery, despite the local slack check, a few paths may become
timing critical and TNS may exceed the threshold, tshTNS . In such
cases, it is an overkill to run LR iterations to recover timing, because
each LR iteration scans the entire design several times and is quite
expensive. Moreover, LR iterations are not as effective in recovering
finer-grained timing violations as they are during the coarse-grained
optimization.

To reduce the delay of a timing critical path, usually either a gate
along the path is upsized or its load is reduced. (Reducing the Vt

at this stage of the algorithm is generally avoided due to the large
increase in the leakage power.) Typically, to upsize a gate via SGS,
Lagrange multipliers of the gate’s timing arcs need to be large enough
to justify trading power for reduced delay. However, at this stage
in the algorithm when timing violations are not very big, for most
of the timing arcs i → j, Di→j would be either close to T or
significantly smaller than T . Consequently, it may require several
LR iterations before the gate will be upsized by SGS. The delay of
a timing critical gate can also be reduced by reducing its load, but
that may induce timing violations on near-critical paths. Thus, critical
and near-critical paths may compete with each other, thereby slowing
down the convergence. Another strategy to reduce the small timing
violations is to uniformly scale up all the Lagrange multipliers. This
strategy is similar to applying the ‘power weighting factor’ of [6].
Although it can eliminate all the timing violations in one to two
iterations, it tends to upsize even the non-critical gates, which causes
unnecessary increase in the leakage power.

The CPS is designed to reduce the timing violations of the critical
paths, while minimally affecting the total design power, and it is also
very fast as it works on only a small sub-circuit. We describe the
CPS algorithm with pseudo-code shown in Algorithm 3. In line 1,
we compute a threshold, tsh, to identify timing critical endpoints. tsh
is derived from tshTNS which is the allowed total timing violation
during the LR based sizing stage. tsh is simply the average violation
allowed per endpoint. Critical endpoints are then sorted by their slack
(line 6). More timing critical endpoints, with more negative slack, are
processed first. For each endpoint, its critical path, P , is computed
(line 8). Then, lines 9 through 13 compute how much to increase the
Lagrange multiplier along P . We use the Lagrange multiplier update
expression from Algorithm 1 to compute the potential change in the
Lagrange multiplier of each timing arc along the path (line 11), and
track the minimum value, minDeltaLM . In order to emphasize the
delay along the critical path, we would want substantial increase in
the Lagrange multipliers. Therefore, we set K = 10 during the CPS.
Then, the Lagrange multipliers of all the arcs along P are increased
by minDeltaLM (lines 14-15), followed by resizing all the gates
along P . Lastly, the timing is incrementally updated in line 18 before
processing the next primary output, so that the critical path of the
next endpoint is computed based on the updated timing.

V. EXPERIMENTAL RESULTS

We implemented our gate-sizer in C++. Experiments are performed
on an 8-node cluster made up of two quad-core Intel(R) Xeon(R) E3-
1240 v5 CPU @ 3.67GHz with an aggregate memory of 16GB. For
multi-threading, OpenMP [12] is used. We use 8 threads. All the
results reported in this work are averaged over 10 runs to minimize
the bias due to non-determinism caused by multi-threading. The ex-
perimental set up including the benchmark suite is identical with the
ISPD 2012 gate sizing contest. In our flow, we set tshTNS = 0.1×T
and tshpow = 0.1%.

A. A Comparison With Previous Works

We use the algorithm proposed by Sharma et. al. [8] as our
baseline. To the best of our knowledge, among all the published
results so far, they have reported the best runtime on the ISPD 2012
contest benchmarks with 2.5% degradation in the average leakage
power compared to the best quality published results [7]. For fair
comparison against Sharma et. al., we executed their binary with 8
threads on our cluster, and we are using those results as the baseline
in Table II. Since our cluster uses faster CPUs, the runtimes shown in
column two of Table II are on average 18% smaller than the runtimes
published by Sharma et. al. [8]. Powers in column five are on average



TABLE II: Comparison of overall runtime and power of RGS versus
the baseline ([8]). Slow refers to the loose timing constraints, and fast
refers to the tighter timing constraint. Benchmarks are listed in order
of ascending number of combinational cells. DMA through netcard
approximate combinational cell count is 23K, 30K, 102K, 148K, 213K,
540K and 861K, respectively.

Benchmark Total runtime (min) Leakage Power (W)
[8] RGS [8]/RGS [8] RGS RGS/[8]

DMA slow 0.11 0.07 1.47 0.135 0.135 0.997
pci b32 slow 0.27 0.09 3.02 0.099 0.098 0.995
des perf slow 0.43 0.32 1.33 0.597 0.583 0.977
vga lcd slow 1.43 0.44 3.27 0.331 0.329 0.995
b19 slow 3.03 0.83 3.66 0.568 0.569 1.001
leon3mp slow 3.91 2.52 1.55 1.335 1.335 1.000
netcard slow 5.48 2.35 2.33 1.763 1.763 1.000
DMA fast 0.26 0.08 3.05 0.251 0.245 0.979
pci b32 fast 0.31 0.10 2.95 0.142 0.141 0.993
des perf fast 1.16 0.40 2.91 1.455 1.436 0.987
vga lcd fast 1.82 0.56 3.28 0.433 0.417 0.963
b19 fast 3.19 1.13 2.82 0.733 0.729 0.995
leon3mp fast 4.88 3.13 1.56 1.443 1.449 1.004
netcard fast 7.05 3.33 2.12 1.848 1.846 0.999
Average 2.52 0.992

TABLE III: Catalog of flows referred for different analysis.

Name Flow
v1 RGS with the early exit policy adapted from the baseline [8]
v2 v1 with Lagrange multiplier update strategy adapted from the

baseline
v3 v2 without the local slack check in the timing recovery phase
v4 v3 with CPS in the timing recovery phase

0.001% more than the published results. We also compare against
Flach et. al. [7]. Their results are obtained from single threaded runs
executed on 3.40GHz Intel(R) Core(TM) i7-3770 CPU.

Table II compares the total runtime and the power between RGS
and the baseline. Both the flows yield timing violation free designs
on all the benchmarks. On average, RGS is 2.52x faster than the
baseline with 0.8% extra power savings. Compared with [7], which is
single threaded, RGS is 19x faster and 1.5% worse in power. Authors
believe that the 1.5% degradation in power can be attributed to the
differences in tuning of the acceleration factor, K. We are able to
optimize the biggest design in the suite, netcard which has around
861K combinational gates, in 3.33 min for the ‘fast’ and 2.35 min
for the ‘slow’ timing constraints. The main contributor towards the
speedup is significant reduction in LR iteration count. In Section V-B,
we analyze various factors that contributed towards reducing the LR
iteration count.

Average runtime breakdown of our flow is as follows: LR iterations
dominate the runtime by accounting for 78% of the total runtime;
followed by MGS (5%); greedy timing recovery (3%); and lastly, the
CPS (1%). 14% of the total runtime is consumed in parsing the input
verilog, spef, library files, and pre-processing. Note that although
MGS can be parallelized like SGS, currently it is sequential.

Compared to the power reported by the baseline (fifth column
in Table II), power reported by RGS after the coarse grained op-
timization, i.e., after phase one of power recovery, is the same as the
baseline. Then phases two through five perform finer-grained power
recovery and achieve a further 1.2% reduction in power, followed by
the greedy timing recovery which increases power by 0.2%.

B. Factors Contributing to the Reduction in LR Iterations

Most of the speedup in RGS is due to the reduction in the LR
iterations. In this section, we empirically analyze the contribution
of different factors towards the reduction in the total LR iteration
count. We identify three main factors, namely, (1) the aggressive

TABLE IV: We compare the following for v3 and RGS: LR iteration
count for the timing recovery stage (TR); LR iteration count for power
recovery phase one (PR); and power after the power recovery phase one
(LRpow). Power numbers are normalized with respect to the baseline
(fifth column of Table II). At the bottom we also append the average
results for v1 and v2.

Benchmark v3 RGS
TR PR LRpow TR PR LRpow

DMA slow 10 42 0.999 3 14 1.007
pci bridge32 slow 64 68 0.987 4 14 0.990
des perf slow 9 54 0.984 3 16 0.992
vga lcd slow 53 61 0.999 4 10 1.003
b19 slow 17 111 0.996 4 16 1.007
leon3mp slow 8 34 1.001 3 10 1.003
netcard slow 1 45 1.000 1 5 1.000
DMA fast 72 57 0.982 5 15 1.000
pci bridge32 fast 66 76 0.956 6 17 0.996
des perf fast 71 54 1.004 5 24 0.999
vga lcd fast 61 69 0.990 8 13 0.988
b19 fast 71 59 0.998 6 30 1.004
leon3mp fast 10 37 1.003 3 18 1.012
netcard fast 5 30 0.999 2 11 1.000
Average 37 57 0.993 4 15 1.000
v2 Average 20 48 0.993
v1 Average 4 44 1.002

Fig. 5: Comparison of TNS and power profiles for v3 and RGS runs on
the pci bridge32 fast. LR iterations shown on the x-axis are from the
timing recovery stage and phase one of power recovery. For RGS, by
iteration 6, timing recovery ends and power recovery phase one begins.
For v3, timing recovery extends until around iteration 60, followed by
the power recovery phase one until iteration 140.

early exit from the first phase of power recovery, (2) the proposed
Lagrange multiplier update strategy, and (3) restricting the timing
degradation in the timing recovery phase via local slack check. To
evaluate the impact of each one of these factors individually we derive
three different versions of gate sizers from RGS: v1, v2 and v3. They
are summarized in Table III. In v1, we replace our aggressive early
exit strategy by the early exit policy of the baseline. Baseline runs
LR iterations as long as power is improving, whereas RGS terminates
phase one of power recovery as soon as improvement in power is
less than tshpow. v2 is built on top of v1 by replacing our proposed
Lagrange multiplier update strategy with the corresponding strategy
from the baseline. Lastly, v3 is built on top of v2 by disabling the
local slack check in the timing recovery phase. On average, v3 has
similar runtime as the baseline and it yields designs with 1% better
power. So it is a good comparison point for our further analysis.

Table IV shows the LR iteration count during timing recovery
stage, LR iteration count during phase one of power recovery stage,
and power after phase one of power recovery for v3 and the RGS



Fig. 6: TNS and power profiles for v3 and v4 runs on the
pci bridge32 fast are plotted. Only 80 LR iterations are shown. v4
invokes CPS around iteration 22 when it is still in its timing recovery
stage, and TNS starts to degrade. Within 3 calls, CPS recovers the timing
from the critical paths, and power recovery phase one begins at around
iteration 26. On the other hand, v3 could not converge until 60 iterations.

flows. For the sake of comparison, average results for the same
metrics are shown for v1 and v2 as well. Comparison of v1 and
RGS shows that, by exiting early from phase one of power recovery,
RGS could save 29 more iterations with only 0.2% higher power
after phase one. There are slight fluctuations due to randomness
on account of multi-threading. Compared to v1, v2 which uses the
Lagrange multiplier update strategy of the baseline, takes 5x as many
iterations to recover timing. v2’s power after power recovery is around
1% lower than v1’s power. Our Lagrange multiplier update uses
large acceleration factors for quick timing and power recovery. That
may cause the solution to get stuck in a worse local minimum, so
power is slightly worse after phase one of power recovery. However,
later power recovery phases involving MGS are able to recover it.
Compared to v2, v3 which disables the local slack check during
its timing recovery stage, spends on average 17 more iterations to
converge the timing, and still yields the same power.

In summary, while our Lagrange multiplier update strategy is
extremely effective in improving the convergence of timing recovery,
the local slack check also helps to a smaller extent. The Lagrange
multiplier update strategy also enables fast power recovery during
phase one. Additionally, by exiting early from phase one, and relying
on the later phases for finer-grained power recovery, the iteration
count in phase one significantly reduced. Figure 5 compares TNS
and power profiles for v3 and RGS runs on pci bridge32 fast. As
seen in the TNS profile of v3, timing convergence is initially quite
slow due to poor Lagrange multiplier updates, and after iteration
22 due to lack of local slack check. As seen in the power profile
of v3 between iterations 60 and 110, the power recovery in phase
one is slow. This is due to the poor multiplier update strategy. After
iteration 110, in an attempt to recover finer-grained power, phase one
does not exit. Consequently, v3 takes about 140 iterations in total to
complete timing recovery and phase one of power recovery, whereas
RGS completes in only about 25 iterations. Overall, compared to v3,
RGS reduces the total LR iterations of timing recovery and phase one
of power recovery by 80%. The average power of RGS after phase
one of power recovery is only 0.8% worse.

C. Impact of CPS on Timing Convergence

In order to evaluate the impact of CPS on timing convergence, we
build a flow version, v4, by adding CPS in the timing recovery stage
of v3. CPS has the ability to quickly recover timing from the critical
paths. Therefore, once the TNS falls below a threshold (2T , in v4),

and then if it degrades, we invoke CPS instead of SGS to converge
the timing. Figure 6 shows pci bridge32 fast as an example. In the
figure, around iteration 20, TNS falls below 2T . Then, TNS starts
to degrade (increase) around iteration 22 at which point the CPS is
invoked. CPS is able to recover the timing in just 3 calls. On the
other hand, v3 is not able to converge the timing until iteration 60.

Overall results show that v4 on average, can cut down the number
of LR iterations in timing recovery from 37 to 25. Moreover, each
iteration of CPS is around 10x faster than an iteration of LRS.
In fixing critical path timing violations, CPS causes only marginal
increase in the total design power.

VI. CONCLUSION

In modern VLSI physical design flows, gate sizing is a time
consuming optimization. LR-based gate sizers provide good quality
results, but can take significant runtime due to the need to update
timing after each iteration, as they can take many LR iterations to
converge. In this work, we propose several techniques to enable
rapid gate sizing by reducing the number of LR iterations. We
utilize an elegant Lagrange multiplier update strategy to speed up the
coarse-grained timing and power recovery. We also propose two LR-
based techniques, MGS and CPS, for finer-grained power and timing
refinement. These techniques allow the coarse-grained optimization
to terminate early, further cutting down the number of iterations.
Since LR iterations dominate the total runtime, our proposed gate
sizer, RGS, is 3x faster than the previous fastest LR-based gate sizer,
while still achieving state-of-the-art reduction in leakage power.

REFERENCES

[1] C.-P. Chen et. al. Fast and exact simultaneous gate and wire sizing by
Lagrangian relaxation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 18(7):1014–1025, 1999.

[2] W. Ning. Strongly NP-hard discrete gate-sizing problems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(8):1045–1051, 1994.

[3] Y. Liu and J. Hu. A new algorithm for simultaneous gate sizing and
threshold voltage assignment. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(2):223–234, 2010.

[4] J. Hu et al. Sensitivity-guided metaheuristics for accurate discrete gate
sizing. In IEEE/ACM International Conference on Computer-Aided
Design, pages 233–239, 2012.

[5] L. Li et al. An efficient algorithm for library-based cell-type selection
in high-performance low-power designs. In IEEE/ACM International
Conference on Computer-Aided Design, pages 226–232. IEEE, 2012.

[6] V. S. Livramento et al. A hybrid technique for discrete gate sizing based
on lagrangian relaxation. ACM Transactions on Design Automation of
Electronic Systems, 19(4):40, 2014.

[7] G. Flach et. al. Effective Method for Simultaneous Gate Sizing and
V-th Assignment Using Lagrangian Relaxation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 33(4):546–
557, 2014.

[8] A. Sharma et al. Fast Lagrangian relaxation based gate sizing using
multi-threading. In IEEE/ACM International Conference on Computer-
Aided Design, pages 426–433. IEEE, 2015.

[9] T. J. Reimann et. al. Cell selection for high-performance designs in an
industrial design flow. In ACM International Symposium on Physical
Design, pages 65–72. ACM, 2016.

[10] M.M. Ozdal et al. The ISPD-2012 discrete cell sizing contest and
benchmark suite. In ACM International Symposium on Physical Design,
pages 161–164. ACM, 2012.

[11] H. Tennakoon and C. Sechen. Gate sizing using Lagrangian relaxation
combined with a fast gradient-based pre-processing step. In IEEE/ACM
International Conference on Computer-Aided Design, pages 395–402.
ACM, 2002.

[12] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science & Engineering,
5(1):46–55, 1998.


