A Simple Fast Exact Density Calculation Algorithm

Hua Xiang Chris Chu _ Ruchir Puri
IBM T.J. Watson lowa State University IBM T.J. Watson
Yorktown Heights NY Ames |IA Yorktown Heights NY

Abstract

VLSI technology is facing an extreme challenge due to theiatun
ization and complexity of leading-edge products. Densigptml is
a must step to ensure the yield and performance for the metoufa
ing smaller, faster and cheaper chips. A fundamental pnolitethe
density control is how to calculate density correctly arficieitly. In
this paper, we propose a simple but efficient two-level hidigal ap-
proach to exactly identify the maximum density window for igeg
layout. Comparing with the latest work [7], the new algaritshows
big runtime reductions on testcases which have a long rentiith [7].

1. Introduction
Achieving high-yielding designs in the state of the art, Vit&hnol-
ogy is facing an extreme challenge due to the miniaturinadiod com-
plexity of leading-edge products. In order to produce senafaster
and cheaper chips, manufacturing issues are catching mdrenare
attention. Density control is no doubt an unavoidable stepduce the
process variations and improve performance predictglaitit yield. A
fundamental problem in the density control is how to caltauliensity
correctly and efficiently.

The density calculation problem is first addressed in [1Lagremal
- Density Window Analysis” problem.

Extremal Density Window Analysis (EDWA): Given a fixed window
sizeW and anMxN layout withK non-overlap rectangles, find/gxw
density window which has the maximum (minimum) density.

[1, 3] proposed exact algorithms to address the EDWA problem
However, the running time is very long measured by hours gs.da
[2, 3] also proposed approximate algorithms such that tfferdince
between the reported maximum density and the actual maxidemn
sity is within the given error bound. However, the algorithane unable
to report the exact solutions. Recently, [7] proposed agfeatt density
calculation algorithm which shortens the running time frioours/days
to seconds/minutes. [7] uses a recursive approach. At eaelion, the
pruning technique is used to narrow down the regions thateoatain
the maximum density windows.

In this paper, we propose a simple two-level hierarchicaraach
to exactly identify the maximum density window for a given &R
problem. (To simplify the presentation, we will focus onrtiéing
the maximum density windows. The minimum density window ban
handled in the similar way.) Comparing with [7], the new altion can
report the exact maximum window density with equivalent lvorger
running time. Especially for the long runtime test cases, reaw al-
gorithm shows big runtime reductions. For example, as shiovthe
experimental results, the runtime of the testcase Testd avitindow
size 24000 is reduced from 23sto 2.8s.

The paper is organized as follows. In Section 2, we briefliexgthe
density theorems presented in the literature and propose gheorem.
All these theorems are used to prune regions so that thetgeasiu-
lation algorithm can efficiently focus on the regions thagimicontain
the maximum density windows. Section 3 outlines the twelldver-
archical exact density calculation algorithm. In Sectioradlynamic
programming based approach is presented to efficientlyledé the
window density for a given density map. And in Section 5, ehkable
based method is proposed to facilitate the exact densityledion for
a given region. Then a discussion of the tradeoff on therglidteps is
presented in Section 6. Experimental results are givenéti®e7 and
Section 8 concludes the paper.

2. Theorems for Density Bound

In industry, most commercial tools use fix-dissection appho[4, 5,
6]. In this approach, a layout is partitioned into non-oapding RXR
tiles. UsuallyW is multiple times ofR. Then only windows whose
boundaries fall on th&®-grid are checked for density. As pointed out
in [7], this approach only checks a very limited number of daws.
And it cannot produce the exact density numbers WRtieaches the
minimum feature size. However, the fix-dissection apprgadvides

basic information on density distribution which can guidgaidentify
regions that might contain the maximum density windows.

The density bound theorems reveal the window density oelakiip
between a window on the fix-dissection grid and any windowhimit
a certain region. (For convenience, a window on a fix-dissedrid
is called sliding window.) These theorems play an importaig in
the density calculation algorithm such that they could teglus prune
regions which do not contain the maximum density windowsthia
section, we first review the theorems addressed in thetiter§3] and
[7]. Then one new theorem is proposed and proved.

Lemma 1[7] For any window, it can be fully covered by four sliding
windows on the fix-dissection grid.

As shown in Figure 1 (a), (b), (c) and (d), the red window cafulig
covered by four sliding window®\ g, Wrs, WLy andW{g. Suppose
their densities ar® g, Drg, DLy andDyp, and letR be the grid size
for the fix-dissection grid.

Theorem 1 [7] For any windowWin, its densityDw;, Satisfies that

Dwin < Demax+ ({3 — (4a/)?), WhereDemax = max{ Dy g, Drg, Diu, Dru }-

Meanwhile, it is easy to conclude that any window can be fotly-
ered by aW + R)x(W + R) window which is shown ag/out in Figure
1(e).

Theorem 2 [3] For any windowWin, its densityDw;, Satisfies that
Dwin < Dwout, Where Dyt is the total feature area in the window
Wout overW?.

Furthermore, any window coverg& — R)x(W — R) windowWcenter
as illustrated in Figure 1 (f).

Theorem3For any windowwin, its densityDwin satisfies thaDyin <
Dweenter + (W2 — (W — R)2) /W2, whereDycenter is the total feature
area in the windowVcenter overw2.

The proof of Theorem 3 is straightforward. Any window insitleut
coversWecenter. The maximum feature area difference betweédéout
andWcenter is (W2 — (W — R)2). SinceDwout > Dwin > Dweenter, We

get(W? — (W —R)2) /W2 > (Dwout — Dwienter) > Dwin — Dwcenter-

3. Two-level Calculation Algorithm

In this section, we outline our two-level density calcudatialgorithm.
The basic observation is that the fix-dissection approacterg fast.
Also the memory in today’s computers is quite large. Thersfthis
motives us to start the first level with a fine-grid fix-dissectapproach.
Based on the fix-dissection results, the three theoremsygoléeed to
narrow down the interested regions which may potentiallgtaim a
maximum density window. In the second level, each seleagibn is
checked to get the maximum window density. The algorithnutireed

as Twalevel Density Calculation. COLS and ROWS are thex andy

dimensions of the given input, respectively.

In the following algorithm, Lines - 3 are to apply the fix-dissection
approach, and get the maximum sliding window density froefik-
dissection grid. In the following section, we present ancefit al-
gorithm (DCWG) to calculate the maximum sliding window digns
from a fix-dissection grid. Since/in, Wcenter andWout are on the
same grid, the values @win, Dwecenter aNdDwoyt €an be obtained in
a single pass of DCWG. Lines 8 14 are to loop on eacWout to
check if the three theorems are satisfied or not agamstens. If all
the threel F checks are passed, it means that\Weit might contain
a maximum density window, and CsVout Dens is applied to get the
maximum window density in thgVout. CalWoutDens works on a
(W+R)X(W + R) region. By appropriately setting up the grid, DCDM
algorithm can be used to get the exact maximum window deif@ity
the givenWout region as well. The details of C&llout Dens are pre-
sented in Section 5.

[/ :
\\NLB W{: \A/UL \I\Ae Wout Wcenter
(a) (b) (©) (d) (e) ®

Figure 1: (a) Sliding window\ g (b) Sliding windowWgg (c) Sliding windowW y (d) Sliding windowWgy (e) A (W + R)x(W + R) window Wout

A (W-R)x(W —R) windowWcenter

Algorithm Two_Level Density Calculation()

Apply the fix-dissection approach with a fine grid size R;
Get Dwin, Dweenter, Dwout for all sliding windows;
maxdens=max{Dwn for all sliding windows };

wdiff = 1— (W — R)2/W?;
sdiff = & - (1— zk);

for(i=0; i < COLS—W — 1, i++)

for(j=0;] < ROWS—W — 1, j++)
10. if(Dwout[i][j] > maxdens)
11. if(Dweenter [i + 1][j + 1] + wdiff > maxdens)
12. maxlocal=max{Dwout [i][j], Dwout[i][] + 1],

Dwout 1 + 1J[j], Dwout [i +2][j + 1] };

13. if (maxlocal + sdiff > maxdens)
14. maxdens = max{ maxdens, Cal Wout_Dens(Woult[i][j]) };
15. return maxdens;

N UTRWNE

4. Density Calculation on W-Grid (DCWG)

In this section, we address the density calculation prolitama given
W-grid. A W-grid is defined as follows.

W-Grid Given a window siz&V, if an MxN grid satisfies the
constraint that if one of the window corners is on the griéntits other
three corners must be on the grid except that the window soegions
that are outside the grid, then such a grid is called W-Grid.

Density Calculation on W-Grid (DCWG) Given a W-Grid,
Assume that the feature area of each grid tile is given, fiednlaxi-
mum density for windows which are on the given W-Grid.

As we notice that the grid tile sizes of a W-Grid can be differe
For convenience, we still call the windows on the W-Grid adiis
windows. Figure 2 shows an example. Figure 2 (a) is a 8x7 VWkGri
For any window, if its left-bottom corner is on the grid, thigmright-
upper corner must be on the grid as well. On the other handyr&i@
(b) is not a W-Grid. The right-upper corner of the window i¢ ao the
grid.

Obviously, the fix-dissection density calculation is juspacial case
of DCWG such that the tile sizes of the W-Grid are the same.

i

vl

i —_—= vl

[FCRETECIET] ETRET EZECIET] CTRET

(@ (b)
Figure 2: (a) An 8x7 W-Grid. (b) An invalid 8x7 W-Grid.

Vo
LEETET]

Once the area map of a W-Grid is given, our target is to find the-m
imum density of the sliding windows on the W-Grid. In this e, we
propose a dynamic programming based approach to solve tRé®C
problem.

LetX]i] (i=0,...,m)andY[j] (j =0,...,n) be the coordinates of the
ith vertical grid andjth horizontal grid, separately. According to the
W-Grid property, we get that for anyif X[i] +W < X[m], there must
existiy such thai(i] +W = X]iw]. Similar forY{j].

Since our target is to get the density for on-grid windows,cak
culate the density for windows from bottom to top, and frort te
right. To get the density of the window which is on the lefttbm
corner of the given grid, we need to sum the feature areas thel
tiles covered by the window. As shown in Figure 3 (a), supp&igéj]
is the feature area of tile[i][j]. The density of the blue wow is
5 AK[p]/W? (k=0,...,2;p = 0,...,3). Similarly, the density of the
red window in Figure 3 (b) igA[k][q]/W2 (k=0,...,2,g=1,...,4).

It is easy to see that the two adjacent windows share theA{ld§]
(k=0,..,21 =1,...,3). Therefore, if we know the density of the
blue window, we only need to subtract the bottom row in thesblu
window and add the upper row in the red window. This motivates
us to develop a dynamic programming approach to get the windo
density on a W-Grid. The main idea is summarized in the atlgori
DCWG_Window_Density. COLSandROWSare thex andy dimensions

of the given input, respectively.

YI7)

(l
Alo][6] |A[1]I6] A[2][6] A[3]I6] |Al4]I6] A[0][6] |A[1]16] A[2]I6] A[3][6] |A[4](6]

v

ALOIS] |AL]ISIAL21IS]] AI3IIS] |AI41I5] _| ALOIIS] JALLIISIAL21IS] AI31IS]|AL4]1S]]

Yis|

A[0][4] |A1][4]|A[2][4] A[3][4] A[4114] A[O][4] |A[1]I4]|Al2][4] AI3][4] |A[4]14]

ALO1131 [A[I31 ARI3Y ABI3I |A413] ALOI[3] [A[L][3] AR213] AI31I3] | AL4113]

Vi

A[OI[21 A1 A2 AI3II2I |AL4112] AL0[21 [A[LizI ARIZE ABI2I | AL4112]

v

ALOILE] [AFHIELARIY AI31(1] (A[4][1]]

il s ARIL A ARI ABI A1)

AIOJI0] |A[1]I0]|A[21[0] A[3][0] |A[4](0]]
o]

a—— x?a)x] z<b)

Figure 3: Two neighbor windows share the shadow region.

A[O][0] |A[1][0]|A[2][0) AI3]IO] Al4110]

0]
X4 XI5 10 Xin X: Xi3| X4 XI5

Figure 4 shows the flow of the algorithm. In Figure 4 (a), razear
is calculated from bottom to top as Line~1 2. Line 3 is to get the
total feature area of the first window by adding rowarea astitated
in Figure 4 (b). The second window gets its feature area byngdd
rowarea[3] and subtracting rowarea[0]. This process naes until all
the windows on the first column are processed (Lire®). Then move
to the next column. Each rowarea is updated by one sum ope fatid
one subtract operation as Line 4214. Once rowarea update is done,
the window feature area can be calculated from bottom to tame(
16 ~ 21). maxarea records the maximum feature area for all glidin

windows on W-Grid, and maxar&sl? is the maximum window density
for the given W-Grid.

i3] ot = ¥is) ¥is)

TOWaredal Towareaa K __Ttowareaar >
Vi S vie S Vi) ——
Towareas] Towareas| Towareas|
Yi3] Y3 Y3
winarea = winarea =
W rowarea(0] winarea
+rowareal1] + rowareal3]
+rowarea[2] - rowareal [0]
rowaredz] rowareaz] rowareaz]
e e bl
@ rowared1] W rowaredi] W rowaredi]
v B v B iy [T
| | [|
Towaredo] Towaredo] Towaredo]
Vol vioy L= o)
X[0] X[1] X[2) X(3] X[4] X[5] X[6] X[0] X[1] X[2) X[3] X[4] X[5) X[6] X[O] X[X[2] X[3] X[4] X[5] X[6]

Figure 4: (a) rowdens is calculated for each row. (b) The fiistdow
on the left bottom corner is calculated. (c) Calculate thaltfeature
area of the windows along the first column.

In the DCWGWindow_Density algorithm, the calculations are to
get the values of rowarea and winarea. To calculate rowaraeh
Ali][j] involves at most one add and one subtract operations. There-

fore, rowarea calculation time can be boundeddgiv - N), whereM
andN are the number of columns and rows, respectively. winarea ar
derived from rowarea. And each rowarea gets at most one atidran
subtract operations in order to calculate the values foavea. Totally
there are at mod¥l - N rowarea. So the calculation time for winarea
can be bounded b@(M - N). Finally, there are at mosfl - N sliding

windows and maxarea calculation can be boundedibyN as well.
Based on the above analysis, the runtime of DC@{vidow_Density
algorithm can be tightly bounded (M - N).

Algorithm DCWG_Window_DensityCOLS, RONS W, A)
1. for(j=0; j < ROWS; j++)
rowareal[j] = ip;OlA[i}[j}, where X[p] = X[0] +W;
winarea = z?;ol rowarea(i], where Y[q] = Y[0] +W;

for(j=1; g < ROWS; j++, g++)
winarea += rowarea[q];
winarea -= rowarea[j-1];

2

3

4. .

5. maxarea = winarea;
6

7

8

9 maxarea = MAX(winarea, maxarea);

10.

11. for(i=1; p < COLS; i++, p++)

12. for(j=0;] < ROWS; j++)

13. rowareal(j] += A[p][il;

14. rowarea[j] -= A[i-1][j1;

15.

16. winarea= zﬂ;é rowarealk], where Y[g] = Y[0] +W;
17. maxarea = MAX(winarea, maxarea);
18. for(j=1; g < ROWS; j++, gq++)

19. winarea += rowarealq];

20. winarea -= rowarea[j-1];

21. maxarea = MAX(winarea, maxarea);

return maxarea/W2;

Finally, since the fix-dissection approach is a special cA88CGW
with all grid tiles having the same size, the fix-dissectippraach can
get the maximum density of all sliding windows@(M - N).

5. Exact Calculation on awout region

In Two_LevelDensity Calculation, the first level is to apply the fix-
dissection approach on the whole layout. The maximum demsit
the sliding windows can be efficiently derived with DCWG aiigfum.
Then a certain amount &¥out regions are pruned based on the three
theorems. For the rest of théout regions, CaMout Dens is called to
find the exact maximum window density for easfout region.

In [7], a theorem is presented that helps to identify an erascti-
mum density window.

Theorem 4 [7] Given a region withk rectangles, there exists a maxi-
mum density window that has two adjacent window edges gvéwa
rectangle edges. Furthermore, the overlapped window emiggsect-
angle edges are in the same directions. (The edge direatfons-
dows/rectangles are defined as the clockwise direction.)

T R T
R T
I —
R2 W-R
e
8 @ RS [R5] [Re_| i § i
e R
R10
R10 w
[R |
(a) (b) ()

Figure 5: (a) A maximum density window has its upper edge &td r
edge overlapping with the upper edgeR@fand the right edge &5, re-
spectively. (b) AWout window with 11 rectangles. (c) The constructed
grid for the givenWout window.

For a given region, the maximum density window may not bewsiq
But according to Theorem 4, we can always find a maximum densit
window whose two adjacent edges are on two rectangles. onge,
in Fig 5 (a), the window is a maximum density window. The upper-
dow edge overlaps with the upper edgdRéfand the right edge d?5 is
on the right window edge. Therefore, we can narrow down thecke
ing space to only consider the windows that satisfies thet@ints in

Thﬁnoé%r[\NouLDens, we first construct a grid on the givéout region
based on the above theorem such that at least one maximurtydens
window is on the grid. We further show that the constructed gra
W-Grid. Therefore, the DCWG algorithm can be applied on the @

get the maximum window density efficiently.

According to Theorem 4, we only need to focus on windows whose
edges have overlap with rectangles. Furthermore, sincénphé is
aWout, which is a(W + R)x(W + R) Region, anyWxW windows
inside the given region share the cenfef — R)x(W — R) part, i.e.,
Wecenter. Therefore, we only need to consider the rectangle edges out
sideWcenter. Figure 5 shows an example. Figure 5 (b) Waut region
with 11 rectangles. The blue solid lines are generated foreghtangles
outsideWcenter. Furthermore, a dashed green line is created for each

sﬁ)lid blue line such that the dis}ance etween the two lia&%.i In
this way, it guarantees that the four edges of a window cambin®

constructed grid. Figure 5 (c) shows the constructed gtits dasy to
conclude that the grid in Figure 5 (c) is a W-Grid.

To complete the grid construction, an important step is to fire x-
coordinate (y-coordinate) of each vertical (horizontaijidgine. In this
section, we propose a hash table based method to efficiectilgve
this goal. To simplify the presentation, we only show how atcalate
the y-coordinate of each horizontal grid line.

Since the input is &out region, its size i§W + R)X(W +R). Fur-
thermore, we know that the center regibteenter is shared by all win-
dows insidéNout. Therefore, only y-coordinates outsidéenter need
to be considered. In this case, two hash tables Rithl entries are
enough to hold all y-coordinates. The first hash table cpmeds to
the y-coordinates withinVfout.y;,Wout.y; + R], and the second one
records the y-coordinate$\put.y, — R,\Wout.y;]. The hash table in-
8ludes th items: cooad and ilp] ex. coord is used to recora

Inates of rectangle edges, while index is used to speedibgithe
density map. The coord field of the two hash tables is injtiasisigned
a value that is lower thawout.y; .

a1
40

41 yHash2[4]
yHash2[3]
yHash2[2]
yHash2[1]

yHash2[0]

~

e 48] oo |

tile [4,5] 39

T omE,
Rg

|| o|~i| oo

coord index

Pl
K

R4

coord
29
28
- 27
-1
~ 25

index

yHash1[4]
yHash1[3]
yHash1[2]
yHash1[1]
yHash1[0]

R7 4=

27

[INIAEN

E R 3
0-1121314 coord coord22-1242526

Figure 6: Two hash tables are constructed in order to idetité x/y-
coordinates of the vertical/horizontal grid lines, regpety.

Figure 6 gives an example. The window si&eis 12, andR is 4.
Wout is bounded by[(10,25)(26,41)], i.e., Wout.x = 10, Wout.y; =
25, Wout.x;, = 26 andWout.y,, = 41. The bottom edge of the rectan-
gle R7 falls in the range\Wout.y;,Wout.y; + R]. A horizontal edge
should be created. Thereforgdashl[27 — 25|.coord is marked as
27. At the same time, another horizontal line with the y-catate
39 should be created as shown by a dashed green line. Acgtydin
yHash2[39— (41— R)].coord is marked as 39. Similarly, the upper edge
of the rectangleRl also corresponds to two horizontal grid lines, and
we getyHash2[3].coord = 40 andyHash1[3].coord = 29. By travers-
ing all the related rectangles once, the coord field of thettagh tables
is done. Then going through the two hash tables from bottotogo
to determine the index field. For example, the indeytéashl[3] is 3

since it is the third horizontal line from the bottom. .
(8nce the ngJIS constructeg as shown in tlt—!?gure 6, the neptiste

to calculate the feature area for each grid tile. Obviouslg,grid tile
Wecenter could get its feature area from the previous fix-dissectaln c
culation. For the rest of the tiles, we need to traverse allrtHated
rectangles and find their overlap with the grid tiles. Witk trelp of
the index field, this step can be easily accomplished. Fompie
for the rectangleR1, the y-coordinate of its upper edge is 40. Since
yHash2[40-(41-R)].index = 7, it means that the rectangleeiow the
7th horizontal line. Meanwhile, by checking the left anchtigdges of
R1, we know that the rectangle falls between the 4th and Stticeér
lines. Therefore, we only need to calculate the overlapsabetween
R1 and tile[4,6] and tile[4,5].

Since the constructed grid for the givafout is a W-Grid, the DCWG
algorithm can be applied to get the maximum window densitire T
CalWout Dens algorithm can be summarized as follows.

Algorithm CalWout Dens\out)

1. Construct the W-Grid with the Hash table structure;
2. Calculate the feature area for each grid tile;

3. Apply the DCWG algorithm;

4. return the maximum window density;

In CalLWout.Dens, by traversing all the related rectangles once, the

W-Grid can be]g: tructed Th?ﬂ another tr grse %f all
rectangles can finish step two e runtime of Step three us

by O(M -N) whereM andN are the number of rows and columns,
respectively. Therefore, the runtime of CAbut Dens isO(M - N +K)
whereK is the number of the related rectangles.

6. Tradeoff

In Two_Level Density Calculation, the first level is to apply the fix-
dissection approach on the whole layout with a fine slidirggp sand
the second level is to calculation the exact maximum windewsiy
on each identifiedlVout region from the first stage.

As we notice that, for some test cases, after the pruning giepe
are still manyWout regions. One reason is that some high density re-
gions cover a relative large space. Since the sliding stemall, the
high density regions may generate ma&igut as shown in Figure 7. In
Figure 7 (a), the white rectangle is an identifi#dut region in the first
stage. Shifting the rectangle left/right a little bit, wencstill get high
density regions as shown by the purple rectangle and the geetan-
gle. In this case, the two neighboriligputs share a large portion of the
area and it is not efficient to calculate tha¥euts one by one.

posed. “Theorem 1-2” refers to the numbeNdbut regions after ap-
plying only Theorem 1 and 2. While “Theorem 1-3" shows the bem
of Wout after applying the three theorems. It is clear that Theorem 3
also helps a lot in pruning regions. Especially, for Tedté,number of

Wout is reduced from 17351 to 25831 with Theorem 3.

Table 1. Number oWout after applying pruning theorems

Testcase] W = 24,000

TotalWout Theorem I-2 Theorem 1-3
Testl 5,294,601 9,147 (0.17%) | 6,270 (0.12%)
Test2 5,294,601 | 13,107 (0.25%)][11,567 (0.22%)
Test3 4,137,156 | 1,351 (0.03%) | 1,351 (0.03%)
Testd || 25,335,557] 175,151 (0.69%) 25,831 (0.10%)
TestS 4,137,156 180 (0.00%) 180 (0.00%)
Test6 || 16,273,156 94 (0.00%) 42 (0.00%)
Test/ || 16,273,156] 3,953 (0.02%) | 3,741 (0.02%)
Test8 || 16,273,156] 1,364 (0.01%) | 1364 (0.01%)
Test9 || 24,671,089 1,396 (0.00%) 562 (0.00%)
Testl0 [16,273,156] 527 (0.00%) 527 (0.00%)

Table 2 shows the runtime comparison between the algorithiT i
and the proposed two-level algorithm. The first stage siiditep is set
asW/100, and théVout threshold is 5000. If the number of identified
Wout regions is larger than 5000, then the sliding step is s&V#8.
Comparing to [7], for testcases which have a short runtintl [¥i, our
algorithm also achieves equivalent runtime. For testcasish have a
long runtime with [7], the proposed two-level algorithm alsoadvan-
tages on the runtime. For example, for Test5, the runtimedsiced
by more than 28 For these 10 test cases, on average, our proposed
algorithm shorts the runtime by%k with the window size 2400 and
6.7s with the window size 32000.

Table 2: Runtime Comparison

Figure 7: (a) The white rectangle outlines an identifi@out region

from the first stage. (b) The neighborivdout regions such as the

regions outlined by the purple rectangle and the greenngleaalso

Testcase W = 24,000 W = 32,000

[7](5) [Ours(s)] Difi(s) || [7](5) [Ours(s)[Dif(s)

Testl || 0.553 | 1.849 | +1.296 || 0.601 | 1.115 | 0.514
Test? || 1.518 | 3.371 | +1.853 | 1.832 | 1.627 | -0.205
Test3 || 12.302] 8.042 | -4.260 || 15.727| 19.361 | +3.634
Testd || 2.275 | 5.592 | +3.317 | 1.586 | 3.608 | +2.022
Tests || 23.725| 2.841 | -20.884 | 42.788] 16.851 | -25.937
Test6 || 12.420] 8.515 | -3.905 || 13.349] 7.199 | -6.150
Test7 [35.509] 25.835 | -9.674 || 61.886] 42.269 | -19.617
Test8 || 29.159| 18.267 | -10.892 | 27.554 | 13.427 | -14.127
Test9 || 7.737 | 11.6550 | +3.813 || 7.757 | 9.863 | 2.106
Test10 || 20.225] 13.887 | -6.338 || 24.745] 14.961 | -9.784
Ave - - -4.567 - - 6.754

have a high density.

Based on the above consideration, we introdud&oat threshold
to control the number of the identifiatfout regions. After applying
the first round of fix-dissection, if the number of identifiédbut re-
gions is larger than the threshold, then redo the fix-digsestep with
a large sliding step, and the rest of the steps are applietieowaut
regions from the second fix-dissection. Of course, in thisecdhe
Wout regions are larger and it may take longer time to calculage th
exact maximum window density. However, since the numbéiait
regions is greatly reduced, the short runtime can be gusgdntThe
Two_Level Density Calculation algorithm in Section 3 is modified as
follows. The first step is extended intall~ 1.5.

Algorithm Two_Level Density Calculation()

1.1 Apply the fix-dissection approach with a fine grid size R;
1.2 Apply the three theorems to prune regions;

1.3 If the number of the identified Wout > Threshold

1.4 Redo the fix-dissection with a large grid size R’;

%.5 R=R,;

7. Experimental Results
We implemented our algorithm in C on a linux machine (3.2GWlith

8. Conclusion

In this paper, we propose a simple but efficient two-levetdrghical

approach to exactly identify the maximum density windowdagiven

EDWA problem. Comparing with the latest work [7], the newaithm

can report the exact maximum window density with equivatergven
shorter running time. Especially for the long runtime testes, our
new algorithm shows big runtime reductions.

9. References

[1] A. B. Kahng, G. Robins, A. Singh, H. Wang and A. Zelikovslkilling
and Slotting: Analysis and Algorithm, ISPD, 1998.

[2] A. B. Kahng, G. Robins, A. Singh and A. Zelikovsky, New Mildvel
and Hierarchical Algorithms for Layout Density Control,0er Asia and
South Pacific Design Automation Conf., pp. 221-224, Jan9199

[3] A. B. Kahng, G. Robins, A. Singh and A. Zelikovsky, FilinAlgo-
rithms and Analyses for Layout Density Control, IEEE Trasgss on
Computer-Aided Design 18(4), pp. 445-462, 1999.

[4] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, Mor@arlo Algo-
rithms for Layout Density Control, Proc. Asia and South Raddesign
Automation Conf., pp. 523-528, Jan. 2000.

[5] R. Tian, D. F. Wong, R. Boone, Model-based Dummy Featdagdmment
for Oxide Chemical-Mechanical Polishing ManufacturailiProc. De-
sign Automation Conf, pp 667-670, 2000.

3.5GB memory. We use the same test set as [7]. Two window sizes [6] X. Wang, C. C. Chiang, J. Kawa and Q. Su, A Min-Variancedtive

24,000nm and 32000nm are used for testing, separately.

The algorithm starts the fix-dissection approach with a firkng
stepW/100. By applying the three pruning theorems, a low\ddut
regions are discarded. Table 1 shows the effectivenessgirtming
technique. In this paper, a new pruning theorem (Theorens Bja-

Method for Fast Smart Dummy Feature Density Assignment iendibal-
Mechanical Polishing, ISQED, pp. 258-263, 2005.

H. Xiang, K. Chao, R. Puri and M. D. F. Wong, Is your layowgngity
verification exact? — a fast exact algorithm for density wialtton. Proc.
ACM/IEEE Intl. Symp. on Physical Design, pp 19-26, March 200

(7]

