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Abstract— As an easily implemented approach, ripup and reroute
has been employed by most of today’s global routers, which
iteratively applies maze routing to refine solution quality. But
traditional maze routing is susceptible to get stuck at local optimal
results. In this work, we will present a fast and high quality global
router FastRoute3.0, with the new technique named virtual capacity.
Virtual capacity is proposed to guide the global router at maze
routing stage to achieve higher quality results in terms of overflow
and runtime. During maze routing stage, virtual capacity works as a
substitute for the real edge capacity in calculating the maze routing
cost. There are two sub techniques included: (1) virtual capacity
initialization, (2) virtual capacity update. Before the maze routing
stage, FastRoute3.0 initializes the virtual capacity by subtracting
the predicted overflow generated by adaptive congestion estimation
(ACE) from the real edge capacity. And in the following maze routing
iterations, we further reduce the virtual capacity by the amount of
existing overflow(edge usage minus real edge capacity) for the edges
that are still congested. To avoid excessive ”pushing-away” of routing
wires, the virtual capacity is increased by a fixed percentage of the
existing overflow if edge usage is smaller than real edge capacity.

Experimental results show that FastRoute3.0 is highly proficient
dealing with ISPD98, ISPD07 and ISPD08 benchmark suites. The
results outperform published ripup and reroute based academic
global routers in both routability and runtime. In particular, (1)
FastRoute3.0 completes routing all the ISPD98 benchmarks. (2) For
ISPD07 and ISPD08 global routing contest benchmarks, it generates
12 out of 16 congestion free solutions. (3) The total runtime is
enhanced greatly.

I. INTRODUCTION

As the feature size of modern VLSI design continues to shrink,
the ascending circuit density poses greater challenges for modern
chip routers. Modern designs are liable to congestion problems
because of the increasingly concentrated routing demands. Be-
sides, due to the rapidly growing problem size, the runtime
required for completing a routing task is much longer than before.

There are two major stages for handling the routability prob-
lem: placement stage and routing stage. Placement determines
the instance and pin locations and hence the degree of difficulty
for the routing problem that follows. Min and Chu [6] pointed
out that to guide the placer to produce a routable placement, the
routing estimation during placement should be consistent with the
actual routing in the routing stage. It is desirable to have a fast
router that can be repeatedly called right after the placement step
for a quick estimation. The estimating router will be identical
with the one used in the routing stage. From this sense, modern
global routers need better take both runtime and routability issues
into consideration.

In VLSI routing, global routing is an essential phase of the
whole routing scheme, which determines routing usage based on
an abstracted grid graph. Many global routing techniques have
been proposed since the 1960s. The most popular global routing
approach is iterative ripup and reroute based. The approach first
breaks each multi-pin net into a set of two-pin nets. Then the two-
pin nets are routed sequentially based on a predetermined order.
The routing solution is iteratively refined by rip-up and reroute
until reaching acceptable quality. However, the heuristic nature

of such an approach is prone to getting stuck at local optimal
solutions.

There have been several methods proposed to boost the quality
of iterative ripup and reroute approach. Kastner et al. [2] pro-
posed a pattern based routing scheme. Hadsell and Madden [3]
proposed to guide the routing by amplifying the congestion map
with a new congestion cost function. BoxRouter [5] proposed a
hybrid approach with the application of ILP to simultaneously
handle multiple nets and achieved better routability. FastRoute
[6] achieved very fast runtime by exploring congestion driven
RSMT to avoid the extensive usage of maze routing. FastRoute2.0
[7] improved the solution quality over FastRoute by introducing
monotonic routing and multi source multi sink maze routing.
Recently, Archer [9], BoxRouter2.0 [8], FGR [10], and NTHU-
R [12] are presented. All these four techniques employ the
negotiation-based maze routing that was introduced by PathFinder
[1]. Negotiation-based maze routing increases the maze routing
cost for the edges that are consistently congested.

In this paper, we propose the virtual capacity technique which
is a systematic way of tackling the congestion problem. As
implied by the name, virtual capacity idea tries to guide ripup
and reroute global router in the maze routing stage by the
”virtual” capacities, instead of the real ones. Given a global
routing solution, consider any congested routing edge e. Assume
edge e has capacity ce, routing demand ue and overflow oe(=
ue − ce > 0). The basic idea of virtual capacity is to reduce
the capacity of e by oe units (i.e., set the virtual capacity to
ce − oe) and then run another round of global routing. Because
of the reduction in capacity, edge e becomes more expensive to
use and hence some of its routing demand will be pushed away.
In the ideal situation, exactly oe units of routing demand will
be pushed away in order to bring the congestion back to the
level of the previous round. Thus, the new routing demand will
be ue − oe = ce, i.e., the same as the original capacity. In order
words, edge e will not be congested in the second round of global
routing. In reality, less than oe units of routing demand will get
pushed away because other edges may not be willing to absorb
the pushed routing demand. Nevertheless, virtual capacity is a
systematic way to effectively reduce the overflow.

In FastRoute3.0, the virtual capacity is initialized by reducing
the real capacity with the amount of estimated overflow generated
by adaptive congestion estimation(ACE). During the following
maze routing process, it is further reduced by the amount of
existing overflow if the edge is still congested. Otherwise it is
increased by timing a factor to prevent excessive subtraction.

We develop FastRoute3.0 by integrating the new techniques
into FastRoute2.0 [7], a fast rip-up and reroute based global
router. Compared with the other published academic global
routers, FastRoute 3.0 achieves much better results in both
routability and runtime. In particular, it completes routing all
the ISPD98 benchmarks. For the ISPD07 and ISPD08 global
routing contest benchmarks, it successfully generates 12 out of
16 congestion free solutions in very short runtime.
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The next few sections are organized as follows: Section 2
describes the framework of FastRoute3.0. Section 3 presents the
virtual capacity idea. Section 4 introduces two techniques that
are effective in via reduction and convergence speedup. Section
5 discusses experimental results and comparisons. Conclusion is
made in the section 6.

II. PRELIMINARIES
A. Grid Graph Model

As is illustrated in figure 1, the whole routing region is parti-
tioned into a number of global bins. Each global bin is represented
by one node and each common boundary is represented by one
edge in the grid graph. The edge is called global edge with the
capacity of ce. The overflow is defined as how much is usage
ue over the ce. If ue is smaller than ce, oe = 0, otherwise
oe = ue − ce.
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Fig. 1. Global bins and corresponding global routing grid graph.

B. Overview of FastRoute3.0
The flow of FastRoute3.0 is illustrated in figure 2. There are six

major steps in the flow. Step 1, 3, 4 are techniques that we borrow
from FastRoute2.0. The step 1 is multi-pin nets decomposition.
We utilize FLUTE2.5 [4] to generate the congestion driven
RSMT. Then the RSMT of all the multi-pin nets are decomposed
into a group of two-pin nets. The step 2 is the virtual capacity
initialization technique which will be discussed in section 3. Step
3 is pattern routing. Normally L routing and Z routing are applied
in this step. Step 4 is multi source multi sink maze routing. The
maze routing cost is calculated by adaptive maze function based
on virtual capacity. And step 5 is the virtual capacity update
which is performed at the end of each maze routing iteration.
The virtual capacity value will be either increased or decreased
depends on current edge usage compared with original edge
capacity. Step 4 and step 5 will be iteratively applied until the
total overflow gets stuck. Step 6 performs layer assignment after
the program runs out of the iterative ripup and reroute loop.

III. VIRTUAL CAPACITY TECHNIQUE
In this section, we will present the virtual capacity technique.

Congestion reduction is key metric to evaluate a global router.
Recent published academic global routers including [8], [10],
[11] and [12] employ negotiation based maze routing technique,
which increments the maze routing cost for edges that are
consistently congested. In FastRoute3.0, we propose virtual ca-
pacity, an alternative but systematic method to handle congestion
problem. Virtual capacity technique consists of two ideas. Section
III.A discusses the virtual capacity initialization. Section III.B
describes the criteria how virtual capacity is updated.

FastRoute3.0 Framework
begin

Step1 : Congestion Driven Multi-Nets Decomposition
Step2 : Virtual Capacity Initialization
Step3 : Pattern Routing (L and Z Routing)
while( total overflow not gets stuck)

Step4 : Multi Sink Multi Source Maze Routing
Step5 : Virtual Capacity Update

end while
Step6 : Layer Assignment

end

Fig. 2. FastRoute3.0 framework

A. Virtual Capacity Initialization by ACE

Virtual Capacity is initialized by subtracting the estimated
overflow from the real edge capacity. In FastRoute3.0 we use
adaptive congestion estimation(ACE) technique to predict the
overflow. The idea is to assign net usage to proper routing
edge and calculate the estimated overflow accordingly. Since
before the maze routing, each decomposed two-pin net is routed
without detour inside the bounding box. And the task of a
global router, in general, is to distribute routing demand. The
estimation is therefore based on the following two assumptions:
(1) Estimating region of each two-pin net is confined within the
bounding box. (2) Fractional usage assignment is allowed. The
first assumption suggests that we only consider the routing edges
inside the bounding box. The second assumption permits breaking
the integer usage into fractional values. It keeps in accordance
with the objective to evenly distribute the net usage, because
fractional values offer more freedom in filling routing demands.
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Fig. 3. Probabilistic estimation.

For the runtime consideration, the estimation needs be kept
simple and effective. The simplest way of predicting congestion
is probabilistic based. For instance, figure 3 illustrates a routing
example with four two-pin nets, A, B, C and D. Here we suppose:
(1) the edge capacity is 1; (2) estimation goes inside each
bounding box; (3) each two-pin net has equivalent probability
to pass through the edges along the same row or column. In
this case, net D has 1/4 of probability of passing each of the
vertical edge along line T. The same rule applies, the total
probabilistic usage of the leftmost vertical edge, here we denotes
as edge, will become: (1 + 1/2 + 1/3 + 1/4). Likewise, for the
case with N such nets, the probabilistic usage of edge will be:
U(edge) = (1 + 1/2 + 1/3 + · · · 1/N). The function is also
called harmonic function which diverges when N approximates
infinity. In other word, the function will generate a large estimated
usage for edge. However, as depicted in figure 3, the routing case,
regardless of the value of N , is entirely routable without detour.

345



Hence the desired estimated usage of edge is 1. It fully shows
the deficiency of the traditional probabilistic usage assignment
technique.

FastRoute3.0 utilizes ACE instead to perform the usage as-
signment. The notation of problem formulation is shown in table
1. Each two-pin net has the usage of 1, and the objective is to
assign the usage to global routing edges more evenly. As the
example discussed above, the problem is too much usage is piled
on some edge, which could be assigned elsewhere. Also, since the
usage assignment is applied in a sequential order, the permutation
method prominently affects the accuracy. Therefore in sum, there
are two sub problems involved: (1) the usage assignment for
single two-pin net; (2) the sequential assignment ordering of a
group of nets.

yGrid

Cost

Original Cost Assigned Usage

two-pin net assignment

Fig. 4. two-pin net usage assignment(vertical case).

TABLE I
ACE USAGE ASSIGNMENT NOTATION

N number of two-pin nets
BBoxk bounding box of netk

rk number of rows inside BBoxk
ck number of columns inside BBoxk

leftk left coordinate of BBoxk
rightk right coordinate of BBoxk
topk top coordinate of BBoxk

bottomk bottom coordinate of BBoxk

c
V/H
i,j capacity of the edge

V/H
i,j

p
V/H
i,j current assigned usage of edge

V/H
i,j

1) Two-pin net assignment: Consider the usage assignment of
one single two-pin net, the usage ready to be assigned within the
bounding box is 1. Without loss of generality, here we discuss the
assignment for vertical edges. The same criteria will be applied
for horizontal edges. The usage assignment algorithm for vertical
edges is shown in figure 5. Each row is processed independently.
Inside one row, edges are sorted in a decreasing order according
to the value of costVi,j , which is equal to pV

i,j + mV
i − cV

i,j .
mV

i is the value of maximum edge capacity of row i. The
algorithm compares the average potential assigned usage with
largest current assigned usage. It iteratively excludes the edge
with largest current assigned usage until an even assignment

is possible. The time complexity required for processing single
two-pin net netk is O(rkck · log(ck)). Figure 4 illustrates the
assignment process.

Algorithm ACE two-pin net assignment vertical(netk)

begin
1 for (i = topk · · · bottomk + 1)
2 mV

i = max(cV
i,j ), j ∈ [leftk, rightk]

3 Δ = rightk − leftk + 1
4 for (j = leftk · · · rightk)
5 costVi,j = pV

i,j + mV
i − cV

i,j

6 Csum =
P

costVi,j (j ∈ [leftk, rightk])

7 Sort costVi,j(j ∈ [leftk, rightk]) by decreasing order
8 Copy sorted edge index into queue Q
9 for (t = 1 · · ·Δ)
0 if 1+Csum

Δ−t+1
> costV

i,Q(t)

1 for (n = t · · ·Δ)
2 pV

i,Q(n)
= 1+Csum

Δ−t+1
− mV

i + cV
i,Q(n)

3 break out of the second for loop
4 else
5 Csum = Csum − costV

i,Q(t)

6 end for
7 end for
end

Fig. 5. The ACE two-pin net assignment algorithm for vertical edges

2) Net processing order: ACE chooses to process smaller
span nets with higher priority. The net span represents width
of bounding box in vertical edge assignment and likewise height
of bounding box in horizontal edge assignment. In experiment
we discover that nets with larger spans offer more choices to
distribute the net usage. Therefore we permutate the net by net
span and perform usage assignment for smaller span nets first.
Figure 6 shows the detail of the whole ACE algorithm.

Algorithm ACE usage assignment()

begin
1 pV

i,j = 0 ∀i, j

2 pH
i,j = 0 ∀i, j

3 Sort two-pin nets by BBox width with increasing order
4 Copy sorted nets into queue QV

5 for (t = 1 · · ·N)
6 ACE two-pin net assignment vertical(QV (t))
7 end for

8 Sort two-pin nets by BBox height with increasing order
9 Copy sorted nets into queue QH

0 for (t = 1 · · ·N)
1 ACE two-pin net assignment horizontal(QH (t))
2 end for
end

Fig. 6. The ACE usage assignment algorithm

Now we apply ACE to solve the routing example in figure 3.
Consider vertical edges along the line T as before. Due to the
permutation, the net processing order becomes A→B→C→D.
After assigning net A, current assigned usage becomes(1,0,0,0).
And we will get (1,1,0,0) after assigning net B. As it goes on,
the final assigned usage will be (1,1,1,1). So the estimation won’t
report any potential congestion, which matches exactly with the
analysis.

After the estimation, virtual capacity will be initialized by
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equation 1.

vce = rce − (max(0, pe − rce)) ∀e (1)

In the equation, rc denotes real edge capacity, p is the final as-
signed usage obtained by ACE. The new capacity after subtraction
is named virtual capacity, which is vc in abbreviation.

Now we analyze the time complexity of ACE technique. The
ordering of N two-pin nets takes O(N ·log(N)). For each net, the
worst case time complexity is O(G2log(G)), G is the maximum
number of horizontal and vertical grids. Hence, in general, the
overall worst case time complexity is O(N · log(N) + NG2 ·
log(G)). But the bounding box of a two-pin net is generally
small, therefore on average, ACE accounts for nearly 20% of
total runtime.

B. Virtual Capacity Update

After the virtual capacity initialization, FastRoute3.0 substi-
tutes virtual capacity for the real edge capacity to guide maze
routing. But as the ripup and reroute proceeds, especially after
several iterations, the initial virtual capacity value becomes less
effective. Sometimes it even misleads the router. One reason
for causing this phenomena is that the congestion estimation is
performed within the bounding box. However, that assumption is
not supported by maze routing, which is very likely to generate
a lot of detour during rip up and reroute iterations. Therefore,
to fix this inconsistency, the virtual capacity needs be updated
dynamically. In FastRoute3.0, it is updated at the end of each
maze routing iteration.

The update method is presented in equation 2 and 3. Existing
overflow oe is calculated as the difference between edge usage ue

and real edge capacity rce. Virtual capacity will be monotonically
decreased for the edges that are consistently congested.

However, we could notice that the virtual capacity reduction
procedure is irreversible and the capacity is continually lost. So
it’s highly possible that more and more extra wirelenth will be
created by the edges with very small virtual capacity, even though
some edges are not congested at all. As a result, we apply virtual
capacity increase if the edge usage is below real edge capacity(oe

is less than 0). In equation 3 the augmenting factor F is set to be
0.85 by experiment.

oe = ue − rce ∀e (2)

vce =

j
vce − oe if oe ≥ 0

vce − F × oe if oe < 0 (3)

Virtual capacity technique is effective in overflow reduction.
Table 2 compares the two modes(with and without virtual capac-
ity) on seven routable ISPD07 global routing benchmarks.

TABLE II
COMPARISON OF DIFFERENT MODES ON 7 ROUTABLE 3D VERSION ISPD07

BENCHMARKS

mode1 mode2
name wlen cpu wlen cpu

(e5) (sec) OF (e5) (sec) OF
adaptec1 55.1 302 0 / 1800 42
adaptec2 53.6 38 0 / 1800 312
adaptec3 133 249 0 132 639 0
adaptec4 122 54 0 122 77 0
adaptec5 161 682 0 / 1800 436
newblue1 48.2 316 0 / 1800 1348
newblue2 76.3 24 0 76.2 36 0

In the table, mode 1 utilizes virtual capacity in maze routing
and mode 2 is traditional maze routing, which switches off virtual
capacity technique. Maze routing with virtual capacity apparently

shows much better performance in terms of congestion reduction
and runtime. Traditional maze routing could only finish routing
3 benchmarks. Note that the runtime is limited to be within 30
minutes.

IV. QUALITY IMPROVEMENT TECHNIQUES

In this section, we will present another two simple but effec-
tive techniques: (1) via aware maze routing; (2) adaptive maze
function.

A. Via aware maze routing

In FastRoute3.0, almost about half of the vias are generated
by routing bends. To suppress the number of vias, via cost is
incorporated into the maze routing cost function. During the
dijkstra expansion, we record the predecessor of current grid
position. If the new expansion causes any routing bends, via cost
is added to the maze routing cost.

coste = coste + viacost (4)

TABLE III
COMPARISON OF VIA AWARE MAZE ROUTING AND VIA IGNORED MAZE

ROUTING ON 7 ROUTABLE 3D VERSION ISPD07 BENCHMARKS

via ignored maze routing via aware maze routing
name cpu cpu

#via (sec) OF #via (sec) OF
adaptec1 2007K 293 0 1843K 302 0
adaptec2 2033K 35 0 1989K 38 0
adaptec3 3848K 238 0 3600K 249 0
adaptec4 3306K 51 0 3287K 54 0
adaptec5 5667K 672 0 5489K 682 0
newblue1 2425K 312 0 2314K 316 0
newblue2 3009K 21 0 2992K 24 0

In table 3 we compare the via aware maze routing and via
ignored maze routing on seven routable ISPD07 3D benchmarks.
We could observe that the extra via cost could effectively remove
over 3% 3D vias with 2% increase of runtime.

B. Adaptive Maze Function

The adaptive maze routing cost function is presented in equa-
tion 5. In the function. k is the coefficient controlling the function
curve slope when ue is below ce. k is adaptively adjusted in
different maze routing phases. In the initial phase, the k is
set small to preserve good wirelegnth. Normally in the first
few iterations, many nets need ripup and reroute. If a large k
coefficient is applied, excessive routing wires would be rerouted
with huge detour. While in the final stage of maze routing, the
cost function curve is made steep to aggressively drive down
the residual overflow. There are three other coefficients in the
function: M is the cost when ue is equal to ce. S determines the
slope when ue is over ce. H is the cost height which is increased
each maze routing iteration. The parameters are experimentally
determined.

coste =

j
1 + H/(1 + exp(−k(ue − ce))) if 0 < ue ≤ ce

1 + M + S × (ue − ce) if ue > ce
(5)
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TABLE IV
EXPERIMENTAL BENCHMARKS STATISTICS

#Routed Max Avg
Name Grids #Nets Nets Deg Deg
ibm01 64×64 11.5k 9.1k 37 3.8
ibm02 80×64 18.4k 14.3k 126 4.4
ibm03 80×64 21.6k 15.3k 49 3.6
ibm04 96×64 26.2k 19.7k 41 3.4
ibm06 128×64 33.4k 25.8k 34 3.8
ibm07 192×64 44.4k 34.4k 22 3.8
ibm08 192×64 47.9k 35.2k 65 4.3
ibm09 256×64 50.4k 39.6k 38 3.8
ibm10 256×64 64.2k 49.5k 32 4.2

adaptec1 324×324 219k 177k 340 4.2
adaptec2 424×424 260k 208k 153 3.9
adaptec3 774×779 466k 368k 82 4.0
adaptec4 774×779 515k 401k 171 3.7
adaptec5 465×468 867k 548k 121 4.1
newblue1 399×399 332k 271k 74 3.5
newblue2 557×463 463k 374k 116 3.6
newblue3 973×1256 552k 442k 141 3.2
bigblue1 227×227 283k 197k 74 4.1
bigblue2 468×471 577k 429k 260 3.5
bigblue3 555×557 1.12M 666k 91 3.4
bigblue4 403×405 2.23M 1.13M 129 3.7
newblue4 455×458 636k 531k 152 3.6
newblue5 637×640 1.26M 892k 258 4.1
newblue6 463×464 1.29M 835k 123 3.8
newblue7 488×490 2.64M 1.65M 113 3.6

V. EXPERIMENTAL RESULTS AND COMPARISON

FastRoute3.0 is implemented in C, and all the experiments
are performed on one 2.4Ghz Intel processor with 4GB of
RAM. FLUTE [4] is utilized to generate RSMT. We demonstrate
FastRoute3.0’s performance by running three benchmark suites:
ISPD98 benchmarks [13], 3D version of ISPD07 global routing
contest benchmarks [14] and 3D version of ISPD08 global routing
contest benchmarks [15]. The benchmark statistics are shown in
table 4.

A. ISPD98 benchmarks

Table 5 shows the FastRoute3.0’s performance for ISPD98
benchmarks. We make comparison with recently published aca-
demic global routers: NTHU-R, BoxRouter 2.0, Archer, FGR,
FastRoute2.0 and BoxRouter. The results are quoted from [12],
[8], [9], [10], [7] and [5] respectively. First, the result shows that
FastRoute3.0 is able to route through all the benchmarks without
any overflow. Second, FastRoute3.0 achieves good runtime. It
can finish routing all 10 benchmarks within 15 seconds on our
platform. Among all quoted global routers, FastRoute2.0 achieves
fastest runtime. But it fails to generate congestion free solutions
for ibm01, ibm04 and ibm09. Third, the total wirelength is com-
parable with Archer, NTHU-R, FGR and BoxRouter 2.0, which
is 2.26% and 1.96% better than FastRoute2.0 and BoxRouter.

B. 3D version of ISPD07 benchmarks

Table 6 shows routing results on 3D version of ISPD07 global
routing contest benchmarks. As shown in table 4, they are much
harder in routing complexity and larger in grid size. We compare
FastRoute3.0 with recently published global routers: FGR [10],
MaizeRouter [11], BoxRouter 2.0 [8], FastRoute2.0 [7], Archer
[9] and NTHU-R [12]. The first three routers are the winners
of the 2007 ISPD global routing contest [14]. Speaking of
final overflow, FastRoute3.0 is able to complete 7 benchmarks
without any congestion. Noticeably, FastRoute3.0 successfully
route through newblue1, which is not routable by any of the
referred routers. For the unroutable one, newblue3, FastRoute3.0
produces the solution with lowest overflow. Secondly, in order to
show FastRoute3.0’s strong point on runtime, we run FGR 1.1 on
our platform. The total runtime added together is around one hour,

0 5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Overflow Reduction over Iterations

Maze Routing Iteration

T
ot

al
 O

ve
rf

lo
w

adaptec1
adaptec2
adaptec5

Fig. 7. FastRoute3.0 overflow reduction during maze routing iteration.

which is 64× faster than FGR 1.1. The runtime of Archer is also
reported. From the literally quoted results [9], FastRoute3.0 is 9×
faster. Note that Archer is performed on an Intel Xeon 3.60Ghz
processor. Considering the wirelength, the reported results are
calculated by the ISPD07 cost(segment wirelength plus three
times of via number). FastRoute3.0 is comparable with all the
winners of the contest, but it is much better than FastRoute2.0
with over 50% improvement. We also investigate the convergence
of our router. Figure 8 shows that the total overflow of adaptec1,
adaptec2, and adaptec5 goes down in logarithmical order and the
required maze iteration is only around 20.

C. 3D version of ISPD08 benchmarks

In the ISPD 2008 global routing contest, 8 benchmarks are
newly released. We evaluate FastRoute3.0’s performance on the
new benchmarks in table 7. The comparison is made with top 5
contest winners: NTHU-R, NTUgr, FastRoute3.0c 1, BoxRouter
2.0 and FGR. The contest results are obtained by running each
submitted binary on a machine with up to four 2.8Ghz AMD
processors[16]. First of all, in terms of overflow, FastRoute3.0
finishes routing 12 out of 16 benchmarks, which is the same as
the best known results. Second, the total runtime added together
is the second smallest. Although FastRoute3.0c achieves fastest
runtime, it fails to route through newblue1 and bigblue2. Be-
sides, NTUgr and FastRoute3.0c utilize multi-core programming,
hence their single thread runtime would be slower. The runtime
comparison may not be very accurate as the contest binaries are
still not publicly available. Here we only want to demonstrate the
runtime advantage of our router, which is at least comparable with
the contest winners. Third, the ISPD08 wirelength cost(segment
wirelength plus number of via) is on the same level with the
others. It indicates that FastRoute3.0 doesn’t sacrifice wirelength
for achieving good runtime.

VI. CONCLUSIONS

In this paper, we have proposed FastRoute3.0, a fast and high
quality global router with special emphasis on overflow reduction.
The newly introduced technique is virtual capacity, which is used
to guide the global router in maze routing stage out of local
optimal solutions. FastRoute3.0 generates high quality solutions
for ISPD98, ,ISPD07 and ISPD08 benchmark suites. But due to
the fast growing problem size and degree of routing complexity,
our future work will focus on two aspects. First, we will continue
to improve FastRoute 3.0’s routability and runtime. Second, we

1FastRoute3.0c is our contest version
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TABLE V
COMPARISON OF FASTROUTE3.0, AND PUBLISHED GLOBAL ROUTERS ON ISPD98 BENCHMARKS.

FastRoute3.0 NTHU-R [12] BoxRouer 2.0 [8] FGR [10] Archer [9] FastRoute2.0 [7] BoxRouter [5]
name cpu cpu cpu cpu cpu cpu cpu

OF wlen (sec) OF wlen (sec) OF wlen (sec) OF wlen (sec) OF wlen (sec) OF wlen (sec) OF wlen (sec)
ibm01 0 64221 0.64 0 63321 4.17 0 62659 33 0 63332 10 0 64389 11 31 68489 0.72 102 65588 8
ibm02 0 172223 0.85 0 170531 7.44 0 171110 36 0 168918 13 0 171805 25 0 178868 0.93 33 178759 34
ibm03 0 146753 0.49 0 146551 5.86 0 146634 18 0 146412 5 0 146770 10 0 150393 0.60 0 151299 17
ibm04 0 170146 2.70 0 168262 13.61 0 167275 116 0 167101 29 0 169977 24 64 175037 1.88 309173289 24
ibm06 0 279471 1.15 0 278617 12.75 0 277913 47 0 277608 6 0 278841 23 0 284935 1.36 0 282325 33
ibm07 0 369023 1.68 0 366288 15.89 0 365790 86 0 366180 18 0 370143 25 0 375185 1.60 53 378876 51
ibm08 0 405935 1.82 0 405169 13.17 0 405634 90 0 404714 18 0 404530 42 0 411703 2.36 0 415025 93
ibm09 0 414913 1.67 0 415464 11.59 0 413862 273 0 413053 20 0 414223 37 3 424949 1.92 0 418615 64
ibm10 0 582838 3.61 0 580793 33.72 0 590141 352 0 578795 92 0 583805 45 0 595622 2.79 0 593186 95
Total 0 2606K 14.61 0 2595K 118.20 0 2601K 1051 0 2585K 211 0 2604K 242 98 2665K 14.16 497 2657K 419
Norm / 1 1 / 0.996 8.09 / 0.998 72.94 / 0.992 14.44 / 1 16.56 / 1.023 0.97 / 1.020 28.68

TABLE VI
COMPARISON OF FASTROUTE3.0, AND PUBLISHED GLOBAL ROUTERS ON 3D VERSION OF ISPD07 GLOBAL ROUTING CONTEST BENCHMARKS

FastRoute3.0 FGR 1.1 [10] Archer [9] BoxRouter2.0 [8] MaizeRouter [11] FastRoute2.0 [7]
name wlen cpu wlen cpu wlen cpu wlen wlen wlen

OF (e5) (min) OF (e5) (min) OF (e5) (min) OF (e5) OF (e5) OF (e5)
adaptec1 0 92 5 0 88.5 345 0 114 87 0 92 0 100 122 249
adaptec2 0 93.4 1 0 90 32 0 113 23 0 94 0 98 500 244
adaptec3 0 205 4 0 200 200 0 244 51 0 207 0 214 0 523
adaptec4 0 188 1 0 179 29 0 222 12 0 186 0 194 0 469
adaptec5 0 271 11 0 260 748 0 334 248 0 270 0 305 9680 708
newblue1 0 94.5 5 314 94 1083 494 116 50 400 92.9 1348 102 1934 248
newblue2 0 136 1 0 129 9 0 167 7 0 135 0 140 0 380
newblue3 31634 182 36 45454 164 1513 31928 199 163 38958 172 32588 184 34236 443

TABLE VII
COMPARISON OF FASTROUTE3.0, AND ISPD08 GLOBAL ROUTING CONTEST RESULTS

FastRoute3.0 NTHU-R [16] NTUgr [16] FastRoute3.0c[16] BoxRouter [16] FGR [16]
name wlen cpu wlen cpu wlen cpu wlen cpu wlen cpu wlen cpu

OF (e5) (min) OF (e5) (min) OF (e5) (min) OF (e5) (min) OF (e5) (min) OF (e5) (min)
adaptec1 0 55.2 5 0 53.5 8 0 56.1 5 0 55.5 2 0 53.8 20 0 54.1 35
adaptec2 0 53.7 1 0 52.3 2 0 53.4 1 0 53.1 1 0 52.7 3 0 52.6 14
adaptec3 0 133 4 0 131 8 0 134 5 0 133 2 0 132 27 0 132 55
adaptec4 0 123 1 0 122 2 0 123 2 0 122 1 0 122 7 0 122 17
adaptec5 0 161 11 0 156 17 0 159 17 0 161 5 0 157 31 0 157 110
newblue1 0 48.2 5 0 46.5 5 6 50.3 1150 76 49 13 44 47 1241 8 46.8 1412
newblue2 0 76.3 1 0 75.7 1 0 77.4 1 0 76.2 1 0 75.9 2 0 75.8 4
newblue3 31634 110 36 31454 106 129 31106 180 809 31650 109 31 32404 109 1377 34850 106 1427
bigblue1 0 59.5 7 0 56.3 10 0 57.8 14 0 58.3 4 0 57 19 0 57.3 70
bigblue2 0 98.8 16 0 90.6 10 0 97.2 264 142 98.2 11 0 90.4 39 0 91.4 238
bigblue3 0 132 2 0 131 4 0 136 5 0 132 3 0 131 6 0 132 88
bigblue4 156 244 35 182 231 126 188 243 413 206 243 41 472 232 877 414 232 1425
newblue4 154 137 17 152 130 67 142 144 1118 226 136 10 200 129 1304 262 130 1420
newblue5 0 240 11 0 232 14 0 246 28 0 241 5 0 233 28 0 233 166
newblue6 0 186 10 0 177 14 0 186 16 0 187 4 0 180 30 0 180 103
newblue7 108 361 160 68 354 141 310 372 1446 588 359 190 208 351 1412 1458 350 1434

will try to apply it in earlier physical design stage to produce
routing friendly placement.
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