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ABSTRACT
In this paper, we present DeFer — a fast, high-quality and non-
stochastic fixed-outline floorplanning algorithm. DeFer generates a
non-slicing floorplan by compacting a slicing floorplan. To find a
good slicing floorplan, instead of searching through numerous slic-
ing trees by simulated annealing as in traditional approaches, DeFer
considers only one single slicing tree. However, we generalize the
notion of slicing tree based on the principle of Deferred Decision
Making (DDM). When two subfloorplans are combined at each node
of the generalized slicing tree, DeFer does not specify their orienta-
tions, the left-right/top-bottom order between them, and the slice line
direction. DeFer even does not specify the slicing tree structures for
small subfloorplans. In other words, we are deferring the decisions
on these factors, which are specified arbitrarily at an early step in
traditional approaches. Because of DDM, one slicing tree actually
corresponds to a huge number of slicing floorplan solutions, all of
which are efficiently kept in one single shape curve. With the final
shape curve, it is straightforward to choose a good floorplan fitting
into the fixed outline. Several techniques are also proposed to further
optimize the wirelength. Experimental results on benchmarks with
only hard blocks and with both hard and soft blocks show that DeFer
achieves the best success rate, the best wirelength and the best run-
time on average compared with other state-of-the-art floorplanners.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]: Layout

General Terms
Algorithms, Design, Performance

Keywords
Fixed Outline, Floorplanning, Deferred Decision Making

1. INTRODUCTION
Floorplanning has become a very crucial step in modern VLSI de-

signs. As the start of physical design flow, floorplanning not only de-
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termines the top-level spatial structure of a chip, but also initially op-
timizes the interconnections. Thus a good floorplan solution among
circuit modules definitely has a positive impact on the placement,
routing and even manufacturing. In the nanometer scale era, the ever-
increasing complexity of ICs promotes the prevalence of hierarchical
design. However, as pointed out by Kahng [1], classical outline-free
floorplanning [2] can not satisfy such requirements of modern de-
signs. In contrast, fixed-outline floorplanning enabling the hierarchi-
cal framework is preferred by modern ASIC designs. Nevertheless,
fixed-outline floorplanning has been shown to be much more diffi-
cult, compared with classical outline-free floorplanning, even with-
out considering the wirelength optimization [3].

1.1 Previous Work
Simulated annealing has been the most popular method of explor-

ing good solutions on the fixed-outline floorplanning problem. Using
sequence pairs representation, Adya et al. [4] modified the objective
function, and proposed a few new moves based on slacks computa-
tion to guide a better local search. In [5], Chen et al. adopted the
B*-tree [6] structure representing the geometric relationships among
modules, and performed a novel 3-stage cooling schedule to speed
up the annealing process. To improve the floorplanning scalabil-
ity, in [7] a multilevel partitioning step was performed beforehand
on the original circuit. Different from traditional multilevel frame-
works, a top-down uncoarsing followed by a bottom-up coarsening
approach were adopted. Most recently, by enumerating the positions
in sequence pairs during the searching process, Chen et al. [8] ap-
plied Insertion after Remove (IAR) to accelerate the original local
searching. As a result, both the runtime and success rate1 have been
enhanced dramatically. All of the above techniques are based on sim-
ulated annealing. Generally the authors tried various approaches to
improve the algorithm efficiency. However, one common drawback
is that these techniques become quite slow when the size of circuits
grows large, e.g., 100 modules. Additionally the annealing-based
techniques always have a hard time handling circuits with soft mod-
ules, because they need to search an extremely large solution space,
which takes a long time to finish.

Some researchers have adopted non-stochastic methods. Sassone
et al. [9] proposed a row-oriented block packing technique which
organizes the modules by rows based on their dimensions. How-
ever, the technique cannot handle soft modules. In [10], Zhan et
al. applied a quadratic analytical approach similar to those used for
placement problems. To generate a non-overlapping floorplan, the
quadratic approach relies on a legalization process. However, this
legalization is very difficult for circuits with big hard macros. Cong
et al. [11] presented an area-driven look-ahead floorplanner in a hi-

1The success rate is defined as the ratio of the number of runs resulting a layout within
fixed-die, to the total number of runs.
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erarchical framework. Two main techniques were used in their algo-
rithm: the row-oriented block packing (ROB) and zero-dead space
(ZDS). To handle both hard and soft modules, ROB was extended
from [9]. ZDS was used to pack soft modules. Nevertheless, ROB
may generate a layout with large whitespace when the module sizes
within a subfloorplan are quite different from each other, e.g., a de-
sign with big hard macros.

1.2 Our Contributions
This paper presents a fast, high-quality, and non-stochastic fixed-

outline floorplanner called DeFer. It can handle both hard and soft
modules. Experimental results show that, compared with other state-
of-the-art floorplanners, DeFer achieves the best success rate, the
best wirelength and the best runtime on average for benchmarks with
only hard blocks and with both hard and soft blocks.

DeFer generates a final non-slicing floorplan by compacting a slic-
ing floorplan. It has been proved in [12] that any compact non-
slicing floorplan can be generated by the compaction. In traditional
annealing-based approaches, obtaining a good slicing floorplan usu-
ally takes a long time. Because the algorithms have to search as
many slicing trees as possible, such that the “local minimum” can
be possibly avoided. By comparison, DeFer considers only one sin-
gle slicing tree. However, to guarantee that a large solution space is
explored, we generalize the notion of slicing tree based on the prin-
ciple of Deferred Decision Making (DDM). When two subfloorplans
are combined at each node of the generalized slicing tree, DeFer does
not specify their orientations, the left-right/top-bottom order between
them, and the slice line direction. For small subfloorplans, DeFer
even does not specify the slicing tree structures. In other words, we
are deferring the decisions on these four factors correspondingly: (1)
Subfloorplan Orientation; (2) Subfloorplan Order; (3) Slice Line Di-
rection; (4) Slicing Tree Structure. Note that traditional annealing-
based approaches specify these factors arbitrarily at an early step.
Because of DDM, one slicing tree actually represents a huge num-
ber of slicing floorplan solutions. Moreover, all of these solutions
are efficiently kept by only one single shape curve. With the final
shape curve, it is straightforward to choose a good slicing floorplan
fitting into the fixed outline. To realize the DDM idea, we propose
the following techniques:

• Generalized Slicing Tree — To defer the decisions on these
three factors: (1) Subfloorplan Orientation; (2) Subfloorplan
Order; (3) Slice Line Direction, we generalize the original slic-
ing tree [2]. In the generalized slicing tree, one tree node can
represent both orientations of its two child nodes, both orders
between them and both horizontal and vertical slice lines. In
order to carry out the according combination of such new slic-
ing trees, original shape curve [2] operations are extended to
curve flipping and curve merging. In this paper all slicing trees
and shape curve operations mean the generalized version by
default.

• Enumerative Packing — To defer the decision on the slicing
tree structure among a set of modules, we develop the Enumer-
ative Packing (EP) technique. It can enumerate all possible
slicing tree structures and build up one shape curve capturing
all slicing layouts among the modules. This computation could
be extremely expensive in terms of CPU time and memory us-
age. But using the technique of dynamic programming, EP
can be efficiently applied to up to 10 modules.

• Block Swapping and Mirroring — To make the decision on
the subfloorplan order (left-right or top-bottom), we propose
three techniques: Rough Swapping, Detailed Swapping, and
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Figure 1: Final shape curve with fixed outline and candidate points.

Mirroring. The motivation is to greedily optimize the wire-
length among the modules.

The rest of this paper is organized as follows. Section 2 describes
the overview of the algorithm. Section 3 introduces the generalized
slicing tree. Section 4 describes the Enumerative Packing technique.
Section 5 illustrates the Block Swapping and Mirroring. Experimen-
tal results are presented in Section 6. Finally, this paper ends with a
conclusion and the direction of future work.

2. OVERVIEW OF THE ALGORITHM
Essentially, DeFer has five steps. By initially deferring the deci-

sions in Steps 1 and 2, DeFer explores a huge collection of slicing
layouts, all of which are efficiently kept in one final shape curve at the
top; By finally making the decisions in Steps 3 and 4, DeFer chooses
good slicing layouts fitting into the fixed outline. The algorithm flow
is as follows.

1. Partitioning Step: As the number of modules in one design
becomes large, exploring all slicing layout solutions among
them is very expensive. Thus, the purpose of this step is to di-
vide one original circuit into several small subcircuits, and ini-
tially minimize the interconnections among them. hMetis [13],
the state-of-the-art hypergraph partitioner, is called to perform
a recursive bi-sectioning on the circuit, until every subcircuit
contains less than or equal to maxN modules (maxN = 10 by
default). During this process, a high-level slicing tree structure
is built up where each leaf node represents a subcircuit. Due
to the generalized notion of slicing tree, the whole slicing tree
not only sets up a hierarchical framework, but also represents
many possible packing solutions among the subcircuits.

2. Combining Step: In this step, we first defer the decision on
the slicing tree structure of each subcircuit, by applying the
Enumerative Packing technique to explore all slicing packing
layouts within the subcircuit. After that, an associated shape
curve representing these possible layouts for each subcircuit
is produced. Then, based on the hierarchical framework in
Step 1, DeFer traverses from bottom-up constructing a shape
curve for every tree node. The final shape curve at the top will
hold all explored slicing floorplan layouts of the whole circuit.

3. Back-tracing Step: Once the final shape curve is available,
it is fairly straightforward to choose the points fitting into the
fixed outline (see Fig. 1). However, we have three cases here.
Let m be the number of points enclosed into the fixed outline,
and to make a trade-off between runtime and solution qual-
ity, DeFer chooses K points at most (K = 11 by default).
(1) If m > K, based on the geometric observation between
aspect ratio and wirelength in [8], only K points are chosen
such that the aspect ratio is nearest to 1; (2) If 0 < m ≤ K,
all m points are chosen; (3) If m = 0, DeFer still chooses
at most K points near the upper-right corner of the fixed out-
line (see Fig. 1 (b)), in that we will try to compact them into
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the fixed outline in Step 5. For each of the points we choose, a
back-tracing process is applied. Since every point in the parent
curve is generated by adding two points from two child curves,
the back-tracing can be propagated from the top to the bottom
level. During this process, the decisions on every subfloor-
plan orientation, slice line direction and slicing tree structure
of each subcircuit are also made.

4. Swapping Step: The fourth step is to make decisions on the
subfloorplan order. As pointed out in [11], in slicing struc-
tures switching the left-right or top-bottom order of two child
subfloorplans would not change the dimension of their par-
ent floorplan outline, but it may actually improve the intercon-
nections. Different from the previous work, we execute three
rounds of various wirelength refinement processes through the
hierarchical framework. In the first round, we apply Rough
Swapping technique from top-down, followed by a second round
with Detailed Swapping. Finally, Mirroring is applied to fur-
ther improve the wirelength and fix the order between every
pair of child subfloorplans.

5. Compacting Step: After fixing the slicing floorplan structure,
the last step is that of compacting all modules to the center of
the fixed outline. The compaction can put modules nearer to
each other, such that the wirelength is further reduced. The
candidate floorplan with the best wirelength is the final out-
put solution. If previous floorplan is outside of the fixed out-
line, instead of compacting modules to the center, DeFer com-
pacts them to the lower-left corner, so that potentially there is
a higher chance to find a valid layout within the fixed outline.
If it still fails, then DeFer would restart from Step 1, and try
another run. By default DeFer attempts 5 runs at most.

The main techniques are discussed in detail in Sections 3-5.

3. GENERALIZED SLICING TREE
In this section, we introduce the generalized slicing tree, which

enables the deferred decisions on the first three factors.
In an ordinary slicing tree, the parent tree node of two child sub-

floorplans A and B can be labeled ‘H’ (‘V’) to specify that A and
B are separated by a horizontal (vertical) slice line. In addition, the
order between the two child nodes in the slicing tree specifies the
top-bottom (left-right) order of A and B in the layout. For exam-
ple, if A is on the left of B, then in the ordinary slicing tree, the left
child is A, the right child is B, and the parent node is labeled ‘V’.
However, if we want to switch to other layouts between A and B,
then the previous slicing tree has to be changed as well. Considering
the huge amount of layout possibilities, the constraint of the ordinary
representation becomes obvious.

Here we introduce a new operator — ‘⊕’ to incorporate both ‘H’
and ‘V’ slice line directions. Additionally we do not differentiate the
‘top-bottom’ or ‘left-right’ order between the two child subfloorplans
any more, which means even though we put A at the left child, it can
be switched to the right later on. In [14], only the orientation for
each module has been generalized. Here, we even do not specify the
orientation for each subfloorplan. As a result, the decisions on Sub-
floorplan Orientation, Subfloorplan Order and Slice Line Direction
are deferred. Now each parent node in the slicing tree represents all
sixteen slicing layouts between two child subfloorplans (see Fig. 2).

Since the slicing tree is only a structural representation of different
layouts between two subfloorplans, to actualize the combination we
use the corresponding shape curve operations, and each subfloorplan
layout property is captured by its associated shape curve. In order
to derive such compatible operations for the new operator —‘⊕’, we
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Figure 2: Generalized slicing tree and sixteen different layouts.
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Figure 3: Extended shape curve operations.

develop three steps to combine two child curves A and B into one
parent curve C (see Fig. 3).

1. Addition: Firstly, we add two curves A and B horizontally to
get curve Ch, on which each point corresponds to a horizontal
combination of two subfloorplan layouts from A and B.

2. Flipping: Next, we flip curve Ch symmetrically based on the
W = H line to derive curve Cv . The purpose of doing this is
to generate the curve that contains the corresponding vertical
combination cases from the two subfloorplan layouts.

3. Merging: The final step is to merge Ch and Cv into the parent
curve C. In the merging, for a given height, the point with a
smaller width out of Ch and Cv will be taken (see Fig. 3 (c)).

As a result, we have derived three shape curve operations which
correspond to the ‘⊕’ operation in the associated slicing tree combi-
nation. Now given two child shape curves corresponding to two child
subfloorplans in the slicing tree, the new operations can be applied to
combine these two curves into one parent curve, in which the entire
slicing layouts between the two subfloorplans are captured.

Sometimes it is not necessary to hold a huge number of points
on the curve, especially at the later stage. Considering the trade-off
between runtime and solution quality, in the current implementation
DeFer keeps at most 1000 points for each shape curve. This pruning
strategy makes our algorithm even faster. In spite of this, however,
DeFer still reaches the highest success rate among all floorplanners.

4. ENUMERATIVE PACKING
In order to defer the decision on the slicing tree structure, we pro-

pose the Enumerative Packing (EP) technique that can efficiently
enumerate all possible slicing structures among a set of modules,
and finally keep all slicing layouts into one shape curve.

4.1 A Naive Approach of Enumeration
In this subsection, we plot out a naive way to enumerate all slicing

packing solutions among n modules. We first enumerate all slicing
tree structures and then enumerate all permutations of the modules.
The complete slicing tree structures for 3 to 6 modules are listed in
Figure 4. Note that we are using the generalized slicing tree which
does not differentiate the left-right order between two child subtrees.
From Figure 4, we notice that the number of different slicing tree
structures is actually very limited.

To completely explore all slicing packing solutions among n mod-
ules, for each slicing tree structure, different permutations of the
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Figure 4: List of different slicing tree structures.

modules should also be considered. For example in Figure 4, in
tree T4a four modules A, B, C and D can be mapped to leaves
“1−2−3−4” by the order “A−B−C−D” or “A−C−B−D”.
Obviously these two orders derive two different layouts. However,
again because the generalized slicing tree does not differentiate the
left-right order between two child subtrees which share the same par-
ent node, for example, orders “A−B−C−D” and “B−A−C−D”
are exactly the same in T4a. After pruning such redundancy, we have
4!
2

= 12 non-redundant permutations for mapping four modules to
the four leaves in T4a. Therefore, for each slicing tree structure of
n modules, we first enumerate all non-redundant permutations, for
each one of which a shape curve is produced, and then merge these
curves into one curve associated with each slicing tree structure. Fi-
nally, these curves from all slicing tree structures are merged into
one curve that captures all possible slicing layouts among these n
modules. To show the amount of computations in this process, we
list the number of ‘⊕’ operations for different numbers of modules
in the second column of Table 1.

4.2 Enumeration by Dynamic Programming
Table 1 shows that the naive approach can be extremely expensive

in both runtime and memory usage. Alternatively, we notice that the
shape curve for a set of modules (M) can be defined recursively by
Equation 1 below.

S(M) = MERGE
A⊂M,B=M−A

(S(A) ⊕ S(B)) (1)

S(M) is a shape curve capturing all slicing layouts among mod-
ules in M , MERGE() is similar to the Merging in Figure 3 (c), but
operates on shape curves from different sets. Based on Equation 1,
we can use Dynamical Programming (DP) to implement the shape
curve generation. First of all, we generate the shape curve represent-
ing the outline(s) of each module. For hard modules, there are two
points2 in each curve. For soft modules, only several points from
each original curve are sampled. And then starting from the smallest
subset of modules, we proceed to build up the shape curves for the
larger subsets step by step, until the shape curve S(M) is generated.
Since in this process the previously generated curves can be reused
for building up the curves of larger subsets of modules, many redun-
dant computations are eliminated. After applying DP, the resulted
numbers of ‘⊕’ operations are listed in the third column of Table 1.

4.3 Impact of EP on Packing
To control the quality of packing in EP, we can adjust the number

of modules in the set. Consequently the impact on packing is: the
more modules a set contains, the more different slicing tree structures
we explore, the more slicing layout possibilities we have, and thus the
better quality of packing we will gain at the top level.

2One point if the hard module is a square.

n # of ⊕ # of ⊕
by naive approach with DP

2 1 1
3 6 6
4 45 25
5 400 90
6 4,155 301
7 49,686 966
8 674,877 3,025
9 10,295,316 9,330
10 174,729,015 28,501

Table 1: Comparison on # of ‘⊕’ operation.
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Figure 5: Illustration of high-level EP.

However, if the set contains too many modules, two problems ap-
pear in EP: 1) The memory to store results from previous sets can be
expensive; 2) Since the interconnections among the modules are not
considered, the wirelength may be increased. Due to these two con-
cerns, in the first step of DeFer, we apply hMetis to recursively cut
the original circuit into a bunch of smaller subcircuits. This process
not only helps us to cut down the number of modules in each subcir-
cuit, but initially optimizes the wirelength as well. Later on as ap-
plying EP within each subcircuit, the wirelength would not become a
big concern, because this is only a locally packing exploration among
a small number of modules. In other words, in the spirit of DDM, in-
stead of deferring the decision on the slicing tree structure among all
modules in the circuit, first we fix the high-level slicing tree structure
among the subcircuits by partitioning, and then defer the decision on
the slicing tree structure among the modules within each subcircuit.

4.4 Extension of EP at High-Level
In the modern SoCs design, the usage of Intellectual Property (IP)

becomes more and more popular, which makes a circuit usually con-
tain numbers of big hard macros. Due to the large size differences
from other small or medium modules, they may produce some large
deadspaces. For example in Figure 5 (a), after the partitioning step,
an original circuit has been cut into four subcircuits A, B, C and
D. Subcircuit A contains a big hard macro. Respecting the slicing
tree structure of T4b, you may find that no matter how hard EP ex-
plores various packing layouts within subcircuits A or B, there is
always a large deadspace, such as Q, in the parent subfloorplan. This
is because the high-level slicing tree structure among subcircuits has
been fixed by partitioning, so that some small subcircuit is forced to
combine with some large subcircuit. Thus, to solve this problem, we
need to explore other slicing tree structures among the subcircuits.

To do so, in addition to applying EP on a set of modules, we use
it on a set of subfloorplans. In Figure 5 (b), EP is applied on the
four shape curves coming from subfloorplans A, B, C and D, re-
spectively. Hence, all slicing tree structures (T4a and T4b) and per-
mutations among these subfloorplans can be completely explored.
Eventually one tightly-packed slicing layout can be chosen during
the back-tracing step (see Fig. 5 (c)). For the current implementation,
in the high-level slicing tree if the total area of big hard macros in
one subfloorplan is more than 55% of this subfloorplan area, DeFer
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would apply EP to further explore the various slicing tree structures
of that subfloorplan.

5. BLOCK SWAPPING AND MIRRORING
After the back-tracing step, the decision on subfloorplan order

(left-right or top-bottom) has not been made yet. Making use of this
property, this section focuses on optimizing the wirelength.

Basically, we develop three techniques here: (1) Rough Swap-
ping; (2) Detailed Swapping; (3) Mirroring. Each of them is trying
to switch the positions of two subfloorplans to improve the Half-
Perimeter Wirelength (HPWL). Figure 6 illustrates the differences
between Swapping and Mirroring. In Mirroring, instead of simply
swapping two subfloorplans, we first figure out the symmetrical axis
of the outline at their parent floorplan, and then attempt to mirror
them based on this axis. When calculating the HPWL, in Rough
Swapping we treat all internal modules to be at the center of their
subfloorplan outline. In contrast, in Detailed Swapping we use the
actual center coordinates of each module in calculating the HPWL.

Now we want to address the importance of Rough Swapping. For
example in Figure 7, when we try to swap two subfloorplans A and
B, two types of nets need to be considered: internal nets neti be-
tween A and B, and external nets neto between the modules inside
A or B and other outside modules or fixed pads. Let C and D be two
modules inside A and B, respectively. Modules C and D are highly
connected by netcd. After the back-tracing step, the coordinates of
C and D are still unknown. If we randomly specify the positions
of C and D as shown in Figure 7 (a), then we may swap A and B
to gain better wirelength. Alternatively, if C and D are specified in
the positions in Figure 7 (b), then we may not swap them. As we
can see, the randomly specified module position may mislead us to
make the wrong decision. To avoid such “noise” generated by neti

in the swapping process, the best thing to do is to assume C, D and
all modules inside subfloorplans A and B are at the centers of A and
B, such that the right decision can be made based on neto.

Essentially, we first apply Rough Swapping to the floorplan from
top-down, followed by a second round with Detailed Swapping. Fi-
nally, Mirroring is applied to further optimize the wirelength.

6. EXPERIMENTAL RESULTS
In this section, we present the experimental results. We com-

pare DeFer with all the best publicly available state-of-the-art fixed-
outline floorplanners. All experiments were performed on a Linux
machine with Intel Core Duo3 1.86 GHz CPU and 2GB memory. The

3In the experiments, only one core was used.

wirelength is calculated using HPWL. For each circuit, we choose 3
different fixed-outline aspect ratios: 1, 2 and 3 with the same maxi-
mum percentage of white space γ = 10%. Every floorplanner runs
100 times for each test case, and the results are averaged over all
successful runs. Note that because PATOMA has fixed the seed of
hMetis internally, and produces the same result no matter how many
times it runs for the same test case, we run it only once. For IMF and
DeFer, this seed is the same as the index of each run. For each type
of benchmark, we finally normalize all results to DeFer’s results.

The first set of experiment performs on GSRC Hard-Block Bench-
marks [15] with 100, 200 and 300 hard modules. DeFer compares
with four floorplanners: Parquet 4.5 [4], IMF [7], IARFP [8] and
PATOMA [11]. All I/O pads are scaled to the boundary. Parquet 4.5
runs in wirelength minimization mode, and the parameters for other
floorplanners are defaulted. The results are summarized in Table 2.
For every test case DeFer reaches a 100% success rate. At the same
time, DeFer generates 39%, 16% and 17% better wirelength in 99×,
87× and 16× faster runtime than Parquet 4.5, IMF and IARFP, re-
spectively. From the authors of [8], we also get a second version of
IARFP in which the parameters are tuned specifically to individual
circuits. For this version, the average success rate is close to 100%,
but the total runtime and wirelength are typically worse than the first
version. Compared with PATOMA, DeFer is 1.8× slower. However,
considering the total runtime is so short and DeFer achieves 2.25×
higher success rate with even 45% better wirelength, this slowdown
is acceptable.

Second, we compare DeFer with PATOMA on the HB Benchmarks
[16]. These circuits are generated from the IBM/ISPD98 suite con-
taining both hard and soft modules ranging from 500 to 2000, some
of which are big hard macros. Detailed statistics are listed in the sec-
ond column of Table 3. The positions of I/O pads are the same as
what the benchmark specifies. From Table 3, we can see that DeFer
does not achieve 100% success rate for only three test cases, and the
success rate is 2.22× higher than PATOMA. In terms of the wire-
length, DeFer is also 26% better on average, while 3.85× faster than
PATOMA. We also run Parquet 4.5 on this benchmark. However, it
is so slow that even running one test case once takes thousands of
seconds. So for each test case, we only run it once instead of 100
times, but none of the results fit into the fixed outline. This suite of
benchmarks is considered to be extremely hard to handle, because
it not only contains both hard and soft modules, but also big hard
macros. As far as we know, only the above three floorplanners can
handle soft modules. Obviously, DeFer reaches the best results.

7. CONCLUSION
As the earliest stage of VLSI physical design, floorplanning has

numerous impacts on the final performance of ICs. In this work, we
have proposed a fast, high-quality and non-stochastic fixed-outline
floorplanner DeFer. Based on the principle of Deferred Decision
Making, DeFer over-performs all other state-of-the-art floorplanners
in every aspect. Such a high-quality and efficient floorplanner is ex-
pected to handle the increasing complexity of modern ASIC designs.
In the future, we will further improve the algorithm quality by refin-
ing the pruning and high-level EP strategies. We are also considering
integrating DeFer into placement tools to handle large-scale mixed-
size designs.
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Circuit Aspect Parquet 4.5 [4] IMF [7] IARFP [8] PATOMA [11] DeFer
Ratio Suc% HPWL Time(s) Suc% HPWL Time(s) Suc% HPWL Time(s) Suc% HPWL Time(s) Suc% HPWL Time(s)

1 36% 251552 10.10 100% 250680 7.62 100% 219644 3.98 0% — — 100% 208134 0.26
n100 2 37% 300782 10.45 100% 275867 9.83 97% 273423 4.24 0% — — 100% 228001 0.26

3 23% 352371 11.09 100% 303861 11.23 91% 339150 4.50 0% — — 100% 249813 0.26
1 30% 469482 42.40 100% 438467 41.17 97% 393508 6.86 0% — — 100% 377126 0.42

n200 2 19% 556552 42.01 98% 457053 43.96 71% 464706 7.26 100% 550060 0.22 100% 405436 0.39
3 12% 647905 49.91 99% 489045 46.87 28% 562239 7.52 0% — — 100% 435186 0.40
1 25% 683770 96.08 100% 584578 74.34 71% 549530 8.49 100% 653711 0.35 100% 501348 0.62

n300 2 14% 797195 91.04 100% 604471 68.35 10% 636372 8.96 100% 796725 0.32 100% 537460 0.61
3 13% 942869 79.69 100% 638384 70.15 0% — — 100% 949580 0.34 100% 578879 0.60

Norm 0.232 1.39 98.99 0.997 1.16 87.35 0.628 1.17 16.40 0.444 1.45 0.55 1 1 1

Table 2: Comparison with other floorplanners on GSRC Hard-Block Benchmarks.

Cir #S./#H. A.R. PATOMA DeFer
ibm /#N. Suc% WL(e6 ) Time(s) Suc% WL(e6 ) Time(s)

665 1 100% 2.60 8.52 100% 2.69 1.52
01 /246 2 0% — — 100% 2.78 1.53

/4236 3 100% 5.60 1.79 100% 2.85 1.51
1200 1 0% — — 100% 6.22 5.25

02 /271 2 0% — — 97% 6.59 7.17
/7652 3 0% — — 100% 6.39 4.73
999 1 100% 12.83 5.83 100% 8.86 3.40

03 /290 2 100% 12.77 4.88 100% 8.68 3.43
/7956 3 0% — — 100% 8.88 3.43
1289 1 0% — — 100% 9.22 4.14

04 /295 2 0% — — 86% 9.41 8.45
/10055 3 0% — — 100% 9.49 3.90

564 1 100% 12.49 14.00 100% 12.82 2.93
05 /0 2 100% 12.97 13.45 100% 12.94 2.93

/7887 3 100% 13.48 13.17 100% 13.62 2.93
571 1 0% — — 100% 7.80 3.07

06 /178 2 0% — — 100% 7.69 2.96
/7211 3 0% — — 100% 7.89 3.07
829 1 0% — — 100% 14.37 5.38

07 /291 2 100% 25.09 7.77 100% 14.51 4.92
/11109 3 100% 24.68 7.33 100% 14.94 4.64

968 1 0% — — 100% 14.24 6.39
08 /301 2 0% — — 100% 14.22 6.27

/11536 3 0% — — 100% 14.44 6.39
860 1 0% — — 100% 13.14 4.72

09 /253 2 0% — — 100% 13.12 4.73
/11008 3 100% 12.58 19.6 100% 13.33 4.74

809 1 100% 48.35 17.44 100% 34.34 5.51
10 /786 2 0% — — 100% 33.80 5.68

/16334 3 0% — — 100% 35.29 5.39
1124 1 100% 20.46 31.44 100% 22.44 7.42

11 /373 2 0% — — 100% 22.60 7.42
/16985 3 0% — — 100% 23.04 7.43

582 1 0% — — 100% 30.72 3.42
12 /651 2 0% — — 54% 32.60 10.38

/11873 3 0% — — 100% 31.74 2.65
530 1 0% — — 100% 26.86 5.43

13 /424 2 100% 43.63 10.05 100% 26.93 5.18
/14202 3 0% — — 100% 27.41 5.18
1021 1 100% 78.82 38.42 100% 51.87 8.46

14 /614 2 100% 58.57 36.94 100% 52.42 8.45
/26675 3 100% 63.48 33.22 100% 54.13 8.45
1019 1 0% — — 100% 64.39 10.22

15 /393 2 0% — — 100% 63.98 10.23
/28270 3 0% — — 100% 65.18 10.21

633 1 0% — — 100% 55.98 6.16
16 /458 2 100% 88.57 15.57 100% 57.43 6.66

/21013 3 100% 97.47 21.97 100% 58.05 6.23
682 1 100% 99.38 43.90 100% 96.63 8.90

17 /760 2 100% 94.26 55.32 100% 96.91 8.90
/30556 3 100% 101.23 50.79 100% 99.33 8.90

658 1 100% 53.78 33.00 100% 49.46 6.73
18 /285 2 100% 49.04 39.10 100% 49.54 6.73

/21191 3 100% 51.86 39.09 100% 51.25 6.73
Norm 0.450 1.26 3.85 1 1 1

Table 3: Comparison with PATOMA on HB Benchmarks.
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