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Abstract— In this paper, we present FastPlace 3.0 – an effi-
cient and scalable multilevel quadratic placement algorithm for
large-scale mixed-size designs. The main contributions ofour
work are: (1) A multilevel global placement framework, by incor-
porating a two-level clustering scheme within the flat analytical
placer FastPlace [27, 28]. (2) An efficient and improved Iterative
Local Refinement technique that can handle placement blockages
and placement congestion constraints. (3) A congestion aware
standard-cell legalization technique in the presence of blockages.
On the ISPD-2005 placement benchmarks [19], our algorithm
is 5.12×, 11.52× and 16.92× faster than mPL6, Capo10.2 and
APlace2.0 respectively. In terms of wirelength, we are on average,
2% higher as compared tomPL6 and 9% and 3% better as com-
pared to Capo10.2 and APlace2.0 respectively. We also achieve
competitive results compared to a number of academic placers
on the placement congestion constrained ISPD-2006 placement
benchmarks [20].

I. I NTRODUCTION

In recent years, it has become common to interleave place-
ment with logic synthesis and timing-optimization transforms
to create a physical synthesis design flow. As a result, place-
ment needs to be run repeatedly during the early design stages.
In addition, circuits today often contain over a million objects
that need to be placed. Hence, it is necessary to have efficient
and scalable placement algorithms that produce good-quality
results satisfying various design objectives including conges-
tion, routability and timing.

Existing placement algorithms employ various approaches
includingsimulated annealing [24,25],partitioning [1,2,7,29]
andanalytical placement [4,9–11,16,17,21,27,28]. Analytical
placement algorithms based on the quadratic objective funtion
(also called quadratic placers) are very popular as they arequite
efficient and also give good quality of results. They typically
employ a flat placement methodology [9–11,17,27,28] so as to
maintain a global view of the placement problem.

But, with circuit sizes steadily increasing towards tens of
millions of objects, a flat placement methodology may not be
effective in handling the large problem size. Hence, for better
scalability and solution quality, a hierarchical placement ap-
proach is beneficial. To this effect many modern placers follow
a hierarchical or multilevel approach [3,4,13,15,21,26].

An essential constraint that needs to be handled by current
placers is that of placement congestion. Designers often run
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placement algorithms with specifictarget density values. To
determine the placement density, a pre-defined bin structure is
imposed over the placement region. Thedensity of a bin is then
defined as the ratio of the total area of the movable objects to
the total available free-space within the bin. Thetarget density
basically specifies the maximum possible occupation for any
bin in the placement region. Satisfying thetarget density con-
straint means that thedensity of all the bins in the placement
region should be less than or equal to thetarget density value.
The purpose of thetarget density is to allow for more room
within a bin for the subsequent routing step. It also creates
space to perform subsequent timing optimization transforms
like buffer insertion, gate-sizing etc.

In this paper we address the two issues of scalability and
placement congestion. We presentFastPlace 3.0 - an efficient
multilevel quadratic placement algorithm with placement con-
gestion control for large-scale mixed-size designs. The main
contributions of our work are:

• Incorporating a multilevel framework within the global
placement stage of the flat quadratic placerFastPlace
[27, 28]. This is done by employing two levels of cluster-
ing: an intial netlist based fine-grain clustering followed
by a netlist and location based coarse-grain clustering.

• An improved Iterative Local Refinement Technique to re-
duce the wirelength based on the half-perimeter measure.
This technique is very effective in simultaneously reduc-
ing the wirelength while spreading the objects around the
placement region. It can also effectively handle placement
blockages and placement congestion constraints.

• A density-aware standard-cell legalization technique.
This technique operates on the segments created in the
placement region due to the presence of blockages. It sat-
isfies segment capacities and congestion constraints and
legalizes the standard-cells within the segments.

The rest of this paper is organized as follows: Section II
gives an overview of the multilevel global placement frame-
work and an outline of our algorithm. Section III describes
the two-level clustering scheme used during global placement.
Section IV describes the improved Iterative Local Refinement
technique and its use in placement congestion control. Section
V describes the density aware legalization and detailed place-
ment techniques. Experimental results are provided in Section
VI followed by the conclusions in Section VII.



II. OVERVIEW OF THE ALGORITHM

Our multilevel placement framework is summarized in Fig.
1 and follows the classical hierarchical flow that has been used
in many existing placement algorithms [3,4,6,13,15,21].
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Fig. 1. Multilevel Global Placement Framework.

In Step 1 of the multilevel flow, we create fine-grain clusters
of about 2-3 objects per cluster based on the connectivity infor-
mation of the original flat netlist. In Step 2 we perform a fast
initial placement of the fine-grain clusters. In Step 3 we create
coarse-grain clusters by performing a second level of cluster-
ing. This step considers the connectivity information between
the clusters and their physical locations as obtained from the
initial placement. This creates a good-quality clusteringsolu-
tion for the subsequent global placement step. In Step 4 we
perform global placement on the coarse-grain clustered netlist
until the clusters are evenly distributed over the placement re-
gion. We then perform a series of un-clustering and placement
refinements in Steps 5 and 6, finally yielding a global place-
ment solution of the original flat netlist.

The entire flow of our placement algorithm is summarized in
Fig. 2. It consists of three stages: (a) global placement using
a multilevel framework, (b) legalization of macro blocks using
the Iterative Clustering Algorithm of [28] followed by a density
aware standard-cell legalization scheme and (c) an effective de-
tailed placement algorithm [22]. The individual components of
the flow are described in more detail in the subsequent sections.

III. C LUSTERING FORPLACEMENT

Circuit clustering is an attractive method to reduce the place-
ment problem size for large- scale VLSI designs. If clustering
is performed in a careful manner, it can also yield better wire-
length along with faster runtime as compared to flat placement
approaches. In our multilevel framework we use clustering in
apersistent context as defined in [21]. As in, we use clustering
at the beginning of placement to pre-process the flat netlistso
as to reduce the placement problem size.

In our multilevel framework, we follow a two-level cluster-
ing scheme as shown in Fig. 1. In the first level of clustering
we create fine-grain clusters of about 2-3 objects per cluster.
This clustering is solely based on the connectivity information
between the objects in the original flat netlist. Since this clus-
tering is performed before any placement, we restrict it to fine-
grain clustering to minimize any loss in placement quality due
to incorrect clustering. In fact, it was demonstrated in [12] that
building fine-grain clusters can improve placement efficiency
with negligible loss in placement quality.

We then perform a fast, initial placement of the fine-grain
clusters. The purpose of this step is to get some placement in-
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Fig. 2. Outline of Our Placement Flow.

formation for the next clustering level. Since each clusterin
the first level has only around 2-3 objects, the initial placement
of the clusters closely resembles an initial placement of the flat
netlist. We then create coarse-grain clusters by performing a
second level of clustering. In this level, we consider both,the
connectivity information between the clusters and their physi-
cal locations as obtained from the initial placement. We believe
that generating coarse-grain clusters based on actual placement
information, is better than generating them by a solely netlist
based approach. Also, such an approach would further mini-
mize any loss in (or even improve) the final wirelength.

The key difference between our clustering scheme and the
ones followed in [3, 5, 15, 21] is that we use actual placement
information while forming coarse-grain clusters, whereasthe
other approaches generate coarse-grain clusters solely based
on netlist information. Our approach closely resembles that
of [13]. The difference being that [13] uses two-levels of netlist
based clustering followed by physical clustering, whereaswe
only use one level of fine-grain netlist based clustering.

For both levels of clustering, we use theBest-Choice clus-
tering algorithm described in [21]. In Fig. 3 we summarize the
modified version of theBest-Choice clustering algorithm us-
ing Lazy-Update speed-up technique to consider our two-level
clustering scheme. From Fig. 3 there are four key parameters
within our clustering scheme:
• clustering ratio: Ratio of the number of objects before

and after clustering.
• s(j, k): The netlist based clustering score between two

objectsj andk.
• max cluster area: The upper-bound on the cluster area.
• distance threshold: The distance threshold used for the

physical clustering.
Within our clustering scheme, for each level of clustering we
use aclustering ratio of 2 resulting in a4× reduction in
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Fig. 3. Best-Choice Clustering Algorithm with Placement Information.

the number of objects in the final coarse-grain netlist. For the
netlist based clustering score between objectsj andk we use:

s(j, k) =
Σν∈Nwν

aj + ak

whereN is the set of nets connecting the two objects and
wν = 1/k wherek is the degree of netν. To strictly con-
trol the area of the clusters, we set themax cluster area to 5×
average cluster area. This results in the formation of balanced
clusters. Finally, we experimentally set thedistance threshold
to 10% of the maximum chip dimension.

IV. CONGESTIONAWARE ITERATIVE LOCAL REFINEMENT

The Iterative Local Refinement (ILR) technique is a key
component of our placement flow. It is highly effective in min-
imizing the wirelength while simultaneously distributingthe
cells over the placement region. We separate the ILR technique
into two components: a density-based ILRd-ILR and the reg-
ular ILR r-ILR. The core algorithm is the same within both the
components and hence we only describe it in the context of the
r-ILR. We first give an overview of the ILR technique of [27],
followed by the enhancements. We then describe the top level
flow for ILR based placement congestion control.

A. Description of the Technique

During ILR the placement region is binned and the utiliza-
tion of all the bins is determined, following which, the respec-
tive source bins of all the cells is determined. For every cell
present in a bin,8 scores are computed that correspond to mov-
ing it to the8 neighboring bins. For calculating the score, it is
assumed that a cell is moving from its current position in a
source bin to the same relative position in thetarget bin. The
score for each move is a weighted sum of two components: (a)
the half-perimeter wirelength reduction for the move and (b)
a function of the utilization of the source and target bins. For
each cell and bin, a fixed weight is used to compute the score.
The cell is then moved to the bin with the highest positive score.
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Fig. 4. Initial Contour Map Depicting Placement Blockages.

During one iteration the above steps are followed for all the
cells in the placement region. It is then repeated until there is
no significant improvement in the wirelength. For the first loop
of ILR, the width and height of the bins are set to5× that of
the bin used during Cell Shifting. The bin dimensions are then
gradually brought down to the values used during Cell Shifting
over subsequent iterations of the global placement.

B. Enhancements to the ILR Technique

A major drawback with the ILR is that every bin in the place-
ment region, irrespective of if it being sparse or dense, will have
the same weight for the utilization component. This does not
accurately reflect the placement density. A sparse bin should
have a lesser utilization weight so that more cells can be moved
into it, whereas, the weight for a dense bin should be higher to
enable movement of cells out of this bin. In the enhanced ver-
sion of ILR each bin has its associated utilization weight that is
constantly updated based on the placement distribution.

Another extension to the ILR is in handling placement block-
ages. ASIC circuits contain many placement blockages in the
form of fixed macros. Quadratic placers often place a lot of
movable objects on top of the fixed macros. These objects have
to be moved out of the fixed macros in an effective manner with
minimal increase in the wirelength. To handle fixed macros
during placement, we construct a contour map of the placement
region. Based on the fixed macros, each bin in the contour map
has a value of either1 in case it overlaps with a fixed macro or
0 otherwise. The initial contour map for one of the placement
benchmarks is shown in Fig. 4. We then use a3 × 3 Laplacian
matrix as a smoothing filter and run it for a specified number of
iterations on the entire map. This removes the sharp edges in
the original contour map creating a smoothed version as shown
in Fig. 5. This smoothing is basically done so that cells can
easily move over and cross a fixed macro if required or slide
down the slope for it to be moved out of the macro.

Based on the above enhancements, for celli in bin m, if:

• α: Weight for the wirelength component.

• βm: Weight of the utilization component for binm.

• βn: Weight of the utilization component for binn.

• γ: Weight for the contour component.

• wli(m): Half-perimeter wirelength wheni is in binm
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Fig. 5. Contour Map after Smoothing Transform.

• wli(n): Half-perimeter wirelength wheni is in binn

• U(m): Utilization function for binm

• U(n): Utilization function for binn

• C(m): Contour height of binm
• C(n): Contour height of binn

Then, the score for the move from binm to binn is given by:

si(m, n) =

α(wli(m)−wli(n))+(βmU(m)−βnU(n))+γ(C(m)−C(n))

C. ILR for Placement Congestion Control

For placement congestion control, the ILR is divided into 2
components. Thed-ILR uses the global pre-defined bin struc-
ture used for placementdensity computation. It then calculates
the utilization and contour height for these bins. Cells arethen
moved fromsource to target bins of the global bin structure.

Once thed-ILR is performed, we then run ther-ILR as before
in which the bin sizes are initially set to a large value and then
decreased over subsequent placement iterations. Fig. 6 depicts
the interaction between thed-ILR and ther-ILR and shows the
decrease in the size of the bins from thed-ILR stage to the end
of ther-ILR stage.

V. L EGALIZATION AND DETAILED PLACEMENT

The aim of the legalization stage is to resolve module over-
laps, present after global placement, and yield a legal non-
overlapping placement. Our legalization stage is divided into
two steps: we first ignore all the standard-cells and resolve
overlaps among the macro blocks; we then fix the macros and
legalize the standard-cells. This is followed by detailed place-
ment. These steps are described in more detail below.

A. Macro Block Legalization

During legalization, we do not want to move the macros
by a significant amount from their global placement positions.
Hence, the goal of the macro block legalization algorithm isto
resolve overlaps among the macros by perturbing them by the
minimum possible distance from their global placement posi-
tions. This is achieved by using theIterative Clustering Al-
gorithm [28] for macro block legalization. Due to space con-
straints, we refer the reader to [28] for more details.
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Fig. 6. Bin Structure for Iterative Local Refinement.

B. Density Aware Selective Bin-based Cell Legalization

After macro block legalization, we fix their positions and
treat them as placement blockages for all subsequent steps.
Each row in the placement region is then fragmented into seg-
ments based on the overlap of the row with the placement
blockages. The aim of the density aware standard-cell legalizer
is to satisfy segment capacities as well as placement congestion
constraints and legalize the standard-cells within the segments.

To perform legalization, we create a Regular Bin Structure
(RBS) over the entire placement region. The height of each bin
is equal to the cell row height and its width is equal to around
4× the average cell width. We then determine the utilization
of every bin and segment in the placement region. The utiliza-
tion of a segment is defined as the total width of all the cells
within the segment. If the total width is greater than the seg-
ment width, the segment is considered to be above capacity.

Based on the segment utilizations and placement blockages,
we construct amove map of the entire placement region. For
each bin in the RBS, this map has a value of either1 for allow-
ing movement of cells into or out of this bin, or0 otherwise.
For bins that completely overlap blockages we assign a value
of 0 as we do not want cells to be moved on top of the block-
age. If the utilization of a particular segment is greater than
thetarget density, then a small region of bins in and around the
current segment is assigned a value of1. This is to allow for
move based legalization to be performed only on these bins.
This is depicted in Fig. 7 where there are two segments that are
above capacity (shown by the diagonal lines). Then, we turn
on move based legalization for only a small set of bins around
the segments (shown by the shaded regions).

 

Fig. 7. Selective Bin-based Standard Cell Movement.

For moving the cells among the bins we use a technique sim-
ilar to the ILR. The difference being that the score for a move
during legalization is a weighted sum of three components:
(a) the half-perimeter wirelength reduction for the move, (b) a



function of the utilization of the source and target bins and(c) a
weighted difference of themove map values for the source and
target bins. Since the legalization technique is mainly used to
even out the placement and satisfy segment capacities, a higher
weight is assigned to the second and third components. Once
all the segments are brought within capacity, we assign the cells
to legal positions within each segment.

The key advantages of the selective bin-based legalizer is
that it does not significantly perturb the global placement so-
lution. Secondly, it distributes the cells evenly within the seg-
ments. This helps to satisfy placement congestion constraints.

C. Detailed Placement

To further reduce the wirelength of the placement, we adopt
a modified version of theFastDP [22] detailed placer that can
handle placement congestion constraints.

VI. EXPERIMENTAL RESULTS

FastPlace3.0 was tested on the ISPD-2005 Placement
Benchmarks [19] and the ISPD-2006 Placement Benchmarks
[20]. These benchmarks have been derived from industrial
ASIC designs with circuit sizes ranging from 211K to 2.50M
objects. In addition, the ISPD-2006 benchmark suite has a spe-
cific target density assigned to each circuit.

In Table I, we compareFastPlace3.0 with the latest available
versions of the academic placersmPL6 [4,5,8],Capo10.2 [23]
andAPlace 2.0 [15, 16] on the ISPD-2005 Placement Bench-
marks. All the placers were run in their default mode and all
experiments were run on a2.6 GHZ AMD Opteron252 ma-
chine with8 GB RAM.

From Table I, we have on average,2% higher wirelength
as compared tomPL6 and 9% and 3% better wirelength as
compared toCapo10.2 andAPlace2.0 respectively. In terms of
runtime we are5.12×, 11.52× and16.92× faster thanmPL6,
Capo10.2 andAPlace2.0 respectively.

In Table II we compare our results with that of other placers
reported during the ISPD 2005 placement contest. It should be
noted that for the contest, all the placers were given the bench-
marks in advance and there was no limit on the CPU time re-
quired to get the best possible results on the individual circuits.
From Table II, the contest version ofAPlace is on average4.5%
better than our placer in terms of wirelength. In [15] the au-
thors report that the entire benchmark set takes113.2 hrs on a
1.6 GHZ machine and that they are on average3× slower than
Capo. Based on these results our placer is roughly34× faster
than the contest version ofAPlace. It can also be seen that
our results are better than the reported results of all the other
placers during the ISPD 2005 placement contest.

In Table III we compare our results with that of other plac-
ers reported during the ISPD 2006 placement contest. We use
the same scoring function as the contest which is a weighted
function of wirelength, placement congestion and runtime.On
average, we have only1% higher score than the best reported
results during the contest. Looking at individual results,on 4
of the8 benchmarks we are better than the best reported results
during the contest.

Table IV gives the runtime comparison of our placer with
other placers in the ISPD 2006 placement contest. This is a

direct comparison of the runtime, as the machine specifications
for the contest are the same as the one on which we ran our
experiments. On average, the runtime of our placer is the least
among all the placers.

VII. C ONCLUSIONS

In this paper we describeFastPlace 3.0 an efficient and scal-
able quadratic placer for large-scale mixed-size circuits. It is
based on a multilevel global placement framework and incor-
porates an improved Iterative Local Refinement Technique that
can handle placement blockages as well as placement conges-
tion constraints. We also describe an efficient density aware
standard-cell legalization scheme.

The current implementation produces competitive results
compared to other state-of-the-art academic placers on various
benchmark circuits but in a significantly lesser runtime. Such
an ultra-fast placer is very much needed in present day itera-
tive physical synthesis flows to achieve timing closure without
a significant runtime overhead.
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TABLE I
WIRELENGTH AND RUNTIME COMPARISON OFFastPlace3.0 WITH mPL6, Capo10.2 AND APlace2.0 ON THE ISPD-2005 BENCHMARK SUITE.

Circuit Half-Perimeter Wirelength Runtime (sec)
FastPlace3.0 mPL6

F P3.0

Capo10.2

F P3.0
APlace2.0

F P3.0
FastPlace3.0 mPL6

F P3.0

Capo10.2

F P3.0
APlace2.0

F P3.0

adaptec1 79383680 0.98 1.15 0.99 294 7.42 15.12 21.66
adaptec2 93084248 0.99 1.08 1.03 466 4.84 12.13 19.68
adaptec3 217804128 0.98 1.05 1.00 1896 3.79 6.67 11.75
adaptec4 201358944 0.96 1.03 1.04 1176 5.75 9.80 21.37
bigblue1 95679992 1.01 1.14 1.05 503 5.44 13.31 16.92
bigblue2 155101744 0.98 1.05 0.99 1150 6.78 11.56 17.42
bigblue3 379882464 0.91 1.05 1.08 3868 2.72 9.83 9.75
bigblue4 832879872 1.00 1.16 1.05 5718 4.22 13.78 16.82
Average 0.98 1.09 1.03 5.12× 11.52× 16.92×

TABLE II
HALF -PERIMETERWIRELENGTH COMPARISON OFFastPlace3.0 WITH OTHER ACADEMIC PLACERS ON THEISPD-2005BENCHMARK SUITE.

Placer Circuit Average
adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

APlace 0.94 0.93 0.99 0.93 0.94 1.00 0.955
FastPlace3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.000

mFAR 0.98 0.95 1.02 1.09 1.00 1.05 1.015
Dragon 1.02 1.00 1.07 1.03 1.00 1.09 1.034
mPL 1.04 1.00 1.03 1.12 0.97 1.09 1.041
Capo 1.07 1.05 1.13 1.11 1.01 1.32 1.115

NTUplace 1.08 1.03 1.11 1.23 1.08 1.39 1.153
Fengshui 1.32 1.67 1.20 1.84 1.24 1.25 1.420
Kraftwerk 1.69 1.75 1.56 2.08 1.73 1.69 1.749

TABLE III
FastPlace3.0 COMPARED TO OTHER ACADEMIC PLACERS ON THEISPD-2006BENCHMARK SUITE

USING THE ISPD-2006PLACEMENT CONTEST SCORING FUNCTION.

Placer Circuit Avg
adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

Kraftwerk 1.01 1.19 1.00 1.00 1.01 1.04 1.00 1.00 1.03
mPL6 1.00 1.06 1.07 1.17 1.00 1.02 1.00 1.00 1.04

FastPlace3.0 1.12 1.15 0.96 1.09 0.98 1.11 0.96 0.93 1.04
NTUplace2 1.02 1.00 1.07 1.16 1.03 1.00 1.04 1.07 1.05

mFAR 1.09 1.23 1.09 1.16 1.09 1.13 1.03 1.04 1.11
APlace3 1.26 1.20 1.05 1.13 1.35 1.21 1.06 1.05 1.16
Dragon 1.08 1.21 1.29 1.90 1.05 1.13 1.03 1.23 1.24
DPlace 1.26 1.55 1.77 1.36 1.14 1.35 1.23 1.25 1.36
Capo 1.16 1.57 1.64 1.44 1.22 1.28 1.32 1.46 1.39

TABLE IV
RUNTIME RESULTS OFFastPlace3.0 COMPARED TO OTHER ACADEMIC PLACERS ON THEISPD-2006BENCHMARK SUITE.

Placer Circuit Avg
adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

FP3.0 (sec) 1973 609 816 1619 878 3156 2519 3279
FastPlace3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00×
Kraftwerk 1.67 1.86 1.23 0.56 3.16 2.35 2.12 2.28 1.91×

mPL6 4.19 3.70 7.47 5.99 6.62 3.91 4.78 8.66 5.66×
NTUplace2 5.32 3.55 5.43 4.10 8.51 6.48 5.50 6.55 5.68×

mFAR 3.48 4.17 3.55 1.83 7.25 3.62 4.82 5.94 4.33×
APlace3 10.27 7.07 6.78 7.72 17.07 10.39 11.56 16.73 10.95×
Dragon 1.14 1.62 2.00 0.72 1.69 1.12 1.53 3.02 1.61×
DPlace 1.46 1.69 7.84 0.64 1.88 1.44 1.60 2.90 2.43×
Capo 4.93 4.21 6.92 3.75 7.89 6.61 7.34 16.76 7.30×
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