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Abstract— In this paper, we present FastPlace 3.0 — an effi-
cient and scalable multilevel quadratic placement algorihm for
large-scale mixed-size designs. The main contributions ajur
work are: (1) A multilevel global placement framework, by incor-
porating a two-level clustering scheme within the flat analsical
placer FastPlace [27, 28]. (2) An efficient and improved lterative
Local Refinement technique that can handle placement bloclges
and placement congestion constraints. (3) A congestion avea
standard-cell legalization technique in the presence of bktkages.
On the ISPD-2005 placement benchmarks [19], our algorithm
is 5.12x, 11.52x and 16.92x faster than mPL6, Capol0.2 and
APlace2.0 respectively. In terms of wirelength, we are on average,
2% higher as compared tomPL6 and 9% and 3% better as com-
pared to Capol0.2 and APlace2.0 respectively. We also achieve
competitive results compared to a number of academic placer
on the placement congestion constrained ISPD-2006 placente
benchmarks [20].

|I. INTRODUCTION

placement algorithms with speciftarget_density values. To
determine the placement density, a pre-defined bin streigsur
imposed over the placement region. Tdeesity of a bin is then
defined as the ratio of the total area of the movable objects to
the total available free-space within the bin. Taeget_density
basically specifies the maximum possible occupation for any
bin in the placement region. Satisfying tteeget_density con-
straint means that thagensity of all the bins in the placement
region should be less than or equal to thrget_density value.
The purpose of théarget_density is to allow for more room
within a bin for the subsequent routing step. It also creates
space to perform subsequent timing optimization transorm
like buffer insertion, gate-sizing etc.

In this paper we address the two issues of scalability and
placement congestion. We presé€astPlace 3.0 - an efficient
multilevel quadratic placement algorithm with placemert-c
gestion control for large-scale mixed-size designs. Thaama
contributions of our work are:

e Incorporating a multilevel framework within the global

In recent years, it has become common to interleave place-
ment with logic synthesis and timing-optimization transfs
to create a physical synthesis design flow. As a result, place
ment needs to be run repeatedly during the early designsstage
In addition, circuits today often contain over a million ebjs
that need to be placed. Hence, it is necessary to have efficiene
and scalable placement algorithms that produce goodtguali
results satisfying various design objectives includingges-
tion, routability and timing.

Existing placement algorithms employ various approaches
includingsimulated annealing [24, 25],partitioning [1, 2, 7,29]
andanalytical placement [4,9-11,16,17,21,27,28]. Analytical
placement algorithms based on the quadratic objectivédiunt o
(also called quadratic placers) are very popular as theguite
efficient and also give good quality of results. They tydical
employ a flat placement methodology [9-11,17,27,28] so as to
maintain a global view of the placement problem.

But, with circuit sizes steadily increasing towards tens of

placement stage of the flat quadratic plaéastPlace
[27,28]. This is done by employing two levels of cluster-
ing: an intial netlist based fine-grain clustering followed
by a netlist and location based coarse-grain clustering.

An improved Iterative Local Refinement Technique to re-
duce the wirelength based on the half-perimeter measure.
This technique is very effective in simultaneously reduc-
ing the wirelength while spreading the objects around the
placement region. It can also effectively handle placement
blockages and placement congestion constraints.

A density-aware standard-cell legalization technique.
This technique operates on the segments created in the
placement region due to the presence of blockages. It sat-
isfies segment capacities and congestion constraints and
legalizes the standard-cells within the segments.

millions of objects, a flat placement methodology may not be g yegt of this paper is organized as follows: Section Il

effective in handling the large problem size. Hence, fotdyet
scalability and solution quality, a hierarchical placemap-
proach is beneficial. To this effect many modern placersv¥oll
a hierarchical or multilevel approach [3, 4,13, 15,21, 26].

gives an overview of the multilevel global placement frame-
work and an outline of our algorithm. Section Il describes
the two-level clustering scheme used during global placeme

Section IV describes the improved Iterative Local Refinetmen

An essential constraint that needs to be handled by currqgtnnigue and its use in placement congestion controlicect
placers is that of placement congestion. Designers often 1y gescribes the density aware legalization and detailecepla

*This work was partially supported bg the Semiconductor ReteCorpo-
ration under Task ID 1206 and NSF under grant CCF-0540998.

ment techniques. Experimental results are provided ini@ect
VI followed by the conclusions in Section VII.



II. OVERVIEW OF THEALGORITHM

Stage 1: Global Placement
Level 1: Initial Placement

Our mult”evel placement _frameV\_lork iS Summarized in Flg 1. Construct fine-grain clusters using netlist based clustering
1 and follows the classical hierarchical flow that has beemdus 2. Solve initial quadratic program
. .. . 3. Repeat
In many eXIStlng placement algorlthms [3’ 4' 6’ 13’ 15’ 21] a. Perform regular Iterative Local Refinement on fine-grain clusters
4. Until the placement is roughly even

Level 2: Coarse Global Placement
flat Netlist . . " . .
5. Construct coarse-grain clusters using netlist and physical based clustering

6. Repeat
Preliminary Placement of Un-cluster a. Solve the convex quadratic program
Fine-grain Clusters e . "
b. Perform cell-shifting on coarse-grain clusters and add spreading forces

Placement Refinement of 7. Until the placement is roughly even
Fine-grain Clusters
- - 8. Repeat
Netlist and Physical based . . " .
Coarse-grain Clustering a. Perform density-based lterative Local Refinement on coarse-grain clusters
Un-cluster

b. Perform regular Iterative Local Refinement on coarse-grain clusters
c. Perform cell-shifting on coarse-grain clusters

Global Placement of 9. Until the placement is quite even
Coarse-grain Clusters
Level 3: Refinement of fine-grain clusters

Fig. 1. Multilevel Global Placement Framework. 10. Un-cluster coarse-grain clusters
11. Perform density-based Iterative Local Refinement on fine-grain clusters

In Step 1 of the multilevel flow, we create fine-grain clusters 12. Perform regular Iterative Local Refinement on fine-grain clusters
of about 2-3 objects per cluster based on the connectiviy-in Level 4: Refinement of flat netlist
mation Of the Original ﬂat netIiSt' In Step 2 we perform a faSt 3 gle];g‘::zreir;iﬁL?Zeijluli?;five Local Refinement on flat netlist
initial placement of the fine-grain clusters. In Step 3 waatge 15. Perform regular Iterative Local Refinement on flat netlist
coarse-grain clusters by performing a second level of etust | Stage 2: Legalization _ _ _ _

. . . s . 16. Legalize and fix movable macro-blocks using Iterative Clustering Algorithm
Ing. This Step considers the COﬂneCtIVIty information e 17. Move standard-cells among segments to satisfy segment capacities

the clusters and their physical locations as obtained fitwen t 18. Legalize standard-cells within segments

initial placement. This creates a good-quality clustesppy- | 5129° % Petailed Placement

tion for the subsequent global placement step. In Step 4 wg. 2. Outline of Our Placement Flow.

perform global placement on the coarse-grain clusterdishet

until the clusters are evenly distributed over the placegmen formation for the next clustering level. Since each clugter
gion. We then perform a series of un-clustering and placémethe first level has only around 2-3 objects, the initial ptaeat
refinements in Steps 5 and 6, finally yielding a global placesf the clusters closely resembles an initial placementefltt
ment solution of the original flat netlist. netlist. We then create coarse-grain clusters by perfagrain

The entire flow of our placement algorithm is summarized isecond level of clustering. In this level, we consider bdttle,

Fig. 2. It consists of three stages: (a) global placememigusi connectivity information between the clusters and theirgph

a multilevel framework, (b) legalization of macro blocksngs cal locations as obtained from the initial placement. Weéebel

the Iterative Clustering Algorithm of [28] followed by a dgty  that generating coarse-grain clusters based on actu@mtaa
aware standard-cell legalization scheme and (c) an efeedd-  information, is better than generating them by a solelyistetl
tailed placement algorithm [22]. The individual comporsasit  based approach. Also, such an approach would further mini-
the flow are described in more detail in the subsequent sexctiomize any loss in (or even improve) the final wirelength.

The key difference between our clustering scheme and the
ones followed in [3,5, 15, 21] is that we use actual placement
information while forming coarse-grain clusters, wherdes

Circuit clustering is an attractive method to reduce theg@la other approaches generate coarse-grain clusters solsddba
ment problem size for large- scale VLSI designs. If clusigri on netlist information. Our approach closely resembles tha
is performed in a careful manner, it can also yield betteewir of [13]. The difference being that [13] uses two-levels dlise
length along with faster runtime as compared to flat placémehased clustering followed by physical clustering, whenas
approaches. In our multilevel framework we use clustenng ionly use one level of fine-grain netlist based clustering.
apersistent context as defined in [21]. As in, we use clustering For both levels of clustering, we use tBest-Choice clus-
at the beginning of placement to pre-process the flat netlist tering algorithm described in [21]. In Fig. 3 we summarize th
as to reduce the placement problem size. modified version of théest-Choice clustering algorithm us-

In our multilevel framework, we follow a two-level cluster- ing Lazy-Update speed-up technique to consider our twetlev
ing scheme as shown in Fig. 1. In the first level of clusteringlustering scheme. From Fig. 3 there are four key parameters
we create fine-grain clusters of about 2-3 objects per alustavithin our clustering scheme:

This clustering is solely based on the connectivity infotiora e clustering_ratio: Ratio of the number of objects before

Netlist based Fine-grain Clustering

Ill. CLUSTERING FORPLACEMENT

between the objects in the original flat netlist. Since this-c and after clustering.

tering is performed before any placement, we restrict itrte-fi e 5(j,k): The netlist based clustering score between two
grain clustering to minimize any loss in placement qualifg d objects;j andk.

to incorrect clustering. In fact, it was demonstrated in] fh2t e max_cluster_area: The upper-bound on the cluster area.
building fine-grain clusters can improve placement efficien e distance_threshold: The distance threshold used for the
with negligible loss in placement quality. physical clustering.

We then perform a fast, initial placement of the fine-grainwithin our clustering scheme, for each level of clustering w
clusters. The purpose of this step is to get some placement irse aclustering_ratio of 2 resulting in a4x reduction in



Algorithm Clustering

“contour” matrix

Phase 1: Construct Initial Priority-queue (PQ)
For each object j
1. Find closest object k and clustering score s, k)
2. Insert triple (j, k, s) into PQ with s as the key

Phase 2: Form Clusters
while (number_of_objects > target_number_of_objects)
1. Pick top triple (j, k, s) from PQ
2. if j is marked invalid
3. Re-calculate closest object k' and clustering score s/(j, k')
4. Insert triple (j, k', s) into PQ
5. else
6. if fine-grain clustering
7. if (a(j) + a(k) < max_cluster_size) cluster j and k into new object j’
8. if netlist + physical clustering
9. Calculate d(j, k) the distance between j and k
10. if (d(j, k) < distance_threshold anda(j) + a(k) < max_cluster_size)
cluster j and k into new object j* . . L
11. Update netlist based on the clustering Fig. 4. Initial Contour Map Depicting Placement Blockages.
12. For object j' find closest object k' and clustering score s'(j', k')
13. Insert triple (", k', ) into PQ with s'as the key During one iteration the above steps are followed for all the
14. Mark neighbours of j’ as invalid . . . L
cells in the placement region. It is then repeated untilghgr
no significant improvement in the wirelength. For the firgtdo

of ILR, the width and height of the bins are setis that of

the number of objects in the final coarse-grain netlist. Fer t the bin used during Cell Shifting. The bin dimensions arethe

netlist based clustering score between objgasdk we use: ~ gradually brought down to the values used during Cell Stgfti
over subsequent iterations of the global placement.

Fig. 3. Best-Choice Clustering Algorithm with Placement Inforioat

(k) = SLENL
aj + ag i
. . ) B. Enhancements to the ILR Technique

where N is the set of nets connecting the two objects and

w, = 1/k wherek is the degree of net. To strictly con- A major drawback with the ILR is that every bin in the place-
trol the area of the clusters, we set thax_cluster_areato 5x  mentregion, irrespective of if it being sparse or densd haive
average_cluster_area. This results in the formation of balancedthe same weight for the utilization component. This does not

clusters. Finally, we experimentally set thistance_threshold ~ accurately reflect the placement density. A sparse bin shoul
to 10% of the maximum chip dimension. have a lesser utilization weight so that more cells can beathov

into it, whereas, the weight for a dense bin should be higher t

enable movement of cells out of this bin. In the enhanced ver-
IV. CONGESTIONAWARE ITERATIVE LOCAL REFINEMENT  gjon of |LR each bin has its associated utilization weight ta
onstantly updated based on the placement distribution.

Another extension to the ILR is in handling placement block-

ages. ASIC circuits contain many placement blockages in the
cells over the placement region. We separate the ILR teuleniqform of flxe_d MAcros. Quadrqtlc placers often place_ a lot of

movable objects on top of the fixed macros. These objects have

into two components: a density-based IHRLR and the reg- b doutof the fixed . fracti ith
ular ILR r-ILR. The core algorithm is the same within both the0 D€ Movedout ot the fixed macros ih an effective mannerwi
nimal increase in the wirelength. To handle fixed macros

components and hence we only describe it in the context of ttgé' . | i truct " fthe place
r-ILR. We first give an overview of the ILR technique of [27], uring placement, we construct a contour map ottne placemen

followed by the enhancements. We then describe the top le &gron- Based on the_ﬁxed macros, each _b|n n _the contour map
flow for ILR based placement congestion control. as a value of eitherin case it overlaps with a fixed macro or

0 otherwise. The initial contour map for one of the placement

o ] benchmarks is shown in Fig. 4. We then us¥>a 3 Laplacian

A. Description of the Technique matrix as a smoothing filter and run it for a specified number of
During ILR the placement region is binned and the utilizaltérations on the entire map. This removes the sharp edges in

tion of all the bins is determined, following which, the resp  th€ original contour map creating a smoothed version asshow

tive source bins of all the cells is determined. For every cell? Fig. 5. This smoothing is basically done so that cells can

presentin a bing scores are computed that correspond to mo\Rasily move over apd cross a fixed macro if required or slide

ing it to thes neighboring bins. For calculating the score, it is/own the slope for it to be moved out of the macro.

assumed that a cell is moving from its current position in a Based on the above enhancements, foridelbin m, if:

source bin to the same relative position in therget bin. The e «: Weight for the wirelength component.

score for ea_ch move_is a weighted sum of two components: (a), B,: Weight of the utilization component for bin.

the half-perimeter wirelength reduction for the move angd (b ) o )

a function of the utilization of the source and target biner F~ * Bn: Weight of the utilization component for bin

each cell and bin, a fixed weight is used to compute the score.e ~: Weight for the contour component.

The cellis then moved to the bin with the highest positivesco o ;(m): Half-perimeter wirelength wheiis in binm

The Iterative Local Refinement (ILR) technique is a ke);
component of our placement flow. It is highly effective in min
imizing the wirelength while simultaneously distributitige



“contour” matrix
08 - density ILR
0.6 Bin structure

regular ILR
50 Bin structure’

Fig. 5. Contour Map after Smoothing Transform. Fig. 6. Bin Structure for lterative Local Refinement.
e wl;(n): Half-perimeter wirelength whedis in binn B. Density Aware Selective Bin-based Cell Legalization
e U(m): Utilization function for binm o : ) .
0 it ncion o e s ok geaton, et et postons
e C(m): Contour height of binn P g d pS.

Each row in the placement region is then fragmented into seg-
ments based on the overlap of the row with the placement
blockages. The aim of the density aware standard-cellilegal
si(m,n) = is to satisfy segment capacities as well as placement ctioges
constraints and legalize the standard-cells within thenssts.
a(wli(m)—wl;(n))+(BmU(m)=B.U(n))+~(C(m)—C(n)) To perform legalization, we create a Regular Bin Structure
) (RBS) over the entire placement region. The height of eath bi
C. ILR for Placement Congestion Control is equal to the cell row height and its width is equal to around
For placement congestion control, the ILR is divided into 21 x the average cell width. We then determine the utilization
components. The-ILR uses the global pre-defined bin struc-of every bin and segment in the placement region. The utiliza
ture used for placemendensity computation. It then calculates tion of a segment is defined as the total width of all the cells
the utilization and contour height for these bins. Cellsthem  Within the segment. If the total width is greater than the-seg
moved fromsource to target bins of the global bin structure. ~ ment width, the segment is considered to be above capacity.
Once thal-ILRis performed, we then run thd LR as before Based on the segment utilizations and placement blockages,
in which the bin sizes are initially set to a large value arghth we construct anove map of the entire placement region. For
decreased over subsequent placement iterations. Fig.itslepeach bin in the RBS, this map has a value of eithfar allow-
the interaction between thteILR and ther-ILR and shows the ing movement of cells into or out of this bin, 6érotherwise.
decrease in the size of the bins from thi_R stage to the end For bins that completely overlap blockages we assign a value
of ther-ILR stage. of 0 as we do not want cells to be moved on top of the block-
age. If the utilization of a particular segment is greatemth
thetarget_density, then a small region of bins in and around the
current segment is assigned a valud ofThis is to allow for
The aim of the legalization stage is to resolve module ovemove based legalization to be performed only on these bins.
laps, present after global placement, and yield a legal nofhis is depicted in Fig. 7 where there are two segments tkeat ar
overlapping placement. Our legalization stage is divided i above capacity (shown by the diagonal lines). Then, we turn
two steps: we first ignore all the standard-cells and resola move based legalization for only a small set of bins around
overlaps among the macro blocks; we then fix the macros attie segments (shown by the shaded regions).
legalize the standard-cells. This is followed by detail&xte-
ment. These steps are described in more detail below.

C(n): Contour height of bim
Then, the score for the move from himto binn is given by:

V. LEGALIZATION AND DETAILED PLACEMENT

A. Macro Block Legalization

During legalization, we do not want to move the macros
by a significant amount from their global placement posgion
Hence, the goal of the macro block Iegalization_algorithmmis Fig. 7. Selective Bin-based Standard Cell Movement.
resolve overlaps among the macros by perturbing them by the
minimum possible distance from their global placementposi For moving the cells among the bins we use a technique sim-
tions. This is achieved by using theerative Clustering Al- ilar to the ILR. The difference being that the score for a move
gorithm [28] for macro block legalization. Due to space conduring legalization is a weighted sum of three components:
straints, we refer the reader to [28] for more details. (a) the half-perimeter wirelength reduction for the mov®,d




function of the utilization of the source and target bins é)ch  direct comparison of the runtime, as the machine specificati
weighted difference of thmove map values for the source and for the contest are the same as the one on which we ran our
target bins. Since the legalization technique is mainlyduse experiments. On average, the runtime of our placer is thst lea
even out the placement and satisfy segment capacitiesharhigamong all the placers.

weight is assigned to the second and third components. Once
all the segments are brought within capacity, we assignehe c

to legal positions within each segment.

The key advantages of the selective bin-based legalizer is|n this paper we descritfastPlace 3.0 an efficient and scal-
that it does not significantly perturb the global placement s gple quadratic placer for large-scale mixed-size circulitss
lution. Secondly, it distributes the cells evenly withiretseg-  hased on a multilevel global placement framework and incor-
ments. This helps to satisfy placement congestion consétai porates an improved Iterative Local Refinement Techniqate th
can handle placement blockages as well as placement conges-
tion constraints. We also describe an efficient density awar

To further reduce the wirelength of the placement, we adogtandard-cell legalization scheme.

a modified version of th€astDP [22] detailed placer that can ~ The current implementation produces competitive results
handle placement congestion constraints. compared to other state-of-the-art academic placers oougr

benchmark circuits but in a significantly lesser runtimecisu
an ultra-fast placer is very much needed in present day-itera

VII. CONCLUSIONS

C. Detailed Placement

VI. EXPERIMENTAL RESULTS

tive physical synthesis flows to achieve timing closure with

FastPlace3.0 was tested on the ISPD-2005 Placemeng Significant runtime overhead.

Benchmarks [19] and the ISPD-2006 Placement Benchmarks
[20]. These benchmarks have been derived from industrial
ASIC designs with circuit sizes ranging from 211K to 2.50M
objects. In addition, the ISPD-2006 benchmark suite haga sp[l]
cific target_density assigned to each circuit.

In Table I, we comparBastPlace3.0 with the latest available
versions of the academic placenPL6 [4,5, 8], Capol0.2[23]
and APlace 2.0 [15, 16] on the ISPD-2005 Placement Bench- !
marks. All the placers were run in their default mode and allg
experiments were run ona6 GHZ AMD Opteron252 ma-
chine with8 GB RAM.

From Table |, we have on averadg&) higher wirelength
as compared tonPL6 and 9% and 3% better wirelength as
compared t@Capo10.2 andAPlace?.0 respectively. In terms of
runtime we areb.12x, 11.52x and16.92x faster tharmPL6,
Capo10.2 andAPlace2.0 respectively. (8

In Table Il we compare our results with that of other placers
reported during the ISPD 2005 placement contest. It shoaild b[9]
noted that for the contest, all the placers were given thelben
marks in advance and there was no limit on the CPU time r&-"!
quired to get the best possible results on the individualdis. 1
From Table Il, the contest version APlaceis on average.5%
better than our placer in terms of wirelength. In [15] the aul2]
thors report that the entire benchmark set takis2 hrs on a [13]
1.6 GHZ machine and that they are on averageslower than
Capo. Based on these results our placer is rougfdly faster [14]
than the contest version éfPlace. It can also be seen that
our results are better than the reported results of all therot 19
placers during the ISPD 2005 placement contest.

In Table Il we compare our results with that of other plac{16]
ers reported during the ISPD 2006 placement contest. We use
the same scoring function as the contest which is a weight@&
function of wirelength, placement congestion and runti@e.
average, we have only% higher score than the best reported18]
results during the contest. Looking at individual resutts 4
of the8 benchmarks we are better than the best reported resuylts;
during the contest.

Table IV gives the runtime comparison of our placer withm]
other placers in the ISPD 2006 placement contest. This is a

[2]

5]
(6]
[7]
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Placer Circuit Average
adaptecZ] adaptec4[ bigbluel] bigblueZ [ bigblue3 | bigblue4
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MFAR 0.98 0.95 1.02 1.09 1.00 1.05 1.015
Dragon 1.02 1.00 1.07 1.03 1.00 1.09 1.034
mPL 1.04 1.00 1.03 1.12 0.97 1.09 1.041
Capo 1.07 1.05 1.13 111 1.01 1.32 1.115
NTUplace 1.08 1.03 1.11 1.23 1.08 1.39 1.153
Fengshui 1.32 1.67 1.20 1.84 1.24 1.25 1.420
Kraftwerk 1.69 1.75 1.56 2.08 1.73 1.69 1.749
TABLE IlI

FastPlace3.0 COMPARED TO OTHER ACADEMIC PLACERS ON THESPD-2006ENCHMARK SUITE
USING THEISPD-2006PLACEMENT CONTEST SCORING FUNCTION

Placer Circuit Avg
adapiec5[ newbluel] newblueZ] newblue3] newblue4| newblueS| newblueb [ newblue’
Kraftwerk 1.01 1.19 1.00 1.00 1.01 1.04 1.00 1.00 1.03
mPLG6 1.00 1.06 1.07 1.17 1.00 1.02 1.00 1.00 1.04
FastPlace3.0 1.12 1.15 0.96 1.09 0.98 111 0.96 0.93 1.04
NTUplace2 1.02 1.00 1.07 1.16 1.03 1.00 1.04 1.07 1.05
MFAR 1.09 1.23 1.09 1.16 1.09 1.13 1.03 1.04 111
APlace3 1.26 1.20 1.05 1.13 1.35 1.21 1.06 1.05 1.16
Dragon 1.08 121 1.29 1.90 1.05 1.13 1.03 1.23 1.24
DPIlace 1.26 1.55 1.77 1.36 1.14 1.35 1.23 1.25 1.36
Capo 1.16 1.57 1.64 1.44 1.22 1.28 1.32 1.46 1.39
TABLE IV
RUNTIME RESULTS OFFastPlace3.0 COMPARED TO OTHER ACADEMIC PLACERS ON THESPD-2006BENCHMARK SUITE.
Placer Circuit Avg
adapiecs[ newbluel| newblueZ] newblue3] newblue4| newblue5] newblueb] newblue’

[ FP3.0(sec)] 1973 ] 609 | 816 | 1619 | 878 | 3156 | 2519 ] 3279 ] |
FastPlace3. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00x
Kraftwerk 1.67 1.86 1.23 0.56 3.16 2.35 2.12 2.28 1.91x

mPLG6 419 3.70 7.47 5.99 6.62 3.91 478 8.66 5.66x
NTUplace2 5.32 3.55 5.43 410 8.51 6.48 5.50 6.55 5.68x
MFAR 3.48 4717 3.55 1.83 7.25 3.62 4.82 5.9 4.33%
APlace3 10.27 7.07 6.78 7.72 17.07 10.39 11.56 16.73 710.95x
Dragon 1.14 1.62 2.00 0.72 1.69 1.12 1.53 3.02 1.61x
DPlace 1.46 1.69 7.84 0.64 1.88 1.44 1.60 2.90 2.43%
Capo 493 421 6.92 3.75 7.89 6.61 7.34 16.76 7.30x
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