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ABSTRACT
Many previous works on rectilinear block packing [7; 12; 4; 5; 6; 3;
9; 10; 11; 1; 14; 2] assume that some input modules are pre-designated
to have a particular rectilinear shape, e.g., L-shape, T-shape, etc. How-
ever, this may not be the case in practice. Many modules still have
large flexibilities in shapes and dimensions in the early floorplanning
step. Instead of restricting some modules to be L-shaped or T-shaped
at the beginning, the non-rectangular modules can indeed be generated
by the floorplanning step, in order to improve the packing quality. Af-
ter a preliminary floorplan is designed based on the major criteria like
interconnect cost, delay and area, we can modify the shapes (from rect-
angular to non-rectangular) and dimensions of the modules to fill up the
unused area, while keeping the relative spatial relationship between the
modules unchanged. (This relationship may come from the optimization
in the initial floorplanning step.) In this paper, we study this problem of
changing the shapes and dimensions of the flexible modules in a best fit
way to fill up the unused area of a preliminary floorplan, while keep-
ing the relative positions between the modules unchanged. This feature
will also be useful in fixing up small and incremental changes during
ECO modifications. We formulate the problem as a mathematical pro-
gram. The formulation is in such a perfect way that the corresponding
Lagrangian relaxation subproblem can be solved optimally, and the opti-
mal dimensions of all the rectangular and non-rectangular modules can
be computed by closed form equations in

�������
time where

�
is the

total number of edges in the constraint graphs. We tested our method
using some benchmark data and the experimental results show that an
average reduction of about 3.6% of deadspace is achievable by shaping
and sizing.

1. INTRODUCTION
Floorplanning has become increasingly important in the physical design
of VLSI circuits due to the advance in the deep sub-micron technology.
New packaging schemes such as Multi-Chip Modules (MCMs) and inte-
grated circuit components may sometimes have their shapes more com-
plex than a simple rectangle. A lot of works have then been reported on
floorplanning with rectilinear blocks [12; 3; 4; 5; 9; 10; 11; 6; 1; 14;
2]. The papers [13; 3] extend the Polish expression representation for
slicing floorplans to handle L-shaped and T-shaped modules. The works
on non-slicing floorplans are either based on the Bounded Sliceline Grid
(BSG) structure [4; 5; 9; 10; 11] or the Sequence Pair (SP) representa-
tion [6; 14; 1; 2]. Most of these works explore the rules to restrict the
placement of the rectangular sub-blocks of a rectilinear module, so that
the sub-blocks will be placed adjacent to one another in an appropriate
way to form back its required rectilinear shape in the final packing.

However, in all these previous works, it is assumed that some input
modules are pre-designated to have a particular rectilinear shape, e.g.,
T-shaped, L-shaped, etc, and full optimizations are performed by con-
sidering the objectives such as area, timing and power consumption as a
whole. This may not be the case in practice. In fact, rectangular shapes
are more preferable in many designing steps. They are easier to be man-
aged not only in floorplanning algorithms, but also in downstream pin
assignment, placement, routing and timing analysis algorithms. Non-
rectangular shapes are often considered only when they can improve the
packing further.

One strategy is that we can perform a preliminary floorplan design with
all the soft-blocks in rectangular shapes at the first stage. After a prelim-
inary floorplan is obtained based on some important criteria like inter-
connect cost, delay and area, we explore the idea of allowing the mod-
ules to change in shapes and dimensions to improve the packing at the

final stage, while keeping the relative spatial relationships between the
modules unchanged. This step is useful especially when the prelimi-
nary floorplan is designed mainly to optimize the interconnect cost and
delay, which is the case for many nowadays interconnect driven floor-
planners. By keeping the adjacency and closeness relationship between
the modules unchanged, the effects of this step on the optimization of
interconnect is little while the deadspace can be reduced by allowing
the modules in its neighborhood to change in shapes in a best fit way
to fill up the unused area. The process of selecting modules to be non-
rectangular shapes could be done automatically or could be controlled
interactively by mouse-click like selections. One advantage of this tech-
nique is that the packing algorithm can be very fast compared with the
full optimization. Users can immediately obtain the result at real time.
This feature and technique is also useful in fixing up small and incre-
mental changes during ECO modifications.

In this paper, we formulate the problem as a mathematical program. All
the flexible modules can change in dimension under their respective area
and aspect ratio (width to height ratio) constraints, and those lying in the
neighborhood of an unused area can further change in shape (to become
non-rectangular) to fill up the unused area in a best fit way. We use
the Lagrangian relaxation technique [8; 15] to solve the problem. The
formulation is in such a perfect way that the corresponding Lagrangian
relaxation subproblem can be solved optimally, and the optimal dimen-
sions of all the rectangular and non-rectangular modules can be com-
puted by closed form equations in

�������
time where

�
is the total num-

ber of edges in the constraint graphs. We tested our method using some
benchmark data with 10 to 49 modules. For each data set, a prelimi-
nary floorplan is first generated using a simulated annealing technique
with a goal to optimize both the interconnect cost and the total chip area.
We then apply our techniques to change the modules in shapes and di-
mensions. Experimental results show that about 3.6% deadspace can be
reduced on average.

The rest of this paper is organized as follow: We will define the problem
in the next section. Section three will give an overview of our approach
and our formulation of the problem as a mathematical program. We will
explain in details the Lagrangian relaxation technique and the optimality
conditions to help solving the problem efficiently in section four. Exper-
imental results will be shown in section five and some remarks will be
given in the last section.

2. PROBLEM DEFINITION
In this problem, we are given a preliminary floorplan design, and our
goal is to give a tighter packing by changing the shapes and dimensions
of the flexible modules to fill up the unused area, while keeping the
original spatial relationships between the modules unchanged. A simple
example is shown in Figure 1. In this example, the packing on the left
is a preliminary floorplan and our goal is to obtain a tighter packing
(the one on the right) by changing the shapes (e.g., module 2 and 7)
and dimensions of the flexible modules. There are two kinds of input
modules: hard modules and soft modules. A hard module is a module
whose dimension is fixed. A soft module is one whose area is fixed but
its shape and dimension can be changed as long as its aspect ratio (and
the aspect ratio of its sub-blocks if there is any) is within a given range.
We are given � modules of areas 	�
 , 	
� , ..., 	
� , their aspect ratio ranges� � 
�����
�� , � � ��������� , ...,

� � ��������� and their initial dimensions. (In case of a
hard module, its maximum and minimum aspect ratio will be the same.)
We are also given the netlist information: ����� 
 � ����� ��� !"!"!"� �����$# and the
relative positions of the I/O pins %&
 � %'� � !"!"!(� %*) along the boundary of the
chip. For each net ������+ where ,.-0/1- �

, we are given its weight, the
I/O pin and the set of modules it is connected to.



(a) Preliminary floorplan. Deadspace = 2.78%
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Figure 1: A simple example of changing the shapes and dimensions
of the flexible modules to fill up the unused area.

A packing of a set of modules is a non-overlap placement of the mod-
ules. We measure the area of a packing as the area of the smallest rectan-
gle enclosing all the modules. A feasible packing is a packing in which
the widths and heights of all the modules and the sub-blocks are con-
sistent with their aspect ratio constraints and their area constraints. For
example, if a soft module / is L-shaped, the dimensions of its sub-blocks
can be changed as long as their aspect ratios are within the given ranges
and their total area is equal to 	
+ . A preliminary floorplan is given in
the form of a pair of vertical and horizontal constraint graphs. (We can
also generate a pair of constraint graphs given any slicing or non-slicing
floorplan in any representation.) Our objective is to change the shapes
and dimensions of the soft modules to fill up the unused area, while
keeping the relative positions between the modules as described by the
constraint graphs unchanged. (Notice that if a module becomes non-
rectangular in shape, its spatial relationship with the other modules will
be measured with respect to its main block, i.e., its largest sub-block.)
The problem is defined as follows:

Problem Floorplanning/Sizing and Shaping (FP/SS)
Given a preliminary floorplan design in the form of a pair of horizontal
and vertical constraint graphs, and a set of hard and soft modules with
their initial dimensions and their areas and aspect ratio constraints,
change the shapes (from rectangular to non-rectangular) and dimen-
sions of the soft modules to produce a tighter feasible packing in which
the relative positions between the modules as described by the constraint
graphs are maintained.

3. AN OVERVIEW OF OUR APPROACH
We are given a preliminary floorplan of a set � of � modules � 
 ,
� � , ..., � � with areas 	�
 , 	 � , ..., 	
� respectively. For each mod-
ule � +���� , the minimum and maximum aspect ratios are

� + and � +
respectively. The preliminary floorplan is given as a pair of constraint
graphs ��� and ��� together with the initial dimensions of the modules.
From this information, we can determine the packing, the positions of
the unused area and the positions of the modules. We will then select
some soft modules lying in the neighborhood of an unused area into a
set 	 . These selected modules are “eligible” to become non-rectangular
in shape. An example is shown in Figure 2. In this example, module
	 and 
 are selected, and they can be changed to non-rectangular in
shape to fill up the unused space (Figure 2(b)). After this selection step,
every module in the set 	 will have one additional sub-block of variable
size. The constraint graphs ��� and ��� will also be updated (become ����
and � � � ) to include these new sub-blocks. New edges will be added to
the constraint graphs to restrict the positions of these sub-blocks so that
they will fill up the unused area and will be abut with their corresponding
main blocks. Figure 3 shows the changes made to the constraint graphs
for the example in Figure 2. Notice that every selected module ��
���	
will have one sub-block ���
 but the area of the sub-block may become
zero at the end and the selected module will then remain rectangular if
this can optimize the packing better.

After selecting a set of modules into 	 and modifying the constraint
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Figure 2: Module 	 and 
 are selected and they can change to non-
rectangular in shape to fill up the unused area.
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Figure 3: Modify the constraint graphs to include the new sub-
blocks and their associated edges.

graphs, we can treat the sub-blocks as individual soft modules. (They
will be automatically abut with their main blocks because of the new
constraint edges added into the constraint graphs.) Let the size of 	 be
% , i.e., % modules are selected to be possibly changed to non-rectangular
in shape. W.l.o.g., we can assume that module � 
�� � ��� !(!"!"� ��� are in
	 and their corresponding sub-blocks are � ���&
 � � ����� � !(!"!"� � ��� � . Let
	�� denote this set of sub-blocks. Now, we have a new set ��� of total
� ��� ����% modules � 
 � � � � !"!(!"� � ��� . Consider the packing topology
described by the constraint graphs ���� and ���� . Let � + denote the small-
est � position of the lower left corner of module � + satisfying all the
horizontal constraints in the horizontal constraint graph � � � . Similarly,� + denotes the smallest � position of the lower left corner of module � +
satisfying all the vertical constraints in the vertical constraint graph ���� .
Then for each edge � � / �! � from � + to ��" in ���� , we have the following
constraint:

� +#�%$1+ -&�'"

where $ + is the width of � + . Similarly, for each edge � � / �! � from � +
to ��" in ���� , we have the following constraint:

� + �&( + - � "

For each module � +)���%*+	 , i.e., a rectangular module, the following
relationship between $ + and ( + holds:

(*+ � 	
+!,-$1+

For each module � +.�/	 , i.e., a non-rectangular module, we have a
constraint on the total area of � + and its sub-block � ��� + :



$1+ ( + �%$ ��� + ( ��� + � 	 +

In the horizontal constraint graph � � � , we denote the set of sources and
sinks by � � and � � respectively where a source is a vertex without any
in-coming edge and a sink is a vertex without any out-going edge. Sim-
ilarly, we use � � and � � to denote the set of sources and sinks in � � �
respectively. Then for each � + in � � :

� + � ���
and for each � + in � � :

� + � ���
For simplicity, we add one dummy vertex labeled � � � , to each of
���� and ���� . The dummy vertex in ���� and ���� represents the rightmost
and the topmost boundary of the chip respectively. Edge � � / � � � � , �
with weight $1+ is added to � � � for each � + ��� � because the rightmost
chip boundary should be at a distance of at least $ + from each module
� + � � � . Similarly, � � / � � ��� , � with weight ( + is added to ���� for each
� +�� � � . From now onwards, we assume that the constraint graphs
� � � and � � � contain these additional vertices and edges. The problem
can be formulated as the following mathematical program ��� (Primal
Problem):

Minimize � ��� � 
 � ��� � 

Subject to � + � $1+ - �'" �
� � / �! � � ���� (A)� + � 	
+!, $1+ - � " �
� � / �! � � ����	�

� + ��� *�	 (B)� + �%( + - � " �
� � / �! � � ����	�
� + ��	 � 	�� (C)

$1+!(*+ �%$ ��� + ( ��� + � 	
+
��, - / - % (D)� + ( + -&$ + ��, - / - � ��% (E)
$1+ - � +!(*+ ��, - / - � ��% (F)

4. LAGRANGIAN RELAXATION
We will apply the Lagrangian relaxation technique [8] to solve the pri-
mal problem ��� . According to the Lagrangian relaxation procedure,
we can introduce multipliers, called Lagrange multipliers, to the con-
straints and move the constraints into the objective function. Let � +
� "
denotes the multiplier for the constraint � + � $1+ -��'" in (A), and ��+
� "
denotes the multiplier for the constraint � + � 	 + ,-$ + - � " in (B) or the
constraint � + �%( + - � " in (C) depending on the value of / .
Let

�� and
�� be vectors of all the Lagrange multipliers introduced into

the constraints. Then the Lagrangian relaxation subproblem associated
with the multiplier, denoted by �)��	 , � �� � �� � , becomes:

Minimize � � � � 
 � � � � 
 ������ +
� "������ � � � +�� " � � + � $1+ *+�'" � �� ����� +�� "������ � ��! �#"%$ ��&('*)�� ��+�� " � � + �,+ $- $ * � " � ��.����� +�� "������ � /��! �#" $ �0) � ) � � ��+�� " � � + �%( + * � " �
Subject to $1+!(*+ �%$ ��� + ( ��� + � 	
+ � , - / - %� + ( + -&$ + � , - / - ����%

$1+ - � +!(*+ � , - / - ����%

Let 1 � �� � �� � denote the optimal value of the problem �)��	 , � �� � �� � . We
define the Lagrangian dual problem �324� of ��� as follows:

Maximize 1 � �� � �� �
Subject to

��65 �
and

��75 �

Now we are going to use the Lagrangian relaxation technique to solve
the primal problem.

4.1 Simplification of the Lagrangian Relaxation
Subproblem

The Lagrangian relaxation subprogram �)��	 , � �� � �� � can be greatly sim-
plified by the Kuhn-Tucker conditions [8; 15]. Consider the Lagrangian8

of ��� [8]:

8 � � ��� �&
 � ��� �&
 � 9��� +
� "������ � � � +�� "
� � +#��$1+ * � " �

� 9����� +�� "������ � /��! �#" $ ��&('*)�� ��+
� "
� � +#� 	
+!,-$1+ * � " �

� 9����� +�� "������ � ��! �#" $ �0) � ) � � � +
� "
� � + �&( + * � " �

� �$� � � � / �;: � % ���*: ���'�;<>= � � + �@? �*: � �+ �
The Kuhn-Tucker conditions imply that A 8 ,BA �'+ � �

and A 8 ,BA � + � �
for all ,�- /�- � � � , at the optimal solution of ��� . Therefore, in
searching for the multipliers to optimize �324� , we only need to consider
those multipliers such that A 8 ,BA � +�� �

and A 8 ,/A � +�� �
hold for all

, - / - � � . We obtain the following conditions by rearranging the
terms in

8
and taking derivatives:

9���
"C� +��D�0� � � � "C� + � 9��� +
� "������ � � � +�� " (1)

9���
"C� +E����� � � "C� + � 9��� +
� "������ � � +�� " (2)

for all , - / - � � , and

� ��� � 
 � 9��� +�� ��� � 
 ����� � � � +�� ��� �&
 (3)

� ��� � 
 � 9��� +�� ��� � 
 ����� � � +
� ��� �&
 (4)

We use F to denote the set of
� �� � �� � satisfying the above relationships

(1) - (4) for the given pair of horizontal and vertical constraint graphs
���� and ���� . If

� �� � �� � �GF , the objective function H of �)��	 , � �� � �� �
becomes:

H � I � 9
� �&
KJ + J �

� � 9��� +
� "������ � � � +�� "
� $1+#� � 9��� +
� "������ � � +�� "

� 	
+!,-$1+ �

�L9

KJ + J �

� � 9��� +
� "������ � � � +
� "
� $1+ � � 9��� +�� "����0� � ��+�� "

� (*+ �

� 9
��� 
KJ + J ��� �

� � 9��� +
� "������ � � � +
� "
� $1+ � � 9��� +
� "������ � ��+�� "

� (*+ �

where I � * � �M��� +�� ��� �&
 ����� � � � +�� ��� �&
 � � �N��� +�� ��� � 
 ����� � � +
� ��� �&
 � is a

constant for a fixed pair of
�� and

�� .

4.2 Optimality Condition for Rectangular Blocks
Consider a module � + where % � , - / - � , i.e., a rectangular module.
We can differentiate H with respect to $ + in order to get the optimal
value of $1+ to minimize H :



A HA $ + � �

$1+ �
���� 	 +�� ����� +
� "������ � � +�� "�N��� +
� "������ � � � +�� "

Recall that $1+ must lie within the range
� � + ��� + � where � + �	� 	
+!, � +

and � + � � 	 + , � + . Let $�
+ denote � + $�
������ $�� �������
� �� $�� �� ��� $ � �������

� �"! $ � � . Since A H ,/A $ +
is positive for $ +"# $�
+ and negative for $ +%$ $�
+ , the optimal $ + can
be computed as:

$1+ �'&)(+*-, � + � &/.10�, � + � $ 
+3242
4.3 Optimality Conditions for Rectilinear Mod-

ules
Let � + , ��+ , � ��� + and � ��� + denote

�N��� +�� "����0� � � � +
� " , �N��� +
� "������ � � +�� " ,�N��� ��� +�� "����0� � � � ��� +
� " and
�N��� ��� +�� "������ � � ��� +
� " respectively. Consider

a module � + where ,0- / - % , i.e., a module which can possibly
become non-rectangular. According to the Kuhn-Tucker conditions [8],
the first-order optimality conditions for �)��	 , � �� � �� � are as follows:

� + �65 + ( + *87 + �:9 +�� �
(5)� + �65 + $1+#� � +�7 + * � +�9 + � �
(6)� ��� +#�65 +!( ��� + *;7 ��� + �:9 ��� + � �
(7)� ��� +#�65 + $ ��� + � � ��� +�7 ��� + * ����� +�9 ��� + � �
(8)7 + � � + ( + *+$1+ � � �
(9)9 + � $ + * � + ( + � � �

(10)7 ��� + � � ��� + ( ��� + *+$ ��� + � � �
(11)9 ��� + � $1��� + * � ��� + ( ��� + � � �
(12)

$1+!( +#�%$ ��� + ( ��� + � 	 + (13)

where 5 + �:< , 7 + 5 �
, 9 + 5 �

, 7 ��� + 5 �
and 9 ��� + 5 �

. For a given
pair of

�� and
�� , � + , ��+ , � ��� + and � ��� + are known. Therefore, we need

to solve a system = of nine non-linear equations with nine unknowns
( ( + , $1+ , ( ��� + , $ ��� + , 5 + , 7 + , 9 + , 7 ��� + and 9 ��� + ). Fortunately, they
can still be solved by closed form equations according to the following
theorem. Because of the limitation in space, we will only give a brief
outline of its proof here.

Theorem 1 The above system of eqations = can be solved by closed
form equations.

Proof There are 3 cases for the values of ( + and $1+ according to the
values of 7 + and 9 + :
Case 1 7 + � �

and 9 + � �
. This case occurs when

� + - � $! $ - � + .
From equation (5) and (6), we can deduce that:

( + � * � +5 + $ +�� * ��+5 +
Case 2 7 +?>� �

and 9 +�� �
. This case occurs when � $! $ - � + . From

equation (5), (6) and (9), we can deduce that:

( + � * � + � + * � +@ 5 + � + $ +�� * � + � + * ��+@ 5 +

Case 3 7 + � �
and 9 + >� �

. This case occurs when � $! $ 5 � + . From
equation (5), (6) and (10), we can deduce that:

( + � * � + � + * ��+@ 5 + � + $ + � * � + � + * ��+@ 5 +
Note that the case that 7 + >� �

and 9 + >� �
. is impossible since equation

(9) and (10) cannot be satisfied simultaneously. Similarly, we can write
$ ��� + and ( ��� + in terms of � ��� + , � ��� + , � ��� + , ����� + and 5 + according to
the values of 7 ��� + and 9 ��� + :
Case 1 7 ��� +�� �

and 9 ��� + � �
. This case occurs when

� ��� + -�4ACB $! ACB $ - ����� + . From equation (7) and (8), we can deduce that:

( ��� + � * � ��� +5 + $ ��� + � * � ��� +5 +
Case 2 7 ��� + >� �

and 9 ��� + � �
. This case occurs when �4ACB $! ACB $ - � ��� + .

From equation (7), (8) and (11), we can deduce that:

( ��� +�� * � ��� + � ��� + *7� ��� +@ 5 + � ��� + $1��� + � * � ��� + � ��� + *7� ��� +@ 5 +
Case 3 7 ��� + � �

and 9 ��� + >� �
. This case occurs when �4ACB $! ACB $ 5 ����� + .

From equation (7), (8) and (12), we can deduce that:

( ��� +�� * � ��� + � ��� + *7� ��� +@ 5 + � ��� + $1��� +�� * � ��� + � ��� + *7����� +@ 5 +
Similarly, the case that 7 ��� + >� �

and 9 ��� + >� �
is impossible since

equation (11) and (12) cannot be satisfied simultaneously. Therefore,
in any combination of the above cases, we can write ( + , $1+ , ( ���&
 and
$1���&
 in terms of 5 + . (Note that � + , � ��� + , � + , ����� + , � + , � + , � ��� + and
����� + are known.) Then we can substitute these expressions into equa-
tion (13) and compute 5 + . Finally, we will substitute back the value of 5'+
into the expressions for ( + , $1+ , ( ���&
 and $ ��� 
 and compute their val-
ues. D
4.4 Solving LRS
The algorithm LRS below outlines the steps to solve the Lagrangian sub-
problem � ��	 , � �� � �� � given a pair of

�� and
�� satisfying the optimality

condition.

Algorithm LRS
/* This algorithm solves � ��	 , � �� � �� �
optimally given

� �� � �� � � F */
Input: Areas 	�
 , 	 � , ..., 	
�

Lower bounds on aspect ratios
� 
 , � � , ...,

� � �
Upper bounds of aspect ratios � 
 , � � , ..., � ���
Constraint graphs ���� and ����
Lagrange multipliers

� �� � �� � � F
Output: $ 
 , $ � , ..., $ ��� , ( 
 , ( � , ..., ( ���
1. For / � % � , � <1�
2. Compute � + � � 	
+!, � + and � + � � 	 +!, � +
3. Compute �FE � ! � �N��� +
� "������ � � � +�� "
4. Compute �FE � � � �N��� +�� "����0� � ��+�� "
5. If

� �GE � ! >� � �
and

� �GE � � , �FE � ! 5 � �
6. Compute $�
 � � 	 +-H �FE � � , �GE � !
7. $1+ �'&)(I*J, � + � &/.�0�, � + � $ 
 2C2 ( + � 	
+!, $1+
8. For / � , � < %
9. Compute �FE � !4K � �N��� +�� "������ � � � +�� "
10. Compute �FE � � K � �N��� +-"������ � ��+
� "



11. Compute �FE � !�� � �N��� ��� +�� "����0� � � � ��� +
� "
12. Compute �FE � � � � �N��� ��� +�� "��D�0� � � ��� +�� "
13. Compute 5 + , (*+ , $1+ , ( ��� + and $ ��� + from the

values of �FE � � K , �FE � !4K , �FE � � � and �FE � !��
according to Theorem 1 of Section 4.3.

4.5 Solving �324�
As explained above, we only need to consider those

� �� � �� � � F in or-
der to maximize 1 � �� � �� � in the �324� problem. We used a subgradient
optimization method to search for these optimal pairs of

�� and
�� . Start-

ing from an arbitrary
� �� � �� � �	F in step I , we will move to a new pair� �� � � �� � � by following the subgradient direction:

� � +
� " � � � +�� " ��� 
 � � +#�%$1+ * �'" � � �

� � +
� " � � ��+
� " ��� 
 � � + � 	
+
$1+ *

� " � � �

where

� � � � �
� � (�� � $ � �� (�� � - � !

and � 
 is a step size such that � / � 
	��
 � 
�� �
and

� 

	� 
 � 
���
 . Af-
ter updating

�� and
�� , we will project

� �� � � �� � � back to the nearest point� �� 
 � �� 
 � in F using a 2-norm measure and solve the Lagrangian re-
laxation subproblem �)��	 , � �� 
 � �� 
 � using the method described above.
This procedure is repeated until the solution converges. The following
algorithm summarizes the steps to solve �324� :

Algorithm LDP
/* This algorithm solves the �324� problem optimally. */
Input: Areas 	 
 , 	 � , ..., 	 �

Lower bounds of aspect ratios
� 
 , � � , ...,

� ���
Upper bounds of aspect ratios � 
 , � � , ..., � � �
Constraint graphs � � � and � � �

Output: $ 
 , $ � , ..., $ � � , ( 
 , ( � , ..., ( � �
1. Initialize

� �� � �� � and � 

2. Project

� �� � �� � to
� �� 
 � �� 
 � such that

� �� 
 � �� 
 � � F
3. I � ,
4.

� �� � �� � � � �� 
 � �� 
 �
5. Repeat
6. Call LRS() for this pair of � and �
7. Compute

� � + � � + � � , - / - � �'�0, using the
longest path algorithm

8. Compute �#� +
� " � � � +�� " ��� 
 � � + � $ + *+� " � � �� � � / �  � ������
9. Compute � � +
� " � � ��+�� " ��� 
 � � +#�&( + * � " � � �� � � / �  � ��� ��
10. Project

� �� � � �� � � to
� �� 
 � �� 
 � s.t.

� �� 
 � �� 
 � �6F
11. I���I � ,
12.

� �� � �� � � � �� 
 � �� 
 �
13. Until $ + ’s converge

5. EXPERIMENTAL RESULTS
We tested our methd using four MCNC benchmarks with 10, 11, 33 and
49 modules. The size of each benchmark data is shown in Table 1. We
repeated the experiment five times for each benchmark data using differ-
ent seed values for the random number generator. In each experiment,
we first generated a preliminary floorplan using a simulated annealing
method. In this initial floorplanning step, equal weighting were given to
the area term and the wirelength term in the cost function. After obtain-
ing such a preliminary floorplan, we selected some soft modules lying

in the neighborhood of the unused areas into the set 	 . These were
the modules which might become non-rectangular in shape to fill up
the unused areas. In our current implementation, the selection process
was done manually. Among all the modules lying in the neighborhood
of an unused area, we picked large ones which were also lying on a
critical path in the constraint graphs. The constraint graphs were then
modified to include the new sub-blocks of these selected modules and
to restrict their positions so that they would fill up the unused area and
would also be abut with their corresponding main blocks. After these
pre-processing steps, we performed shaping and sizing on the modules
using the Lagrangian relaxation technique described in section 4.

In all the experiments, the minimum and maximum aspect ratios of the
soft modules were 0.5 and 2.0 respectively, while those for the sub-
blocks were 0.1 and 10.0 respectively. We limited the aspect ratio of
the final packing to be within the range of 0.9 to 1.1 inclusively. For
comparison purposes, we also generated the results for the cases when
no non-rectangular blocks was allowed, i.e., all the soft modules only
changed in dimensions. The results were generated using a 600MHz
Pentium III processor, and is shown in Table 2. The experimental re-
sults show that our shaping and sizing step is useful in improving the
packing quality of the preliminary floorplan by reducing the deadspace
by about 3.6% on average, while keeping the relative positions between
the modules unchanged. Figure 4, 5, 6, 7 and 8 show the preliminary
floorplans and the floorplans after sizing and shaping in some of the ex-
periments.

Data Set Number of Modules Number of Nets
xerox 10 203

hp 11 83
ami33 33 123
ami49 49 408

Table 1: Testing data sets

Benchmark Deadspace Deadspace Deadspace Time
(%) in (%) after (%) after (sec)

preliminary sizing sizing &
floorplan only shaping

xerox (1) 3.12 1.05 0.40 0.17
xerox (2) 3.15 0.88 0.84 0.15
xerox (3) 6.38 5.46 0.46 0.17
xerox (4) 2.10 1.18 0.71 0.15
xerox (5) 2.78 1.07 0.00 0.17
Average 3.51 1.93 0.48 0.16

hp (1) 2.80 2.42 1.58 0.17
hp (2) 4.05 2.87 1.73 0.16
hp (3) 3.89 2.94 1.62 0.17
hp (4) 6.40 4.98 1.60 0.18
hp (5) 2.21 1.18 0.47 0.17

Average 3.87 2.88 1.40 0.17

ami33 (1) 6.73 3.62 2.27 1.49
ami33 (2) 7.38 4.25 2.13 1.30
ami33 (3) 5.21 2.64 2.39 1.17
ami33 (4) 8.72 4.94 2.98 1.52
ami33 (5) 8.99 4.12 2.12 1.47
Average 7.41 3.91 2.38 1.39

ami49 (1) 6.48 4.08 2.31 5.36
ami49 (2) 7.60 5.50 5.20 3.85
ami49 (3) 10.42 7.70 5.93 4.65
ami49 (4) 7.51 5.48 4.28 5.57
ami49 (5) 13.33 11.70 9.26 6.29
Average 9.07 6.89 5.40 5.14

Table 2: Shaping and Sizing Results



6. REMARKS
6.1 Modules with More than Two Sub-blocks
In this paper, we only handle the case when the non-rectangular modules
have at most two rectangular sub-blocks. However our approach can be
extended to more than two sub-blocks directly. If each non-rectangular
module has up to I rectangular sub-blocks, the system of equations =
will have � I � , unknowns in � I � , non-linear equations, and can still
be solved by closed form equations by considering three possible cases
for the size of each rectangular sub-blocks.

6.2 Module Selection
In our current implementation, the modules in the set 	 are selected
manually. Our strategy is to pick, among all the modules in the neigh-
borhood of an unused area, a large module which is lying on a critical
path in the constraint graphs. This manual and interactive selection pro-
cess gives the users a lot of flexibility and control over the final packing.
However, the set of modules selected will affect the quality of the fi-
nal results and an automatic selection process will have an advantage of
picking the best set of modules to be re-shaped in order to obtain the
tightest possible final packing.
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Figure 4: Data set xerox (3)
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(b) After sizing and shaping. Deadspace = 2.39%
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(a) Preliminary floorplan. Deadspace = 8.99%
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(b) After sizing and shaping. Deadspace = 2.12%
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Figure 7: Data set ami33 (5)

(a) Preliminary floorplan. Deadspace = 6.48%
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(b) After sizing and shaping. Deadspace = 2.31%
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Figure 8: Data set ami49 (1)


