
Accurate and Efficient Flow based Congestion Estimation
in Floorplanning

Zion Cien Shen Chris C. N. Chu
Electrical and Computer Engineering Electrical and Computer Engineering

Iowa State University Iowa State University
Ames, Iowa, 50010 Ames, Iowa, 50010
Tel: 515-294-7706 Tel: 515-294-3490
Fax: 515-294-4657 Fax: 515-294-4657

e-mail: zionshen@iastate.edu e-mail: cnchu@iastate.edu

ABSTRACT
Congestion has been a topic of great importance in the floorplanning
of deep-submicron 0design. In this paper, we design an accurate and
efficient congestion estimation model by performing global routing.
We interpret the global routing problem as a flow problem of several
commodities and relax the integral flow constraints. The objective of
resulting fractional flow problem is to minimize the maximum con-
gestion over all edges in the inner dual graph [13]. The underlying
routing graph for each commodity is derived by assigning directions
to the inner dual graph edges. We design an efficient two-phase algo-
rithm to solve this fractional flow problem. The first phase is denoted
as Incoming Flow Balancing (IFB) by which a good initial solution is
derived. The second phase is called Stepwise Flow Refinement (SFR)
by which the maximum congestion of the solution in first phase is it-
eratively reduced to its optimal value. In addition, a valid global
routing solution can be obtained by applying a simple rounding pro-
cedure on the fractional flow solution. The maximum congestion
after rounding is only increased by 2.82% on average according to
our experimental results, which justifies the use of fractional flow to
estimate the routing congestion. Finally, we demonstrate our model
by integrating it into a simulated annealing (SA) based floorplanner,
where we use the maximum congestion as part of the cost of SA. The
experimental results show that, on average, our congestion-driven
floorplanner can generate a much less congested floorplan (-36.44%)
with a slight sacrifice in area (+1.30%) and wirelength (+2.64%).
The runtime of the whole SA process is only increased moderately
(+270%).

1. INTRODUCTION
Floorplan design is to produce a chip-level plan of a set of circuit

modules by determining their positions and shapes on the chip. It is
the first stage of the physical design process. Hence, it has signifi-
cant effects on overall circuit quality. Traditionally, in floorplanning
stage, the major objective is to minimize area and total wirelength.
The routability and congestion issues are not considered until global
routing. However, due to the continued scaling of VLSI technol-
ogy, the design of chip-level interconnect has become increasingly
complicated [1]. Traditional floorplanners will produce floorplans
with congested routing regions that are difficult to eliminate in later
stages. Therefore, it is necessary to pay attention to the congestion
optimization at floorplanning stage in order to realize the single-pass
design methodology.

1.1 Previous Work
In the past few years, several works have been proposed to ad-

dress the congestion issue in floorplan design. Until recently, all
previous congestion models in literature divide the whole chip area
into tiles [2, 3, 4, 5, 6]. The number of wires crossing a tile boundary
is estimated and is used as a measure of congestion. In other words,
the underlying routing graph is a grid graph [1], in which each vertex
corresponds to a tile and each edge corresponds to a tile boundary.
There is a tradeoff between the accuracy of congestion estimation
and the cost of computation. If the number of tiles is small, the con-

A

B

C

D

I

II

III

Figure 1: Congestion estimation by the probability approach.

gestion estimation will be inaccurate. If the number of tiles is large,
the computation will be expensive.

To estimate the congestion of each edge in the routing graph, pre-
vious approaches can be divided into two categories. The first cat-
egory performs global routing on the grid graph [2]. Because the
congestion estimation is performed inside the inner loop of the floor-
planner, it is important to reduce the runtime of global routing. Thus,
they restrict the routing geometry to L-shaped and Z-shaped. As a
result, the congestion estimation may not correlate well with the real
congestion. In addition, since all nets are routed one by one during
global routing, even with restricted routing geometry, the computa-
tion is still very expensive.

The second category applies a probabilistic map to estimate the
probability of a net crossing each boundary [3, 4, 5, 6]. The conges-
tion of a boundary is the summation over all nets of the probability
on that boundary. The previous publications differ mainly in their
probabilistic maps for a net and in the way they handle blockages.
This approach is more efficient than the restrictive global routing ap-
proach in the first category. Therefore, this idea is also commonly
used in placement stage to estimate congestion [7, 8, 9, 10, 11]. No-
tice that the probability distribution of a net is determined indepen-
dent of other nets. Whereas, a realistic global router routes a net
based on current routing congestion information. Thus, the conges-
tion estimated by the probabilistic approach can be very different
from that by a global router. For example, in Figure 1, we have two
2-pin nets

���������
and

�
	��
���
. Their bounding boxes overlap in re-

gion ��� . By the probability approach, we will reach the conclusion
that routing region ��� is more congested than regions � and ����� .
However a global router can avoid congestion by routing net

���������
in region � and

�
	������
in region ����� . The resulting congestion in

��� can even be less than that in � and ����� .
Recently, Lai et al. [12] proposed a novel approach which is very

different from all previous approaches. For a floorplan of � modules,� � regions are defined according to the structure of the floorplan.
Each region contains several adjacent modules. The congestion for a
region is evaluated as the wire density passing through the boundary
of the region (i.e., number of wires connecting modules inside the
region to those outside divided by the length of the region bound-

ary). An ��� ������� �
	 time algorithm based on least common ancestor
computation is presented to evaluate the congestion of all regions.
This approach is very efficient. However, since most regions are
quite large and only a single number is provided for each region,
only coarse congestion information can be provided.

1.2 Our Contributions
In this paper, we present a new congestion estimation model which

is efficient and accurate. The basic idea is to perform global routing
by a flow based approach to minimize the maximum congestion over
channel segments. A channel segment is a segment of a channel
shared by two adjacent rooms in a floorplan. If we represent each
room by a vertex and connect each pair of adjacent rooms by an
edge, the resulting graph is called an inner dual graph [13]. (See
Figure 2 for an example.) Note that each edge in the inner dual graph
corresponds to one channel segment. We use the inner dual graph
as the underlying topology in global routing. In floorplanning, the
exact pin positions inside a module are still unknown. It is a waste
of time to use a fine grid graph to estimate the routing congestion.
It is enough for global routing to list out the set of rooms that a net
passes through without specifying its exact route inside each room.
Therefore, the inner dual graph is an ideal choice as the underlying
routing topology. The size of the inner dual graph is linear to the
number of modules and is typically much smaller than that of grid
graph. Henece, itt is much more efficient to use.

Inner dual graph is an undirected graph. In order to avoid detour
in the routing solution, for each set of nets originating from a partic-
ular module, we use a different routing graph by assigning different
directions to the edges of the inner dual graph. In order to solve
this problem, we interpret it as a flow problem and we relax the in-
tegral flow constraints. We design an efficient two-phase algorithm
to tackle this fractional flow problem. In the first phase, we propose
an Incoming Flow Balancing (IFB) technique to derive a good ini-
tial fractional routing solution. In the second phase, we present a
Stepwise Flow Refinement (SFR) technique to iteratively reduce the
maximum congestion of the solution in the first phase. We prove
that SFR always converges to the optimal solution. Since we relax
the integral flow constraints, the optimal solution by our algorithm
will only be a lower bound on the maximum congestion. A valid
global routing solution can be obtained by a simple rounding proce-
dure. We show experimentally that the maximum congestion after
rounding is only increased by 2.82% on average. It justifies the use
of fractional flow to estimate the routing congestion.

We demonstrate our model by integrating it into a simulated an-
nealing (SA) based floorplanner. The maximum congestion is used
as part of the cost of SA. The experimental results show that, on av-
erage, our congestion-driven floorplanner can generate a much less
congested floorplan (-36.44%) with a slight sacrifice in area (+1.30%)
and wirelength (+2.64%). The runtime of the whole SA process is
only increased moderately (+270%). The efficiency of our model is
because of the use of inner dual graph, the simplicity of the two-
phase algorithm, and the fact that we route a set of nets simultane-
ously rather than net by net.

The remainder of the paper is organized as follows. In Section 2,
we will give an overview of our congestion-driven floorplanner. In
Section 3, we will present the two-phase algorithm used to solve the
fractional flow problem in detail. In Section 4, a rounding procedure
will be presented to derive a global routing solution from the frac-
tional flow. The experimental results will be described in Section 5.
Finally, the paper will be concluded in Section 6.

2. OVERVIEW OF OUR FLOORPLANNER
We make use of Twin Binary Sequences (TBS) [14] as our floor-

plan representation in simulated annealing. Basically, our congestion
model can be employed with any floorplan representation. In our ap-
proach, we choose TBS representation because of two reasons. First,
TBS itself is a very efficient and effective floorplan representation for
mosaic floorplan and can be extended to represent general floorplan.
Second, the inner dual graph of a floorplan can be easily obtained in
TBS floorplan realization step.

In the annealing process, we use a 3-stage SA with three differ-

D

E

B

A
C

(a)

D

E

B

C
A

(b)

Channel Segment

Figure 2: (a) A rectangular floorplan � . (b) Its inner dual graph�
. The channel segment and the inner dual graph edge corre-

sponding to the adjacent rooms
	

and
�

are highlighted.

ent cost functions in different temperature ranges to reduce runtime.
Firstly, at high temperature range, we only consider area and total
wirelength in the cost, i.e.,
���������������������� �"!#���%$&�('*)��,+.-
Then, at medium temperature range, we add an accurate, although
not optimal, maximum congestion /10%2��4365 derived by only IFB as
an additional part of the cost, i.e.,
����������������7�8�9�:�;!#���%$&�('<)��,+=��>8�@?BA���'*)DCE-
Finally, when the annealing process reaches low temperature range,
we replace /:0(2
�4365 with maximum congestion /:0(2
�43*F derived by
IFB and SFR. The cost thus becomes:
����������������7�8�9�:�;!#���%$&�('<)��,+=��>8�@?BA���'*)HGI-
The following section will describe how to estimate the congestion
of a given floorplan in detail.

3. CONGESTION ESTIMATION MODEL
In Section 3.1, we first introduce the inner dual graph and describe

how to obtain the underlying routing graph from the inner dual graph.
Then we illustrate the method of constructing the inner dual graph
directly from TBS in Section 3.2. Based on the inner dual graph, in
Section 3.3, we formulate the congestion minimization problem as
a flow problem. Section 3.4 and 3.5 describe an efficient two-phase
algorithm to tackle the problem formulated in Section 3.3.

3.1 Underlying Routing Graph
The exact pin positions inside each module is not given in the

floorplanning stage. So it is not necessary to use a fine grid graph
to estimate the routing congestion as in previous works. It is enough
for global routing in floorplanning stage to list out the set of rooms
that a net passes through without specifying its exact route inside
each room.

Given a floorplan � , the room adjacency relationships can be de-
scribed by channel segment which is defined as a segment of a chan-
nel shared by two adjacent rooms in the floorplan. For example,
in Figure 2(a), the channel segment corresponding to the adjacent
rooms

	
and

�
is highlighted. The room adjacency relationships

can also be represented by the inner dual graph
�J� �LK ��M 	 [13]

where

K � �HNPO N
corresponds to a room of � �M � � �RQ ��N �EO Q

and
N

are adjacent to each other in � �
See Figure 2(b) for an example. Note that there are one-to-one map-
pings between the rooms in � and the vertices in

�
, and between the

channel segments in � and the edges in
�

. In the rest of the paper,
the terms floorplan room and inner dual graph vertex, and channel
segment and inner dual graph edge are used interchangeably.

The inner dual graph can be used as the underlying graph in global
routing. The size of the inner dual graph is linear to the number of
modules and is typically much smaller than the size of grid graph

S

e

Figure 3: An illustration of routing direction assignment.

D

E

B

C
A

D

E

B

A
C

(a) (b)

Source

Source

Figure 4: An example of routing direction assignment.

used in previous approaches. Hence, it is much more efficient to use.
However, the inner dual graph is an undirected graph. If it is used di-
rectly as the underlying routing graph, the routing solution may have
a lot of detour. We avoid detour by assigning directions to the edges
of inner dual graph. Notice that different nets may require different
direction assignments, but all nets originating from the same module
share the same direction assignment. So for each set of nets originat-
ing from a specific module, we can derive a specific directed acyclic
graph (DAG)

���
as the routing graph according to the following rule

(as illustrated in Figure 3). Consider nets originating from a source
room � , and consider a channel segment � shared by a pair of adja-
cent rooms in floorplan � . By extending the channel segment, the
floorplan region will be divided into two sides. We assign the direc-
tion of the edge � in the inner dual graph to be from the room on the
same side as the center of � to the other side. See Figure 4 for an
example. Notice that even with direction assignment, some detour
may still occur. For example, in Figure 4, a net following the path� � ��M �
	������

may have detour depending on the exact pin posi-
tions inside rooms

�
and

�
. However, with direction assignment,

major detour can be avoided.
We observe that the underlying routing graph for a specific com-

modity obtained by the assignment above is a directed acyclic graph
(DAG) in most cases. However, there exists a special case as illus-
trated in Figure 5. When

�
is considered as a source room, a cyclic

path
� ��� � �
	���M �����

exists in this graph. To obtain an acyclic
underlying routing graph

���
� �LK � ��M � 	 , we remove one edge from
each cycle based on the rule described in Section 3.4.

3.2 Inner Dual Graph Construction from TBS

D

E

B

C

A

(source)

A E

CB

D

(a) (b)

Figure 5: A special case where cycle exists after direction assign-
ment.

F

B

C

EA

C

DA

B

DC

B
A

D

EF

E

F
t1

t2

t1 t2

t1 left−going branches: {C, B}, {E, D}.

t2 right−going branches: {A}, {F, C}.

Figure 6: Determining the room neighborhood information di-
rectly from TBS.

The inner dual graph
�

describes the neighborhood information
between any two rectangular rooms. Given a floorplan in TBS, we
can construct its inner dual graph in linear time by finding all pairs of
adjacent rooms. In TBS representation, each floorplan is one-to-one
mapped to a pair of twin binary trees �
	 5 � 	�F 	 . 	(5 and 	�F are obtained
by connecting, respectively, lower-left corners and upper-right cor-
ners of all rooms. We use the floorplan in Figure 6 as an example
to illustrate how to obtain all room adjacency relationships as well
as the length of each channel segment directly from TBS. We de-
fine a left-going (right-going) branch of a binary tree to be any right
(left) child and all its left (right) descendents. For example, in 	 5 ,
the left-going branches are

�
	��
���
and

�HM �����
. In 	�F , the right-

going branches are
��� �

and
��� � 	��

. We notice that for each vertical
channel (not including the boundaries), the room(s) on its right side
corresponds to the room(s) in a particular left-going branch of 	 5 .
The room(s) on its left side corresponds to the room(s) in a particu-
lar right-going branch of 	 F . See the vertical channel highlighted in
Figure 6 as an example. If there are
 vertical channels in the floor-
plan, there will also be
 left-going branches in 	 5 and
 right-going
branches in 	 F . The branches have already been found in the origi-
nal TBS packing procedure. Thus, in order to capture all horizontal
adjacency relationships as well as the length of each vertical channel
segment, we only need to compare the heights of rooms in a left-
going branch of 	 5 with those in a corresponding right-going branch
of 	 F (i.e.,

�
	������
with

��� �
,
� M �����

with
��� � 	��

). Similarly, we
can obtain the vertical adjacency relationships and horizontal chan-
nel segment lengths by considering the horizontal channels (i.e., the
right-going branches in 	%5 and the left-going branches in 	�F).
3.3 Problem Formulation

In our formulation, as in previous congestion estimation papers,
we only handle 2-pin nets for the sake of simplicity. Notice that
multi-pin nets can be easily broken down to several 2-pin nets by
Minimum Spanning Tree or Rectilinear Steiner Tree techniques.

Our congestion model is meant to estimate the best maximum con-
gestion over all possible global routing solutions. If we do not assign
directions to the inner dual graph

�
, we can formulate the global

routing problem as a flow problem with several commodities, where
each commodity corresponds to a set of nets originating from a par-
ticular module. We first introduce some notations.

����� : the set of neighboring vertices of vertex � .
� 0 �� : the demand of vertex � for commodity � , i.e., the total

number of nets with source vertex � and sink vertex � .
��� �� � : the amount of flow from � to � for commodity � for� � � � ���@M

and ���� � .
� 0�� �"! : the capacity of channel segment � in � , i.e., the maxi-

mum number of nets that can cross it.
� 0%2��P3 ! : the congestion of channel segment � , i.e., the ratio of

the number of nets crossing it to its capacity.

� /:0(2
�43 : the maximum congestion over all channel segments
of floorplan � .

Note that all flow amount � �� � should be integral in order to be a valid
global routing solution. Also note that � �� � may be different from � �� � .
For the capacity of channel segment, it is technology dependent. We
can calculate it as follows. Let

� ! be the length of the channel seg-
ment � . Let � be the sum of minimum wire width and minimum wire
spacing. Then the routing capacity is calculated as 0�� � ! ��� � !�� ��� .
In general, the capacity can also be modified to model routing block-
age.

The congestion of edge � � � � � � � can be written as follows:

0(2
�43 ! � 	 � � � �� � � � �� � 	
0 ��� !

-

Then, the flow problem can also be formulated as the following inte-
ger linear program (ILP):

Minimize /:0(2
�43
such that

	 � � � �� � � � �� � 	
0�� �"!

 /:0(2
�43 ��� � � � � � � ��� M
(1)

������� � �� � �

������� � �� � � 0 �� ��� � � � � K s.t. � �� � (2)

� �� ����� ��� � � � � � � K (3)
� �� � �

Z
��� � � � � � � K (4)

Constraint (2) is the flow conservation constraint. It specifies that for
each commodity � and for each vertex � �� � , the total incoming flow
equals the total outgoing flow plus the demand of vertex � . Note that
by summing constraint (2) over all � �� � , we can derive:

������� � �� � �

��� � 0 �� ��� � � K

This means for commodity � , the total outgoing flow from vertex �
equals the total demand.

Since we restrict the flow direction for different commodity as de-
scribed in Section 3.1, we need to add ��� � F 	 constraints to the ILP
formulation above. For each commodity � and each edge

� � � � ���@M
,

if the flow direction is from � to � , we add the constraints � �� � �!�
and � �� � � � .

ILP is known to be NP-complete. To tackle this problem, we
first relax the integral flow constraint (4). Notice that the resulting
problem is similar to the classical maximum concurrent flow prob-
lem [15]. However, in our problem, the flow direction on each edge
may differ for different commodities. Our problem can be solved
by any LP solver. However, it is too time consuming to be applied
in the inner loop of the floorplanning process. Instead, we propose
an efficient two-phase algorithm to derive the optimal fractional flow
solution. The algorithm will be explained in detail in the following
two subsections.

3.4 Incoming Flow Balancing (IFB) Phase
In this Section, we present an Incoming Flow Balancing (IFB)

technique to derive a good fractional flow solution. This solution is
included into the cost of the second stage of SA and is also used as
an initial solution of SFR technique described in Section 3.5.

We construct the flow solution by iteratively deriving the flow of
each commodity one by one based on current congestion informa-
tion. At the beginning, we set the flow amount and congestion on
each edge for each commodity to 0. When considering commodity
� , we obtain the underlying routing graph

� � � �LK � ��M � 	 by assign-
ing the directions to each edge of the inner dual graph

�
. If cycle

occurs, we remove the most congested edge in the cycle according to
the current congestion information. Then we consider vertices in re-
verse topological order1 [16] of graph

� �
. For each vertex � , in order

5 A reverse topological order of a directed acyclic graph (DAG) is a
linear ordering of all its vertices such that if it contains an edge (

Q ��N
),

then
Q

appears after
N

in the ordering. For instance, in Figure 4(b),
the corresponding reverse topological order is

����� �
	���M ���
.

(b)(a)

i
fout = 6

congin1 = 0.6
fin1 = 0

congin2 = 0.5
fin2 = 2

congin3 = 0.5

fin3 = 6

i

capin1 = 10

congin1 = 0.6

congin3 = 0.3

capin3 = 30

fout = 6

= 0.6

congin2 = 0.4
capin2 = 20

Demand: Min(Max(congin1, congin2, congin3))kC i = 2

Figure 7: Illustration of Incoming Flow Balancing technique. (a)
Flow distribution before assigning incoming flow. (b) Flow dis-
tribution after assigning incoming flow.

0.876

0.528
0.514

1 2 3 4 5 6 7

0

Mcong

of pass

Figure 8: The convergence of maximum congestion in IFB phase
for circuit � � 	 � .

to minimize the maximum congestion, we balance incoming flow to
make the congestion of incoming edges as even as possible. Let " �$#
be the number of incoming edges for vertex � . Let � � � � be the flow
amount of commodity � , 0%2��P3 � � � be the current congestion exclud-
ing commodity � , and 0�� � � � � be the capacity of the � -th incoming
edge (%
 �
 " �$#). Our goal to minimize the maximum congestion
over all incoming flow can be written as follows:

Minimize &('*),+5.- � -0/ �21 &�0(2
�43 � � � � � � � �
0 � � � � �43�3 -

Since we consider the vertices in reverse topological order, all out-
going flow of � has already been determined. Let ��57698 be the to-
tal outgoing flow amount. Then the flow conservation constraint in
equation (2) can be rewritten as follows:/ �21

� 5 � � � � � 0 �� � ��5�6,8 (5)

This problem can be easily solved by adding flow to the least con-
gested incoming edge(s) until its congestion matches that of the next
least congested edge. Note that there may be more than one edges
with the least congestion. In that case, we add flow to them such that
they still have the same congestion. We keep on adding flow until
equation (5) is satisfied. See an example in Figure 7. For commodity
� , The total outgoing flow amount is : . The demand for vertex � is

�
.

So the total incoming flow amount should be : � � �<;
. We assign� � � 5 � � � � � � F � � � � � ��= � : to edges 1, 2, and 3, respectively.

The maximum incoming flow congestion is thus 0.6.
The procedure of routing all commodities once is called a pass. In

IFB phase, we perform several passes until the maximum congestion
converges. Notice that in pass � � �

, for commodity � , we first re-
move all its flow in pass �?>@% and update the congestion. Then we
balance the flow of incoming edges according to the updated conges-
tion. Since our algorithm is very greedy, the maximum congestion
will converge in 2 to 4 passes in practice. An example of the conver-

gence of the MCNC benchmark � � 	 � circuit is shown in Figure 8.
The overall flow of this phase is summarized in the IFB Algorithm
below.

IFB Algorithm:
Input: Inner dual graph

�:� �LK ��M 	
Output: 0(2
�43 ! and � �� � on each vertex � and edge � � � � � � �
Initialize 0%2��43 ! and � �� � to 0 for all � and � � � � � � � ;
While /10%2��P3 is not converged do

For each commodity � do
Assign flow directions to all edges to obtain DAG

� �
;

If it is not the first pass,
remove � �� � , and update 0(2
�43 ! for each edge;

Do a reverse topological ordering on DAG
� �

;
For each vertex in a reverse topological order do

Assign incoming flow in a balanced manner;

3.5 Stepwise Flow Refinement (SFR) Phase
Since IFB phase can only achieve local incoming flow balance at

each step, we still need an additional phase to obtain global solu-
tion by stepwise refining the flow solution given by IFB phase. An
iteration in SFR phase is illustrated in Figure 9.

First, we pick an edge � � � � � � � with maximum congestion/10%2��P3 . Second, we pick a commodity � which contributes more
than ��� of total flow amount on edge � (i.e., � �� � � /:0(2
�43�� 0�� � ! �
���). Third, based on the DAG

� �
of commodity � , we find the set

of vertices K 576,8 which is reachable from � . K 576,8 includes � . Simi-
larly, we find the set of vertices K �$# which can reach � . K �$# includes
� . Then, by applying breadth first search (BFS), we find a simple
path � 5 which links a vertex � � K �$# and another vertex � � K 57698 .
In the meantime, we require that �*5 should not pass through edge
� and the maximum congestion over the edges of � 5 should be at
least � less than /:0(2
�43 . At the same time, we derive another path
� F which connects � and � by passing through edge � . Finally, we
move 	 � amount of flow from ��F to � 5 in a way that the maximum
congestion over the edges of � 5 and � F is minimized. 	 � should also
satisfy an additional constraint that the total incoming flow amount
for each vertex on � F after moving 	 � flow amount should not be less
than its demand of commodity � . Finally, we update the congestion
and flow amount on edges of � 5 and � F . We keep applying the SFR
technique on the edge with maximum congestion iteratively until it
is not able to find � 5 and � F for the current most congested edge after
all commodities are tried. In practice, we could speed up this process
by tuning the parameter � and � . A convergence of /:0(2
�43 in SFR
phase is shown in Figure 10, where the test circuit is � � 	 � , and �
and � are set to 10 and 0.001, respectively. We cannot find routes � 5
and � F to further improve /:0(2
�43 after 13 iterations. SRF Algorithm
gives the overall flow of the procedure above.

LEMMA 1. If � � � � � , the SFR algorithm always converges
to the optimal solution.

k’

i j
C

D

E

F

G H

L

M

N

B

V

V in

out

r1

r2

A

p q

Figure 9: SFR approach to globally optimize the maximum con-
gestion. In this example, � � � � � � � is with /10%2��43 , K 57698 �� � ��
 �
� � / � � ��� K �2# � � � � 	���� � � � . After one iteration, we de-
rive � 5 � � � ��� � M � / �

and � F � � � � � � � � / �
.

0.521

1

0

Mcong

0.496

0.505

0.499

0.489

0.482

3 5 7 119 132 4 6 8 10 12

0.470
0.473

of iteration

Figure 10: The convergence of /10%2��43 of � � 	 � in SFR phase,
where � � % � , � � � - �9� % .

PROOF. Note that if the current flow solution is not optimal, SFR
can always find two routes � 5 and � F to reduce the maximum con-
gestion. Since the maximum congestion is bounded below, the SFR
algorithm always converges to the optimal solution.

SFR Algorithm:
Input: Inner dual graph

�
with initial solution obtained

from IFB algorithm.
Output: Minimized maximum congestion /:0(2
�43 .
Do

Pick an edge � � � � � � � with maximum congestion;
For each � with � �� � (or � �� �) � /10%2��P3�� 0 ��� !������ do

Find K �$# and K 57698 ;
Find � 5 and � F ;
Move 	 � from � F to � 5 and update the flow amount
and congestion of edges on � 5 and � F ;

While edge � can find �*5 and � F

4. GLOBAL ROUTING SOLUTION GENER-
ATION

Based upon the final floorplan solution at the end of simulated an-
nealing, we obtain a global routing solution by a simple rounding
technique applied to the fractional flow solution. For each commod-
ity � , we round the incoming flow of vertices in reverse topological
order. In the process, we maintain the flow conservation constraint
in equation (2) by adjusting the flow of the least congested incoming
edge. Once the rounding process for all commodities is finished, we
update the congestion for each edge. Then, we apply SFR to opti-
mize the global routing solution. It is important to stress that this
time we only allow to move an integral amount of flow, namely 	 � ,
from one congested route to another less congested route.

5. EXPERIMENTAL RESULTS
We implement the algorithm in the C programming language and

test five MCNC benchmarks on a Sun4u machine with 8 GB mem-
ory and 750MHz Sparcv9 processor. The parameters of those bench-
marks are listed in Table 2. The modules in the benchmark are soft
modules with aspect ratio 0.5 to 2. To calculate the capacity of each
channel segment, we assume the sum of minimum wire spacing and
minimum wire width to be :�� . Since our congestion model is based
upon 2-pin net, we decompose each multi-pin net into a set of 2-pin
nets. In addition, we randomly choose one pin as the source since
the benchmarks are lack of signal direction information. In the case
that one pin is located along the chip boundary, we assign this pin
to its corresponding boundary room. Thus, each net starts from one
room and ends at another room.

In order to test the effectiveness and efficiency of our algorithm,
we compare two floorplanners: F1, without congestion optimization;
F2, with congestion optimization. In F1, a single stage simulated an-
nealing is used to search for a floorplan aiming at minimizing total

MCNC
� � � � (

 F) � � � � � � �43 	�� (

)

� /10%2��43�� �E/10%2��P3 � Q �"	 �
 � (�)
benchmark F1 F2 F1 F2 F1 F2 F1 F2

apte 48.227 47.898 132.67 134.33 0.607 � 0.611 0.371 � 0.373 2.10 4.69
xerox 20.243 19.864 147.38 152.01 1.059 � 1.070 0.938 � 0.945 2.58 4.47

hp 9.397 10.019 44.93 48.91 1.931 � 2.014 0.803 � 0.826 1.74 3.73
ami33a 12.468 12.636 64.88 64.91 1.453 � 1.502 0.980 � 0.993 4.21 13.63
ami49a 39.748 40.221 302.56 294.53 2.570 � 2.738 1.590 � 1.699 8.14 75.04

average (F2-F1)/F1 +1.30% +2.64% -35.88% � -36.44% +270%

Table 1: Experimental results for MCNC benchmarks.

Circuit modules nets 2-pin nets
apte 8 97 172

xerox 10 203 455
hp 11 83 226

ami33a 33 123 363
ami49a 49 408 545

Table 2: MCNC benchmark.

area and wirelength only. The maximum congestion is obtained by
applying IFB and SFR to the final floorplan. In F2, we employ afore-
mentioned 3-stage simulated annealing to obtain a floorplan with
minimized weighted sum of area, wirelength, and maximum con-
gestion. The weights are set such that the costs of area, wirelength,
and congestion are approximately equal. The initial temperature in
annealing process is set to % - �;� % ��� and drops down at a constant
rate of 0.95 to 0.97 until it is below % � % �	� 5�
 . The number of it-
erations at one temperature step is 30. For each experiment, 10 runs
are performed and the result of the best run is reported. The area, to-
tal wirelength, maximum congestion and total runtime are reported
in Table 1. In terms of maximum congestion,

� /:0(2
�43 denotes the
maximum congestion based on fractional flow and �E/:0(2
�43 denotes
the maximum congestion based on integral flow after rounding. The
experimental results show that the maximum congestion after apply-
ing rounding increases only by 2.82%, on average. This means our
fractional flow based congestion model is fairly accurate in terms of
estimation of the congestion for a floorplan.

From Table 1, we can notice that, compared to floorplanner F1,
the congestion-driven floorplanner F2 can reduce the maximum con-
gestion by � : -
�
 � on average. More specifically, for �
 ������� , � �
and � � � 2�� , F1 is not able to produce routable final floorplan solu-
tions (as their maximum congestions exceed 1), whereas, F2 is able
to produce routable solutions. For � � 	 � , both F1 and F2 generate a
routable floorplan solution. However, F2 can reduce maximum con-
gestion by almost

 � � as compared to F1. For �
 �
�� � , both F1
and F2 are not able to produce a routable floorplan. Nevertheless,
since the maximum congestion by F2 is much less than F1, the floor-
plan by F2 is more likely to be successfully routed if more detour is
allowed. Hence, F2 can reduce the overall congestion and improve
routability of a circuit significantly in floorplanning stage with slight
increase of area (

� % - � � �), total wirelength (
� � - :
 �), and runtime

(
� ��� � �).

6. CONCLUSION AND DISCUSSION
In this paper, we presented a flow based congestion estimation

model for estimating the routing congestion in floorplanning level.
This model is based on the inner dual graph. The two-phase algo-
rithm used in this model is optimal and efficient in estimating the
maximum congestion of a floorplan. The experimental results show
that the maximum congestion can be better optimized by incorporat-
ing this congestion model into floorplanner with slight sacrifice on
area and wirelength. In the future, we plan to extend our algorithm
to handle timing driven floorplanning and noise-aware floorplanning.

7. REFERENCES
[1] N. Sherwani. Algorithms for VLSI Physical Design Automation, 3rd

Edition. Published by Kluwer Academic Publishers, 1999.
[2] H. M. Chen, H. Zhou, F. Y. Young, D. F. Wong, H. H. Yang, and N.

Sherwani. Integrated floorplanning and interconnect planning. Intl.
Conf. on CAD, pages 354–357,1999.

[3] A. Ranjan, K. Bazargan and M. Sarrafzadeh. Fast hierarchical
floorplanning with congestion and timing control. Intl. Conf. of
Computer Design, pages 357–362, 2000.

[4] C. K. K. P. Sarkar, V. Sundararaman. Routability-driven repeater block
planning for interconnect-centric floorplanning. Intl. Symp. Physical
Design, page 186–191. 2000.

[5] C. W. Sham, W. C. Wong and F. Y. Young. Congestion Estimation with
buffer planning in floorplan design. Design, Automation and Test in
Europe Conf. and Exhibition, pages 696–701, 2002.

[6] J. Lou , S. Krishnamoorthy and H. S. Sheng. Estimating routing
congestion using probabilistic analysis. Intl. Sym. on Physical Design,
ACM, pages 112–117, 2001.

[7] M. Wang and M. Sarrafzadeh. On the behavior of congestion
minimization during placement. Intl. ASIC Conf. and Exhibit, pages
145–150, 1999.

[8] C. L. E. Cheng. RISA: Accurate and efficient placement routability
modeling. Intl. Conf. Computer-Aided Design, pages 690–697, 1994.

[9] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu and W. H. Kao. A new
congestion-driven placement algorithm based on cell inflation. Conf.
Asia South Pacific Design Automation, pages 605–608, 2001.

[10] X. Yang, R. Kastner, and M. Sarrafzadeh. Congestion reduction during
top-down placement. Int. Conf. Computer-Aided Design, pages
573–576, 2001.

[11] Ulrich Brenner and André Rohe An efficient congestion-driven
placement framework. IEEE Transaction of Computer-Aided Design,
Volume 22, pages 387–394, 2003.

[12] S. T. W. Lai, F. Y. Young and C. N. Chu. A new and efficient
congestion evaluation model in floorplanning: Wire density control with
Twin Binary Trees. Design, Automation and Test in Europe Conf. and
Exhibition, pages 856–861, 2003.

[13] S. M. Sait and H. Youssef. VLSI Physical Design Automation, page
117. Published by IEEE Press, 1995.

[14] F. Y. Young, C. N. Chu and Z. C. Shen. Twin binary sequences: A
non-redundant representation for general non-slicing floorplan. Intl.
Sym. on Physical Design, ACM, pages 457–469, 2002.

[15] F. Shahrokhi and D. W. Matula. The maximum concurrent flow
problem. Journal of ACM, page 318–334, 1990.

[16] T. H. Cormen, C. E. Leiserson, R. L, Rivest and C. Stein. Introduction
to Algorithms, 2nd Edition. Published by MIT Press, 2001.

