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Abstract— Because of the increasing dominance of interconnect issues
in advanced IC technology, it is desirable to incorporate global routing
into early design stages to get accurate interconnect information. Hence,
high-quality and fast global routers are in great demand. In this paper, we
propose two major techniques to improve the extremely fast global router,
FastRoute [8] in terms of solution quality : (1) monotonic routing, (2)
multi-source multi-sink maze routing. The new router is called FastRoute
2.0. Experimental results show that FastRoute 2.0 can generate high-
quality routing solutions with fast runtime compared with three state-
of-the-art academic global routers FastRoute, Labyrinth [9] and Chi
Dispersion router [10]. On the set of benchmarks used in [8] and [10], the
total overflow of FastRoute 2.0 is 98, compared to 1012 (FastRoute), 2846
(Labyrinth) and 1271 (Chi Dispersion Router). The runtime of FastRoute
2.0 is 73% slower than FastRoute, but 78× and 37× faster than Labyrinth
and Chi Dispersion router. The promising results make it possible to
integrate global routing into early design stages. This could dramatically
improve the design solution quality.

I. INTRODUCTION

As feature size in advanced VLSI technology continues to shrink,
interconnect delay has become the dominant factor in circuit delay.
Although the scaling of feature size makes the device smaller and
faster, interconnect delay is not scaling down as device delay. Many
recent articles reported that interconnect delay can consume as much
as 75% of clock cycle in modern designs. Hence, the performance
of current designs is mainly determined by interconnect instead of
device. In addition, because of the shrinking of device size, the chip
area is no longer determined by total cell area, but by the limited
routing resources. Extra “white space” is commonly added to provide
enough wire tracks to resolve routing congestion. It is typical that
more than half of the modern chip is occupied by white space.

Although interconnect is not implemented until the routing stage,
its importance makes it necessary to be dealt with in early design
stages such as floorplanning and placement. One reason is that
floorplanning and placement decides the length and hence the delay
of interconnect wires to a large extent. The other is that the white
space needs to be allocated appropriately before the routing stage
to ensure the routability. Generally speaking, the placement obtained
by the design stages before routing determines the solution space for
the router to explore. For a bad placement, no matter how good the
router is, it is impossible to achieve a good design.

In order to consider the interconnect in early design stages without
routing information, many interconnect models are employed to
estimate timing and routing congestion for interconnect. To estimate
timing, interconnect is modeled by half-perimeter of the bounding
box [1] [2] or a star [3] to compute the delay from source to sinks.
However, considering the real implementation, multi-pin nets are
typically routed as Steiner trees. Hence, both half-perimeter of the
bounding box and star-model is far from accurate for interconnect
timing estimation. For routing congestion, post-placement congestion
estimation methods try to predict the routing congestion for a given
placement. In recent years, a number of probabilistic methods for
congestion estimation have been proposed [4] [5] [6]. Recently,
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Westra et al. [7] presented a new technique based on degenerate
global routing techniques. All these works proposed generic estima-
tors which aim at predicting the behavior for all routers consistently.
However, as pointed out in [8], because routing solutions generated
by different routers are very different, it is not possible for an
estimator to accurately predict congestion of all routers. Furthermore,
even a real global router cannot predict the routing congestion for
solutions obtained by another global router. Thus, in both timing
and congestion estimation, the interconnect models are far from the
real implementation in the routing stage. The interconnect resources
required by routing stage are not adequately estimated and reserved
during early design stages.

In order to get accurate interconnect information in early design
stages, it is desirable to incorporate global routing into them. Global
routing allocates the routing demand globally over the chip area.
It generates interconnect information very close to the final routing
implementation and can be used for accurate estimation of inter-
connect topology, wirelength, delay, congestion, buffering solution,
etc. In addition, if the same global router is used for both early
stage interconnect estimation and global routing, the inconsistency
between the early design stages and routing can be eliminated.

There are mainly two categories of global routing techniques: rip-
up and reroute based techniques, and multicommodity flow based
techniques. Many academic routers [9] [10] and the majority of
the industry routers employ the rip-up and reroute approach. This
kind of techniques are essentially sequential routing methods in
which each net is routed in a certain order according to the routing
congestion from nets already routed. The multicommodity flow based
techniques [11] [12] can handle simultaneous routing of multiple
nets as a multicommodity flow problem. The main idea is to model
nets as different commodities that flow through the network of
routing resource graph. The flow problem is typically solved by
linear programming which results in fractional flow. Therefore, a
randomized rounding procedure is used to discretize the solution.
Albrecht [12] proposed a method to approximate the LP solution
with provable error bounds to speed up the computation.

In order to handle large size problems, multilevel routing ap-
proaches [17] [18] are proposed to reduce the complexity of the
problem. A ”V-shaped” recursive coarsening and refinement process
is commonly used.

However, due to the high runtime complexity of the traditional
global routers, it is impractical to perform global routing repeatedly
in early stages. Recently, an extremely fast global router, FastRoute
[8] was proposed to address the runtime issue. Unlike many global
routers which rely on maze routing to resolve the congestion,
FastRoute focuses on determining good Steiner tree topology and
Steiner node locations according to congestion information so that
much less maze routing is needed. Experimental results show that
FastRoute can generate less congested global routing solutions with
two orders of magnitude speedup over the state-of-the-art academic
global routers Labyrinth [9] and Chi Dispersion router [10]. And it is
even faster than the highly-efficient congestion estimation algorithm
FaDGloR [7].

In this paper, we propose two major techniques to futher improve



FastRoute in solution quality.
• A monotonic routing technique to substitute pattern routing.
• A multi-source multi-sink maze routing technique.
The new router is called FastRoute 2.0.
On the same set of benchmarks in [8] [10], FastRoute 2.0 achieves

much better solution quality than FastRoute, Labyrinth and Chi
Dispersion router . The total overflow is reduced by more than
an order of magnitude. The runtime is about 73% slower than the
extremely fast FastRoute, but still 78× and 37× faster than Labyrinth
and Chi Dispersion router.

The remainder of the paper is organized as follows. In Section
II, we review the framework and techniques of FastRoute global
router. In Section III, we present the two major techniques in detail.
In Section IV, experimental results of FastRoute 2.0 and comparison
with three state-of-the-art global routers are shown. Finally, the paper
concludes with a summary of results and directions of future work.

II. FASTROUTE GLOBAL ROUTER

In this section, we give an overview of the extremely fast global
router, FastRoute [8].

Different from traditional global routers, FastRoute is a global
router aiming at the application in both placement and routing. In
placement process, global router may be invoked many times to get
the interconnect estimation for intermediate placement. Hence, the
runtime is a major concern of the algorithm. As pointed out by many
works (e.g, [9]), maze routing is the major contributor of global
routing runtime. Therefore, FastRoute focuses mainly on the Steiner
tree construction to alleviate the burden of maze routing. Because of
the good Steiner tree structures obtained, FastRoute only runs one
round of maze routing and only about 2.15% of 2-pin nets are routed
by maze routing. This is the major reason why FastRoute can achieve
such a significant speedup over other global routers.

FastRoute has three phases:
1) Congestion map generation: In this phase, the Steiner trees for

all the nets are generated using minimal Steiner tree algorithm
FLUTE [13]. Then all Steiner trees are broken into 2-pin nets
and routed using L-shaped pattern routing. The congestion map
is obtained from this rough routing result.

2) Congestion-driven Steiner tree construction: In this phase, two
major techniques are proposed to construct good Steiner tree
structures to reduce the routing congestion. First, a congestion-
driven topology generation algorithm generates the Steiner
tree topologies to reduce routing congestion according to the
congestion map. The algorithm extends the idea of FLUTE
to handle the congestion by trying to use less wires in the
congested region. Second, an edge shifting technique is em-
ployed to further reduce the routing congestion after the Steiner
tree topology is fixed. It identifies the tree edges that can be
shifted without changing the rectilinear wirelength of the tree.
By shifting these edges, routing demand can be shifted from
congested region to uncongested region so that local congestion
can be resolved. Both techniques are applied to every net with
more than 4 pins, and the congestion map is updating as each
net changes.

3) Routing of 2-pin nets using pattern routing and maze routing:
In this phase, the Steiner trees obtained from phase 2 are
broken into 2-pin nets. Then every 2-pin net is ripped up
and rerouted by Z-shaped pattern routing. Finally, the long
2-pin nets over the congested regions is ripped up again and
rerouted by maze routing. A cost function based on logistic
function [14] is introduced to direct the maze routing to find
less congested paths.

FastRoute achieves good global routing solutions with two orders
of magnitude faster runtime. The extremely high speed makes it
possible to incorporate it directly into the early design stages without
much runtime penalty. This could dramatically improve the solution
quality because accurate interconnect information becomes available
in early stages.

III. NEW ROUTING TECHNIQUES

The original FastRoute focuses on generating good Steiner tree
structures to reduce routing congestion in the first two phases. So
we follow these two phases of FastRoute to generate high-quality
Steiner tree structures. However, we demonstrate that the pattern
routing and maze routing in the third phase can be improved to obtain
better routing solutions. In this work, we propose the following two
techniques:

• A monotonic routing to substitute the pattern routing in Fas-
tRoute flow.

• A multi-source multi-sink maze routing technique which is a
more powerful maze routing technique to achieve high-quality
routing solutions.

In part A we first discuss the grid graph model used in this work.
Then, in B and part C, we will describe the two techniques in detail.
Finally, the flow of FastRoute 2.0, the new global router based on
the two techniques is given in part D.

A. Grid Graph Model
The grid graph model is widely used in global routing [8] [9]

[10] [12]. It is also used in our work. In this model, the chip area
is partitioned into rectangular regions called global bins and all the
pins in a global bin are assumed to be at the center of the bin. Each
global bin corresponds to a node in grid graph. The boundaries of
global bins are called global edges, which correpond to the edges
in grid graph. The capacity of an edge represents the number of
routing tracks for the corresponding boundary. These notions are
illustrated in Figure 1. The major optimization objective in global
routing is to minimize the total overflow on all global edges in the
grid graph. The overflow on a global edge e is defined as how much
the routing demand de exceeds the edge capacity ce. If de > ce,
overflowe = de − ce; otherwise overflowe = 0. For each global
edge, a cost is associated with it based on its overflow value.
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Fig. 1. (a) Global bins. (b) Corresponding grid graph.

B. Monotonic Routing
Pattern routing uses predefined patterns to route 2-pin nets. Usu-

ally, the most commonly used are L-shaped (1-bend) or Z-shaped (2-
bends) patterns. Because pattern routing limits the pattern of routing



path shapes, it can speed up the global routing process. Therefore,
pattern routing is typically employed to route a big portion of nets
to save runtime. In FastRoute, after every Steiner tree broken into
2-pin nets, Z-shaped pattern routing is used to route each 2-pin net.

Although the pattern routing can speed up the routing process, its
quality could be much worse than maze routing. The maze router
ensures that the least cost route is found, but pattern routing only
considers a small portion of possible routes. For a 2-pin net which
spans m×n grids, L-shaped pattern routing only considers 2 different
paths, and Z-shaped pattern routing only considers m + n different
paths. Hence, pattern routing fails to find good routing paths to avoid
the congestion in many cases. We want to find a trade-off between
maze routing and pattern routing so that the quality can be better
than pattern routing, but the runtime is close to it.
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Fig. 2. Monotonic routing paths.

The basic idea is to find the best monotonic routing path for a
2-pin net. Let one pin be the source (S) and the other be sink (T ).
A monotonic routing path from S to T is a path on the routing
grid from S to T which always directs toward T . Figure 2 shows
two different monotonic routing paths from S to T . Notice that all
monotonic routing paths will not go out of the bounding box of S

and T . The total number of monotonic routing paths from one corner
to the diagonal corner of a m×n grids is

(

m+n−2
m−1

)

= (m+n−2)!
(m−1)!(n−1)!

.
One important property of monotonic routing path is that for every

grid point within the bounding box of S and T , only one or two grid
points can be its predecessor on any monotonic routing path from
S to it. As shown in Figure 3, all the grid points G (empty circles)
with the same x-coordinates or y-coordinates as S have only one
predecessor G1, and all other grid points g (solid dots) have two
predecessors g1 and g2. Without loss of generality, we assume S is
at the lower-left corner of the bounding box and T is at the upper-
right corner.
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Fig. 3. Monotonic path property.

For the least monotonic path from S to G and S to g, we have
the following two lemmas.

Lemma 1: The least cost monotonic routing path from S to G,
PSG = PSG1 + (G1, G), where PSG1 is the least cost monotonic
routing path from S to G1.

Lemma 2: Let P1 and P2 are the least cost monotonic routing
paths from S to g1 and g2, respectively. The least cost monotonic
routing path from S to g, PSg is one of the following two paths,
whichever has less cost. (1) P1 + (g1, g), (2) P2 + (g2, g).

These two lemmas follow the truth that every monotonic routing
path from S to a grid point must be composed of a monotonic
routing path from S to its predecessor(s) and the edge between
it and its predecessor(s). The two lemmas told us that if the least
cost monotonic routing path(s) for the predecessor(s) is found, the
least cost monotonic routing path for the current grid point can be
found. Hence, we can use dynamic programming to find the least
cost monotonic routing path from S to T . The algorithm is shown
in Figure 4. Lemma 1 and Lemma 2 ensure the optimality of the
algorithm.

Algorithm Monotonic Routing
1. d(S) = 0
2. for x = 1 to m
3. G = (x, 0), G1 = (x-1, 0)
4. d(G) = d(G1) + cost(G, G1), π(G) = G1
5. for y = 1 to n
6. G = (0, y), G1 = (0, y-1)
7. d(G) = d(G1) + cost(G, G1), π(G) = G1
8. for x = 1 to m
9. for y = 1 to n
10. g = (x, y)
11. g1 = (x-1, y), g2 = (x, y-1)
12. if d(g1)+cost(g, g1) < d(g2)+cost(g, g2)
13. d(g) = d(g1)+cost(g, g1), π(g) = g1
14. else
15. d(g) = d(g2)+cost(g, g2), π(g) = g2
16.Trace back from T using π to find the least cost monotonic path

Fig. 4. Monotonic routing algorithm.

In the algorithm, S = (0, 0), T = (m, n), and d() is the cost
of the least cost monotonic path from S to any grid point in the
bounding box of S and T . Lines 2-7 finds the least cost for all grid
points represented as empty circles in Figure 3. Lines 8-15 finds the
least cost for all grid points represented as solid dots in Figure 3,
including T . Note that whenever we update d for a grid point, d for
its predecessor(s) is already available.

Now we analyze the complexity of the algorithm. Lines 2-4 takes
O(m) time, lines 5-7 takes O(n) time, lines 8-15 takes O(mn) time,
and line 16 takes O(m + n) time. Hence, the runtime complexity
of the algorithm is O(mn), which is the same as Z-shaped pattern
routing. In Section IV, experimental results show that monotonic
routing is about 2.3× slower than Z-shaped pattern routing.

C. Multi-source Multi-sink Maze Routing

Maze routing is the most popular technique used in global routing.
Originally, maze routing algorithm is designed to find the shortest
path connecting two pins in the presence of routing blockages. Later,
it has been extended to find a path connecting two pins in such a
way that it favors a path that passes through less congested area
according to some cost function. It is a very powerful technique to
find paths avoiding congestion.

However, we notice that the application of maze routing in global
routing is to find path between two pins. For multi-pin nets, a typical



way is to break the routing tree into edges (2-pin nets), and route each
edge by maze routing. We find that this kind of independent edge-by-
edge routing scheme may cause problems and fail to generate good
routing solutions for the multi-pin nets. Figure 5 illustrates three
different scenarios. The shaded areas denote the congested regions.
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Fig. 5. Maze routing scenarios.

• Unnecessary detour: Consider the scenario in Figure 5 (a).
The dashed route “Route1” is the maze routing result for edge
(A,B). However, if the path does not need to go from A to B,
“Route2” is a better choice in terms of cost.

• Redundant routing: Consider the scenario in Figure 5 (b).
The dashed route is the maze routing result for edge (A, B).
However, the (e, B) part on the path is already part of the
routing tree, and it is redundant to repeat it.

• Unintentionally loop: Consider the scenario in Figure 5 (c). The
dashed route is the maze routing result for edge (A,B). A loop
is created in the routing tree. It is obvious that this loop is not
needed and only the part from A to e is necessary on the path.

As we can see in these three scenarios, unnecessary wires are
used in routing the multi-pin nets. This results in using more
routing resources than necessary and cause routing congestion. The
major defect of this edge-by-edge routing scheme is that the tree
information is neglected and every edge is routed independently.
When routing an edge in the tree for multi-pin nets, the routing
path has to start with one endpoint of the edge and end with the
other endpoint. However, this may not be necessary sometimes. It
is enough if there is a path created between the two endpoints, no
matter it directly goes from one endpoint to the other or uses part
of routing tree already there.
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Fig. 6. Multi-source multi-sink maze routing.

Aware of this problem, we propose a multi-source multi-sink maze
routing algorithm. The main idea is that the routing tree is respected
when we route an edge for a multi-pin net. We do not constrain the
two endpoints of the routing path to be the original endpoints of
the edge being routed. As illustrated in Figure 6, suppose we are
routing an edge (A, B) in the routing tree T for a multi-pin net N .
We first remove (A, B) from T and obtain two subtrees T1 and T2.
(Note that T1 and T2 can be just a point.) We treat all the grid points
on T1 as sources, and all the grid points on T2 as sinks. Then, we
apply the multi-source multi-sink maze routing to find the best path

connecting T1 and T2 to form a tree. In Figure 6, the dotted line
from X to Y is the best path to connect T1 and T2.

Our multi-source multi-sink maze routing algorithm is shown in
Figure 7. In the algorithm, we use the same cost function as in
FastRoute [8]. d(g) is the distance from T1 to g, defined as the
total cost of all global edges passed by the temporary shortest path
from T1 to g. The algorithm follows the framework of Dijkstra’s
algorithm [15]. Lines 1-5 initializes the distance d, priority queue Q

and destination points. Lines 6-17 is the loop similar to Dijkstra’s
algorithm. Line 18 just traces back to find the shortest path from T1

to T2. Note that Dijkstra’s algorithm ensures that when a point u is
extracted from Q, d(u) is the shortest distance from T1 to u. That
is why the stopping criterion is when the first destination point is
extracted from the priority queue.

Algorithm Multi-source Multi-destination Maze Routing
1. d(g) = ∞ for all grid points g
2. Find subtree T1 (contains A) and T2 (contains B) after breaking (A, B) 
3. Set d(u) = 0 and π(u) = nil, for all grid points u on T1
4. Set up a priority queue Q with all grid points on T1
5. Mark all grid points on T2 as destination point
6. u ← Extract-Min(Q)
7. While u is not destination point
8. do
9. for each neighbor grid points v of u
10. do
11. if d(v) > d(u) + cost(u, v)
12. then d(v) = d(u) + cost(u, v)
13. π(v) = u
14. if v is in Q
15. then update Q
16. else insert v into Q
17. u ← Extract-Min(Q)
18.Trace back from u using π to find the shortest path from T1 to T2

Fig. 7. Multi-source multi-sink maze routing algorithm.

Our algorithm finds the least cost routing path from T1 to T2.
Theorem 2 gives the optimality of the algorithm.

Theorem 2 The path found by multi-source multi-sink maze
routing algorithm is the least cost routing path from T1 to T2.

Due to the page limit, we only give the sketch of the proof.
Proof: First of all, note that the cost function cost(u, v) is a

positive function in our problem. In line 3, d(u) = 0 for all the grid
points on T1. Hence, we can assume a supersource which replaces
all the grid points on T1, and all grid points adjacent to T1 are
its neighbor. Similarly, we can assume a supersink which replaces
all the grid points on T2, and all adjacent grid points to T2. Then
the problem is transformed to a single-source, single-sink shortest
path problem. The optimality follows the optimality of Dijkstra’s
algorithm.

The only thing left is to prove the stopping criterion is correct.
Recall that we stop when a destination point on T2 is extracted from
Q. Assume u is the first destination point extracted from Q. For
the purpose of contradiction, let w be the destination point which is
on the shortest path from T1 to T2. Hence, we have d(w) < d(u).
However, when we extract u from Q, w is still in Q, which means
d(w) ≥ d(u). Because the cost function is positive, d(w) will never
decrease in later updating. Therefore, we obtain a contradiction that
d(w) ≥ d(u).

Now we analyze the complexity of the algorithm. Assume there
are V grid points in the search region. Lines 1-5 takes time O(V ).
Each Extract-Min operation on the priority queue Q takes time
O(lgV ). There are at most V iterations for the while loop. For each



u, there are at most 4 neighbors adjacent to it. The insertion and
updating of Q takes time O(lgV ). The total complexity is therefore
O(V lgV ).

We apply this multi-source multi-sink maze routing algorithm
on the tree edges of multi-pin nets. The runtime of maze routing
algorithm is highly related to the size of the search region. In order
to speed up the algorithm, we do not always search the whole grid
graph to find the least cost path. Instead, we expand each boundary
of the bounding box by a certain amount, say w rows and h columns,
and use this enlarged region as the search region for the maze routing
algorithm. By using this kind of search region, the runtime can be
reduced significantly but the solution quality is close to optimal. In
our implementation, the enlarge value is 10 for all four boundaries in
the first maze routing round. If more rounds are needed, the enlarge
value is increased by 10 every round.

We want to point out one issue for the multi-source multi-
sink maze routing technique. It can totally change the routing tree
structure because the endpoints of new routing path do not need to
be the endpoints of the edge being routed. For example, in Figure 8,
the Steiner tree structure is changed from (a) to (b) because of the
new routing of edge (A,B). Hence, we need to update the Steiner
tree structure accordingly after routing each edge by multi-source
multi-sink maze routing.
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Fig. 8. Steiner tree topology changed by maze routing.

D. Flow of FastRoute 2.0
In this part, we give the flow of the new router, FastRoute 2.0.

In general, FastRoute 2.0 has the flow similar to FastRoute. First,
the congestion map is generated. Second, Steiner tree structures are
constructed according to the congestion map. Finally, monotonic
routing and multi-source multi-sink maze routing are applied to route
the tree edges in Steiner routing trees.

The first two phases are the same as FastRoute. In the final
phase, we first apply the monotonic routing to every edge in every
routing tree. Then we run one round of multi-source multi-sink maze
routing. However, in this maze routing round, we are not routing
every edge by maze routing. Instead, only the edges longer than a
threshold and across congested areas will be routed by maze route,
and other edges are routed by monotonic routing. The intuition is to
avoid routing short nets and long nets not passing congested area by
maze routing. Otherwise, unnecessary detours may be created to use
more wirelength and cause routing congestion. Of course, another
important reason is to cut down the runtime of maze routing. If
there is still a lot of overflow, we will run more rounds of maze
routing.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results. All experi-
ments were performed on a Linux workstation with Intel Pentium 4
3.0 GHz CPU and 2GB memory.

TABLE I
BENCHMARK STATISTICS

Grids # Nets # Routed Nets Max Deg Avg Deg
ibm01 64x64 11.5k 9.1k 37 3.8
ibm02 80x64 18.4k 14.3k 126 4.4
ibm03 80x64 21.6k 15.3k 49 3.6
ibm04 96x64 26.2k 19.7k 41 3.4
ibm06 128x64 33.4k 25.8k 34 3.8
ibm07 192x64 44.4k 34.4k 22 3.8
ibm08 192x64 47.9k 35.2k 65 4.3
ibm09 256x64 50.4k 39.6k 38 3.8
ibm10 256x64 64.2k 49.5k 32 4.2

First, we compare FastRoute 2.0 with three state-of-the-art aca-
demic global routers: FastRoute [8], Labyrinth [9] and Chi Disper-
sion router [10]. We use the same benchmarks as in [10] provided
by the authors of [9]. Statistics of the benchmark circuits are shown
in Table I. Because several pins in a net may fall in the same grid,
the number of routed nets is less than the total number of nets. For
Labyrinth, 70% of the shortest connections are routed by pattern
routing, which is the same as in [10]. We measure wirelength and
total overflow in the same manner as [8] and [10]. The results are
summarized in Table II. FastRoute 2.0 can achieve 0 overflow for 6
circuits out of the total 9 circuits, and the total overflow is reduced
by more than an order of magnitude compared to the other three
routers. The wirelength of FastRoute 2.0 is also the least among
all the routers. At the same time, FastRoute 2.0 is 73% slower
than FastRoute, but 78× and 37× faster than Labyrinth and Chi
Dispersion router, respectively. Because we cannot find a version to
duplicate the results in [10], the runtime of Chi Dispersion router
is scaled from the runtime in [10] based on the information from
Standard Performance Evaluation Corporation (SPEC) [16]. In [10],
it was claimed that runtime of Chi Dispersion router is roughly 2×
faster than Labyrinth, which coincides with the scaled runtime we
obtained. We also get a new version of Chi Dispersion router from
the authors of [10], the total overflow on the same set of benchmark
is 804, but the total runtime is about 65× slower than FastRoute
2.0, which is close to the runtime of Labyrinth. In [8], a beaver
mode of FastRoute with more maze routing is also reported. The
total overflow of beaver mode is 512 and it is 2.2× slower than
FastRoute default mode, which is worse than FastRoute 2.0 in both
total overflow and runtime. This indicates that just applying more
maze routing in FastRoute cannot achieve the high-quality results
of FastRoute 2.0. Recently, a high-quality global router, BoxRouter
[19] was proposed. Because of page limit, we are not able to include
all the comparison results with BoxRouter. On the same set of
benchmark, the total congestion for BoxRouter is 497, compared to
98 for FastRoute 2.0. And the runtime of BoxRouter is about 30×
slower than FastRoute 2.0.

Second, we investigate the effect of monotonic routing technique.
In order to show the effect of monotonic routing, we set up 4 different
flows for phase 3.

• Only Z-shaped pattern routing
• Only Monotonic routing
• Z-shaped pattern routing + Maze routing
• Monotonic routing + Maze routing
Table III shows the comparison results between the first and

second flow, as well as between the third and fourth flow. It is clear
that monotonic routing can generate less congested solutions before
and after the maze routing. And we also measure the runtime for one
full round of monotonic routing and one full round Z-shaped pattern
routing. The previous one is about 2.3× slower than the latter. But
one point we want to mention that sometimes pattern routing may
be preferred because it may generate less vias. When there is strict



TABLE II
COMPARION OF FASTROUTE 2.0, FASTROUTE, LABYRINTH AND CHI DISPERSION ROUTER

FastRoute 2.0 FastRoute Labyrinth Predictable router Chi Dispersion router
Ovflow Wirelen Time(s) Ovflow Wirelen Time(s) Ovflow Wirelen Time(s) Ovflow Wirelen Time(s)*

ibm01 31 68489 0.72 250 67128 0.21 242 76228 16.99 189 66005 8.63
ibm02 0 178868 0.93 39 179995 0.56 214 202235 26.53 64 178892 26.27
ibm03 0 150393 0.60 1 151023 0.43 117 191500 37.92 10 152392 24.71
ibm04 64 175037 1.88 567 172593 0.50 786 198181 80.95 465 173241 32.94
ibm06 0 284935 1.36 33 285882 0.91 130 339379 72.06 35 289276 53.33
ibm07 0 375185 1.60 18 376835 1.05 407 450855 168.41 309 378994 79.61
ibm08 0 411703 2.36 58 412915 1.16 352 466556 154.82 74 415285 72.94
ibm09 3 424949 1.92 28 426471 1.39 310 481841 229.59 52 427556 86.67
ibm10 0 595622 2.79 18 599433 1.98 288 680113 296.70 73 599937 139.61
Total 98 2665181 14.16 1012 2672275 8.19 2846 3086888 1083.97 1271 2681578 524.71

Norm** 1 1 1 10.327 1.003 0.578 29.041 1.158 77.552 12.969 1.006 37.056

(*) Scaled runtime on our machine. (**) Normalized to FastRoute 2.0 results.

constraint on vias, pattern routing may be a good choice.

TABLE III
OVERFLOW VALUES OF DIFFERENT FLOWS
Z Monotonic Z + maze Monotonic + maze

ibm01 1435 1280 40 31
ibm02 2711 2569 0 0
ibm03 260 145 0 0
ibm04 1950 1794 112 64
ibm06 1682 1444 0 0
ibm07 1020 853 0 0
ibm08 963 735 1 0
ibm09 1065 626 21 3
ibm10 1834 1532 2 0
Total 12920 10978 176 98

Third, we report the total number of tree edges, the percentage of
tree edges been maze routed, and the percentage of tree edges whose
endpoints are changed during multi-source multi-sink maze routing.
From Table IV, we can see that only 2.34% of edges are maze routed,
which is the main reason why the algorithm is very fast. Also, the
results show that a significant portion (1 out of 3.5) of the edges
been maze routed have their endpoints changed during the multi-
source multi-sink maze routing. This indicates the effectiveness of
not constraining the endpoints of the routing path for the edges.

TABLE IV
MAZE ROUTING STATISTICS

Total # of Edges being maze Edges w/ endpoints
tree edges routed (%) changed (%)

ibm01 28116 3.24% 1.12%
ibm02 55361 4.00% 1.25%
ibm03 45582 1.79% 0.45%
ibm04 53308 4.04% 0.88%
ibm06 82283 2.43% 0.62%
ibm07 109175 1.89% 0.44%
ibm08 133222 1.13% 0.30%
ibm09 128185 1.25% 0.45%
ibm10 181432 1.25% 0.47%
Avg 2.34% 0.66%

V. CONCLUSIONS

In this paper, we develop a high-quality and very efficient global
router - FastRoute 2.0. It can generates routing solutions with an
order of magnitude less overflow. Its runtime is 73% slower than
FastRoute but still much faster than Labyrinth and Chi Dispersion.

Our future work will focus on two aspects. First, we will incor-
porate our technique into the multi-level framework to handle very
large routing problems. Second, we will integrate FastRoute 2.0 into

placement framework to develop placement algorithms that generate
better solutions in terms of timing, routability, etc.
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