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Abstract routing. Note that it is the problem applied hundreds of thousands

times in each design flow and many times this problem comes with
very large input sizeRS M T thus deserves much intensive research
Givenn points on a plane, a Rectilinear Steiner Minimal Treein VLSI CAD.
(RSMT) connects these points through some extra points called Unfortunately, RSMT itself was first shown to be strongly NP-
steiner points to achieve a tree with minimal total wire length. Takingomplete by Garey [7]in 1977. Taking blockages into account dra-
blockages into account dramatically increases the problem compleRatically increases the problem complexity. Thus, it is extremely
ity. It is extremely unlikely that an efficient optimal algorithm existg/nlikely that an efficient optimal algorithm exists f&#SMT RB.
for Rectilinear Steiner Minimal Tree Construction with RectilinearAlthough there exist some heuristic algorithms for this problem, they
Blockages RSMT RB). Although there exist some heuristic algo-have either poor quality or expensive run time.
rithms for this problem, they have either poor quality or expensive Existing heuristics foRSMT R B can be classified into three cat-
running time. egories.
The first category is maze routing [8] based approach. Maze rout-

. - . ing can optimally route two pin nets. H i-pi
In this paper, we propose an efficient and effective approach t&)g P y P owever, for multi-pin nets,

solve RSMTRB. The connection graph we used in this approacl] esigners need to introduce a multi-terminal variant [9-11], which

is called spanning graph which only contait¥n) edges and ver- ncurs a solution far from optimal. In addition, since the run time
; P g grap . y " 9 and memory used in maze routing are proportional to the size of the
tices. AnO(nlogn) time algorithm is proposed to construct span-

: ) routing area rather than the size of actual problem (i.e., the number of
ning graph forRSMTRB. The .expe.rlme.ntall .results show thqt ins and blockages), maze routing algorithms are inefficient in terms
this approach can achieve a solution with significantly reduced W|r§

R . O f run time and memory.
:‘(laor\]/\g/]th. The total run time increased is negligible in the whole design The second category is called sequential approach which typically

consists of two steps. These two steps are illustrated in Figure 1.
Step 1 is to construct a trég, which is either a minimum span-
1. INTRODUCTION ning tree (M ST) or a Steiner minimal treeS(MT") with absence
Given n points on a plane, a Rectilinear Steiner Minimal Treeof blockages. In this examplé}; is an M ST. Step 2 is to trans-
(RSMT) connects these points through some extra points callddrm 73 to a RSMT with blockages by substituting edges around
steiner points to achieve a tree with minimal total wire length. Manghe blockages for the edges overlapped by the blockages. Generally
works [1-12,14-17] have been done on this fundamental problem énsimple line sweep technique is applied in step 2. For example, for
electronic design automation. However, most of them did not takgin pair(p1, p4), we have two possible L-shaped routesandr; to
blockages into consideration. In fact, today’s design often containsterconnecp; andp, as illustrated in Figure (&) with absence of
many rectilinear routing blockages, e.g., macro cells, IP blocks, arflockages. Then we sweep all blockages which overlap with these
pre-routed nets. Thus, rectilinear Steiner minimal tree constructidwo routes and choose one route with smaller corresponding detour.
with rectilinear blockagesKSMTRB) becomes a very practical As shown in Figure @), router are selected since the detour length
problem. introduced byrs is smaller than that by,. This approach is com-
Generally,RSMT is used in initial net topology creation for globalmonly used in industry due to its simplicity and efficiency. However,
routing or incremental net tree topology creation in physical synthesince step 1 neglects the global view of blockages, step 2 can only
sis. It is also utilized to estimate total wire length, congestion antbcally remove overlap betweeF; and blockages. The quality(i.e.,
timing in early design stages, like block floorplanning and cell placethe total wire length) of resultindgSM T can be much worse than
ment. The timing and congestion information obtained f@6W/T  expected in many cases.
can be used as a criteria in following timing and congestion driven Later on, Yang et.al [12] introduced a complicated 4-process heuris-
tics to remove the overlaps in step 2 in a clever way. However the
approach still cannot avoid bad solution for many cases. This is be-
cause a bafl; due to neglecting blockages in step 1 could introduce

. . ) ) an unexpected routing detour in step 2.
Permission to make digital or hard copies of all or part of this work for  Tha third category consists of connection graph [13] based ap-
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copie roaches. Typically, the approach in this category is to first construct

bear this notice and the full citation on the first page. To copy otherwise, té Connection graph by pins and blockage boundaries, which guaran-
republish, to post on servers or to redistribute to lists, requires prior specifitees that at least one rectilinear Steiner minimal (or close to minimal)

permission and/or a fee. tree is embedded in the graph. Then, some graph searching tech-
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Figure 3: Dissect a rectilinear blockage into 3 rectangular block-
ages.

Step 1 Step 2

Figure 1: Sequential approach to solveRSMTRB.
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(b) Figure 4: Three types of blockages: (a) Complete blockage (b)
Vertical blockage (c) Horizontal blockage

Figure 2: Overlap removal in sequential approach. (a) two L-

shaped routes,r; and r2, before overlap removal. (b) router;

and r, after overlap removal.

rectilinear distance between andv, is given asz; — ;| + |y; —

y;i]- A RSMT connects all pins through some extra points (called
nique is used to find &SMT as a subgraph from the connection Steiner points) to achieve a minimal total length, while avoiding the
graph. Unlike sequential approach, this approach can globally cat@itersection with any blockage in the design.
the view of both pins and blockages in the design. Therefore, the .
connection graph based approach can generally achieve an optiall.  Rectilinear blockages
or near optimaRSMT. If all boundaries of a blockage are either horizontal or vertical, we

The efficiency of connection graph based approach depends on ikl this blockage as rectilinear blockage. Note that each rectilinear
size of graph. While the accuracy or effectiveness of this approadiiockage can be dissected into a set of rectangular blockages (see
depends on whether the graph contains a good Steiner minimal tr¢dgure 3 as an example). In the rest of paper, for simplicity, we
Obviously, there is a trade-off between efficiency and accuracy iassume each blockage to be rectangular.
this approach. . .

In [14], a connection graph is called escape graph which is cor?.2  Directional blockages
structed by escape segments. The number of vertex in the escapén multi-layer routing, there exist three types of blockages. The
graph can be(n?) in the worst case, where is the sum of pins first one is called complete blockage which blocks all vertical and
and blockage boundaries. Even the size of a reduced escape grapkizontal metal layers in its obstructed area. A complete blockage
is still quite huge. In [15], authors proposed a connection graptequires all routes must detour around it. The second type is denoted
with O(nlogn) vertices and edges and later on [16], they intro-as vertical blockage in which all vertical layers in obstructed area are
duced an even smaller graph which containg:/log n) vertices  blocked while a certain number of horizontal layers are still available
andO(nlog®/? n) edges. The construction of the connection graplior routing. The routes are allowed to horizontally pass through the
takesO(n log®/? n) time and memory usage. obstructed area, while not allowed in vertical direction. The third

In this paper, we will propose an efficient and effective connectiofype is called harizontal blockage, where routes can still vertically
graph. Itis called spanning graph. We show that the spanning grapass through the obstructed area. These three types of directional
contains onlyO(n) vertices and)(n) edges, which is smaller than blockages are illustrated in Figure 4.
any previous connection graph. In addition, we show that our span-

ning graph can always producef&5MT with good quality. Due 3. ESCAPE GRAPH VS. SPANNING GRAPH

to the special property of the spanning graph, the construction takes
only O(nlog n) time and memory usage, which are also smaller tha@ 1 Redundancy in escape graph

those in any previous connection graph construction. A ioned in Section 1 . h h th
We organize the rest of the paper as follows. In section 2, wi S we mentioned In Section 1, a gonnectlon grapn can catc t €
) ) . L ' . dlobal view of both blockages and pins. And the efficiency of this
will formally define the problem and explain the details of the basi . : ;
approach highly depends on the size of the connection graph. In

component in the problem. In section 3, we will first demonstrat%ther words, a good connection graph is able to describe all neces-

the drawback in the escape graph and then introduce the spanning . : ) : .
. . . safy geometrical relationship between pins and blockages using as
graph as a connection graph/it M7/ 5. Section 4 and 5 describe few edges as possible. In [14], the connection graph is called es-

the dgtalls of construction of spgnmng_graph i TRB' The c%pe graph, which is constructed by escape segments. Escape seg-
experimental results are shown in section 6. The paper is concludg . . ) .
ments are formed by horizontal and vertical lines extending from

in section 7. pins and blockage boundaries, and ending with their abutment to ei-
ther a blockage boundary or the internal perimeter of the routing re-
2. PROBLEM FORMULATION gion. The number of vertex in the escape graph ca@pé) in the
Let P = {p1,p2,ps3,...,pm} be a set of pins forn pin net. worst case. An example is shown in Figure 5. The collection of the
Let B = {b1,b2,bs,...,b} be a set of rectangular blockages. Letescape segments (shown as dashed segments) composes the escape

V = {v1,v2,vs,...,v,} = PU {corners inB} as the vertex set graph. And the graph preserves a ggd8M T for a multi-pin net.
in the problem, where each has coordinateéz;,y;). Note that However, we notice that most of edges and vertices are redundant in
each rectangular blockage has 4 corners, we hasem + 4k. The  the escape graph for finding@S M T'. For example, instead of using
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u Figure 8: Visible points in search region for different blockages
Re ¢ _— | | |
regions which are adjacent to this corner. We call these three regions
as neighboring search regions for a given corner point. For example,

Rs

R4 the neighboring search regions for the lowerleft corpgiin Fig-
. . . . o . ure 7a) are Rg, R1 and R,. For each pirp, we divide the whole
Figure 6: Eight regions defined for each pointin spanning graph.  jane into 4 search regions. The corresponding neighboring search
regions forp are R1, R2, Rs and R4 as shown in Figure (b).
. For eachv € V, we connect the closest visible pointifs each

13 edges, S.edges (ghowr] as solid segments) are enough to .repreﬁgrbthboring search region ta Note that the visible point in each
the connectlon_relatlonshlp between the blockagand pinps in search region could be different for complete blockage and direc-
the corresponding connection graph. tional blockage. For example, between Figufe)8and Figure &),

i the only difference is that the blockageis a complete blockage in
3.2 Spannmg graph . ) . Figure §a) while a vertical blockage in Figurg8). The search re-
_In [17], a spanning graph is introduced as an intermediate step,, g, for blockageb, is denoted as the area enclosed by the dashed
in minimal spanning tree construction. Given a set of points on t ments. Obviously, the search region in Figu#8 & larger than
plane, a spanning graph is an undirected graph over the points thak; i, Figure a). In Figure §a), there exists only 1 visible point

contains at least one minim_al s_panning tree. The number of edgesirlpregionRg of bs. While in Figure §b), there are 4 visible points in
the graph is called the cardinality of the graph. R, of by.

The construction of spanning graph is illustrated in Figure 6. From a taw natural questions may be raised as follows. First, why do we
each poinp, a plane can be divided into 8 regions by horizontal, very, ., apply+45° lines in definingkS MT RB search region? H-45°
tical and+45° lines throughp. It can be proved that the rectilinear lines are applied, each corer and pin has 6 and 8 search regions,
distance between any two points in one region is always smaller th?é‘spectively. We find that in practice, the total number of edges for
the maximal distance from them to Due to the cycle property of a anning graph by our method is actually very close to the one by
minimal spanning tree, that is, the longest edge on any cycle shoylth ethod where-45° lines are applied. However, ignoring these
not be included in any minimal spanning tree, which means only the s jines can greatly simplify the construction of spanning graph.
closest point tg in each region needs to be connectegh.t@onsid- Second, why do we only consider 3 neighboring search regions for
ering all given points, the connections will form a spanning graph of ; ., cornep of blockageh? This is because for any visible poipt
cardinalityO(n). In other words, spanning graph is able to describg, i rest 5 search regions bfwe can always find another corner
the relative geometrical relationship between points in the plane US of b such thay lies in one search region of and a shortest path

ing O(n) edges. from p to ¢ can always be obtained by makipfas an intermediate
Enlightened by the spanning graphihST construction, we bor- pointli)n thqe path. Y y ng

row and revise this idea to solM@SMTRB. The details are pre- In addition, for each point, why do we only consider the connec-

sented in following section. tion with its visible points? The reason is that between the visible
region and invisible region, there must exist at least one intermedi-

4. SPANNING GRAPH BASED APPROACH
IN RSMTRB

4.1 Search regions

In general spanning graph, each pgirtorresponds to 8 regions
which are divided by the horizontal, vertical agdl5° lines going
throughp. Then we search each region and find the closest point
in each region and connect it fo While in RSMTRB, for each
blockageb;, we divide the whole plane into 8 regions as shown in
Figure 7a). Each corner of blockagk has 3 neighboring search Figure 9: Example of invisible region for point p




ate blockage such that the poiptcan always reach the points in Plu 4
invisible region by making use of the boundaries of the intermediate p
blockage(s) as part of the shortest path. As an example in Figure 9,

region Ry of blockageb, is invisible to the upperleft corner of b5
b1. However, any point iR, of b2 can be reached from by using b2
boundaries ob, as part of the shortest path. b3

4.2 Spanning graph construction inRSMTRB

First, from blockage s&B, we find out a subséB, which includes pl
each blockage lying within or intersected by the bounding box of net. bl b4
Let V; be a point set which includes all corners®f and pins of a
given net. Our initial spanning gragh hasV; as its vertices and all [
blockage boundary segments®f as its edges. Then, we incremen- p2
tally build the graph by applying a sweep line based edge connection
among vertices iv;. For any point € V5, we only connect at most
one visible pointv’ in each neighboring search regionitpwhere
v € V, andv’ is the closest point to in the corresponding neigh-
boring search region.

Based on a0 (nlogn) sweep line algorithm proposed in [17],
we propose a revised sweep line algorithm to construct spanning b5
graph inRSMTRB. Our construction algorithm consists of four b2
passes. Each pass performs edge connection for a pair of search re-
gions of V. For sake of simplifying the exposition, we only present b3
the detail procedures of Pass one which performs edge connection
for search regiorR2 and R of all corner points.

First, all points inV, are sorted by their coordinates in non- pl
decreasing order. Note that for each blockage, lowerleft corner shares
the same: coordinate as upperleft corner and lowerright corner shares bl b4
the samex coordinate as upperright corner. We only need to sort left
boundary and right boundary segment of each blockage instead of >'/
point by point to speed up sorting process. Note that a fundamental p2
operation of sweep line algorithm is to keep an activedsef v such
that all points inA are visible tov. We thus build an active set and Figure 11: Complete spanning graph
dynamically keepd by adding and deleting points for sét Starting
with an empty sefd, we check each point; in the sorted lisVs. If
v; is not a lowerleft corner of a blockage (i.e.is either a pin or one rized in Algorithm2.
of the other three corners of a blockage), we just aduhto setA,

Figure 10: Edge connection for regionRs.

p3 p4

otherwise we perform edge connection fgias follows. Suppose;
is the lowerleft corner of blockagle. We first pick the point;41 Algorithm 1: Spanning graph construction in RSMTRB
which is right afterv; in the list of V,,. Note thatv;;1 must be the Input: V
upperleft corner point di; due to the attribute of our sorted lig}; . sortV; by non-decreasing;
Then, we check each poiatin A. If point a lies in regionR; of b;, perform edge connection fdt2 and R of all corners;
we add this point to another sdt.. If b; is not a vertical blockage, sortV; by non-decreasing;
we delete this point fromd. After that, we find out two pointg and perform edge connection fdt, and Rs of all corners;
¢ from A which are closest to; andv; 11, respectively, in rectilin- sortV; by non-decreasing + v;
ear distance. Finally, we add two edgés;, q) and (vi+1,q'), into perform edge connection fdt; andRs
graphG. Note thatg andq’ could be the same point id;. Before of all corners and?; andR3 of all pins;
we move to the next point i, we vacate sefl;. sortV, by non-decreasing — z;
An example is shown in Figure 10. The bold-faced segments are| perform edge connection fdt; and R,
the edges added to graghafter edge connection is performed for of all corners and?, and R, of all pins;
Ry of all corner points. Since search regiBia has the reverse sweep Return:spanning grapld for V;
sequence, we can make use of the same sortetflisto perform

edge connection foRg in Pass one. Similarly, in Pass two, we per-
form edge connection for search regiBn and Rs of blockages after
sortingV in a non-decreasing order with thgicoordinates. In Pass
three, we perform similar edge connection for and s of block- 2+ R’SMT CONSTRUCTION

ages andr; andR;3 of pins after sorting/; in non-decreasing + y. After we complete the spanning gragh= (V, F), we apply a
Similarly, in Pass four, edge connection is performed for search réeuristic to construct aRSMT based on the grapHi. The heuristic
gion R3 and R7 of blockages and?; and R4 of pins afterV; is  consists of following six steps. An example is shown from Figure 12
sorted in non-decreasing— . to Figure 17 to illustrate each step.

In order to achieve)(n) running time, the active setd and A, Step 1: LetP be a set of pins for a net. We construct a complete
must be efficiently maintained so that searching, deletion, and insemdirected graplizy = (Vi, E1) from G and P in such a way that
tion each can be done if(logn) time. The spanning graph after V4 = P and for each edgév;,v;) € Ei, the length on the edge
four passes is shown in Figure 11. The algorithm of spanning gragl;, v;) is equal to the length of the shortest path fropto v; in
construction inNRSMT RB is summarized in Algorithm. The de- graphG. See Figure 12 as an illustration for step 1. The length of
tail procedure of edge connection for search reginis summa- edge(p1,p3) in G1 is the length of the shortest path frgm to ps



Algorithm 2: edge connection for R,
Input: a sorted/;s with non-decreasing. p3 6 p4
A=

For eachu; € Vi, {

if (v; is @ not a lowerleft corner df;){

=

As = ¢;
if (b, is not a vertical blockage) pl
delete points fromA which are located itk of v;;
add the points located iR» of v; t0 As;
if (4! = 9){ P2
find pointq andg’ from A; which are closest to
v; andv; 41, respectively; Gl
add new edgév;, ¢) and(vi+1, ¢') to graphG;

}
}
}
}
4
p3 p 3 6 i
b5
b2 9
b3
ﬁ> 13
pl pl
bl b4 1
G Gl

Figure 12: Step 1

in graphG, which is shown in bold-fased segments.

Step 2: Find the minimum spanning trée of G,. If there exist
several minimum spanning trees, pick an arbitrary one. In practice,
we always pick the first one which we obtain. See Figure 13 as an
illustration for step 2.

Step 3: Construct the subgraph of G as follows. First we con-
struct an intermediate subgragf, = (E’, V') of G by replacing
each edge i} by its corresponding shortest pathGh If there are
several shortest paths, pick an arbitrary one. In practice, we always
pick the first one which we obtain. The edges of resulting graph p3
G', are shown as bold-faced solid segments in Figure 14. Then we 1z
build G, by adding edgév;,v;) to G, wherev; € V', v; € V' ‘
and(v;,v;) € E. The added edges are shown as bold-faced dashed b5
segments in Figure 14. b2

Step 4: Find minimum spanning tr&& of G. If there are several
minimum spanning trees, pick an arbitrary one. See Figure 15 as an
illustration for step 4. pl

Step 5: Construct a Steiner tré&g from T by deleting edges in bl b4
Ts, if necessary, so that all the leavesTip are pins. As illustrated
in Figure 16, in this example, we could not find any leaf which is et p2
blockage corner point. Gs

Step 6: Rectilinearizd, to obtain a rectilinear steiner trég..

See Figure 17 as an illustration for step 6.

6. EXPERIMENTAL RESULTS
We implemented the spanning graph baB8st\/T R B algorithm

adduv; to A;
else{
it (Al = @) b >

pl

p2
T

Figure 13: Step 2

Figure 14: Step 3

p3
p4
b5
b2
b3
: pl
bl b4
p2

Ts

Figure 15: Step 4
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Figure 16: Step 5

p3 p3 m—
p4 p4
I, |
b5 b5
b2 : b2
b3 b3
1z : pl

bl b4 bl b4
L =
P2 et p2

Ts Th

Figure 17: Step 6

Figure 18: Blockage placement in test case 1

in C++ language. We compile and run the program on Intel Pentium

4 machine with 2.80GHz frequency and 1.5GB RAM. We pick 5 in-
dustrial test cases and randomly create blockages for these test cases.
In case a source pin is inside a blockage, we move this pin to upper-
left corner of this blockage. If sink pin is inside a blockage, we move
this pin to lowerright corner of this blockage. The statistic data of
test cases are listed in Table 1. The blockage placement for test case
1 is shown in Figure 18 as an example. We compare our approach
with the traditional sequential approach illustrated in Figure 1.

The total wire length and run time comparison is given in Table
2. The results show that our spanning graph based approach can
reduce 12.081% (on average) wire lengthRS§ MT', comparing to
sequential approach. And the run time is only increased by 48.440%
on average.

Table 3 shows the wire length reduction percentage of different
pin nets for each test case. Itis not hard to find that our approach has
most significant wire length reduction on multi-pin nets, especially
while the pin number exceeds 50. This will benefit timing closure
for the whole design. Since in general, multi-pin nets or high fanout
nets contribute most significant portion of interconnect delay in the
most timing critical path of a circuit.

Test cases 1 2 3 4 5
num of inst 158672 | 35601 | 437444 | 277356 | 450367
num of 1/0 pins 865 201 1774 1453 1276
num of nets 169243 | 36244 | 477380| 285556 | 451250
2 pin net (%) 52.2 63.4 57.4 71.4 76.1
3-10 pin net (%) 42.9 32.8 21.2 16.3 16.8
11-50 pin net (%)| 4.5 3.2 17.6 10.1 6.7
51-100 pin net(%), 0.34 0.47 3.50 2.01 0.36
> 101 pin net(%)| 0.06 0.13 0.30 0.20 0.03
num of blkgs 145 37 136 539 487

Table 1: Statistics of test cases

7. CONCLUSION AND DISCUSSION

In this paper, we propose an efficient and effective approach to
construct rectilinear steiner minimum tree with rectilinear blockages.
The connection graph we used in this approach is called spanning
graph which only contain®(n) edges and vertices. AD(nlogn)
time algorithm is proposed to construct spanning grapRien/T RB.
The experimental results shows that this approach can achieve a so-
lution with significantly reduced wire length. The total run time in-
creased is negligible in the whole design flow.

Since our heuristic is graph-based, it can be easily modified to
handle other metrics. A possible extension is to construct timing
aware routing tree topology for a net among routing blockages.
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Total wire length [sm) Total run time §)
Test case| Sequential Ours decreased (%) Sequential | Ours | increased (%)

1 15174595 | 13855164 8.695 9.531 12.193 27.926
2 1995 1820 8.778 1.404 2.361 68.112
3 2854122 | 2400499 15.890 18.671 27.339 46.425
4 2452867 | 2051254 16.371 14.998 20.668 37.805
5 1022723 913584 10.670 13.576 21.984 61.933

On average 12.081 48.440

Table 2: Totoal wire length and run time comparison.

Test case | 2 pin net(%)| 3-10 pin net(%)| 11-50 pin net (%) 51-100 pin net (%)| > 101 pin net (%)
1 4.366 14.042 15.301 22.923 29.989
2 4.619 13.990 14.935 23.494 30.492
3 6.984 19.831 21.404 27.230 32.103
4 6.972 19.983 22.398 24.506 33.840
5 4.581 15.720 18.591 20.383 31.729
On average 5.492 16.713 18.526 23.707 31.631

Table 3: Wirelength reduction percentage on nets.




